Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-03T04:56:50.018Z Has data issue: false hasContentIssue false

12 - Pigment-based measurements of phytoplankton rates

Published online by Cambridge University Press:  05 March 2012

Suzanne Roy
Affiliation:
Université du Québec à Rimouski, Canada
Carole A. Llewellyn
Affiliation:
Plymouth Marine Laboratory
Einar Skarstad Egeland
Affiliation:
University of Nordland, Norway
Geir Johnsen
Affiliation:
Norwegian University of Science and Technology, Trondheim
Get access

Summary

The most direct way to measure phytoplankton growth/production rate is to quantify changes in biomass over a period of time, something difficult to achieve methodologically in nature. A second and serious problem is the choice of the biomass unit for measurements. Many different macromolecules have been suggested (e.g. proteins, nucleic acids, ATP, lipids and pigments). However, carbon (C) is commonly the standard unit for biomass and the desired currency for productivity models (MacIntyre et al., 2000). Because carbon is common to all organisms, estimation of phytoplankton rates based on carbon measurement is not straightforward. Among macromolecules, pigments are specific to phytoplankton. Their specificity and distinct optical properties make pigments a useful tool for studying phytoplankton processes.

Phytoplankton dynamics reflect the balance between production and losses, notably through population growth and grazing. It is, however, difficult to determine these rates simultaneously, and significant differences can be observed in the short term (hours, days), on the scale of phytoplankton generation times. Active growth is accompanied by a parallel grazing pressure exercised mostly by microzooplankton. This chapter reviews the pigment-based methods used to measure both production and grazing rates, focusing on incubation-dependent methods: the 14C-pigment labeling technique and the serial dilution bioassay. Finally we will briefly comment on other approaches such as satellite imagery and fast repetition rate fluorometry (FRRF), which are free of incubation-derived artifacts.

Type
Chapter
Information
Phytoplankton Pigments
Characterization, Chemotaxonomy and Applications in Oceanography
, pp. 472 - 495
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M. R.Letelier, R. M. 1999 Algorithm theoretical basis document – Chlorophyll fluorescence (MODIS product number 20)NASAGoogle Scholar
Agis, M.Granda, A.Dolan, J. R. 2007 A cautionary note: Examples of possible microbial community dynamics in dilution grazing experimentsJ. Exp. Mar. Biol. Ecol 341 176CrossRefGoogle Scholar
Andersen, T.Schartau, A. K.L.Paasche, E. 1991 Quantifying external and internal nitrogen and phosphorous pools, as well as nitrogen and phosphorous supplied through remineralization, in coastal marine plankton by means of a dilution techniqueMar. Ecol. Prog. Ser 69 67CrossRefGoogle Scholar
Antoine, D.Morel, A. 1996 Oceanic primary production.1. Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observationsGlobal Biogeochem. Cycles 10 43CrossRefGoogle Scholar
Banse, K. 2002 Should we continue to measure 14C-uptake by phytoplankton for another 50 yearsLimnol. Oceanogr. Bull 11 45CrossRefGoogle Scholar
Banse, K. 2002 Steemann Nielsen and the ZooplanktonHydrobiologia 480 15CrossRefGoogle Scholar
Barlow, R. G.Burkill, P. H.Mantoura, R. F.C. 1988 Grazing and degradation of algal pigments by marine protozoan J. Exp. Mar. Biol. Ecol 119 119CrossRefGoogle Scholar
Behrenfeld, M. J.Falkowski, P. G. 1997 A consumer's guide to phytoplankton primary productivity modelsLimnol. Oceanogr 42 1479CrossRefGoogle Scholar
Behrenfeld, M. J.Falkowski, P. G. 1997 Photosynthetic rates derived from satellite-based chlorophyll concentrationLimnol. Oceanogr 42 1CrossRefGoogle Scholar
Behrenfeld, M. J.Boss, E.Siegel, D. A.Shea, D. M. 2005 Carbon-based ocean productivity and phytoplankton physiology from spaceGlobal Biogeochem. Cycles 19 GB1006CrossRefGoogle Scholar
Behrenfeld, M. J.Worthington, K.Sherrell, R. M.Chavez, F. P.Strutton, P.McPhaden, M.Shea, D. M. 2006 Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnosticsNature 442 1025CrossRefGoogle ScholarPubMed
Brown, S. L.Landry, M. R.Barber, R. T.Campbell, L.Garrison, D. L.Gowing, M. M. 1999 Picophytoplankton dynamics and production in the Arabian Sea during the 1995 Southwest MonsoonDeep-Sea Res. II 46 1745CrossRefGoogle Scholar
Brown, S. L.Landry, M. R.Christensen, S.Garrison, D.Gowing, M. M.Bidigare, R. R.Campbell, L. 2002 Microbial community dynamics and taxon-specific phytoplankton production in the Arabian Sea during the 1995 monsoon seasonsDeep-Sea Res. II 49 2345CrossRefGoogle Scholar
Burkill, P. H.Mantoura, R. F.C.Llewellyn, C. A.Owens, N. J.D. 1987 Microzooplankton grazing and selectivity of phytoplankton in coastal watersMar. Biol 93 581CrossRefGoogle Scholar
Butler, N. M.Suttle, C. A.Neill, W. E. 1989 Discrimination by fresh-water zooplankton between single algal cells differing in nutritional-statusOecologia 78 368CrossRefGoogle Scholar
Calbet, A.Landry, M. R. 2004 Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systemsLimnol. Oceanogr 49 51CrossRefGoogle Scholar
Calbet, A.Trepat, I.Almeda, R.Salo, V.Saiz, E.Movilla, J. I.Alcaraz, M.Yebra, L.Simo, R. 2008 Impact of micro- and nanograzers on phytoplankton assessed by standard and size-fractionated dilution grazing experimentsAquat. Microb. Ecol 50 145CrossRefGoogle Scholar
Campbell, J.Antoine, D.Armstrong, R.Arrigo, K.Balch, W.Barber, R.Behrenfeld, M.Bidigare, R.Bishop, J.Carr, M. E.Esaias, W.Falkowski, P.Hoepffner, N.Iverson, R.Kiefer, D.Lohrenz, S.Marra, J.Morel, A.Ryan, J.Vedernikov, V.Waters, K.Yentsch, C.Yoder, J. 2002 Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradianceGlobal Biogeochem. Cycles 16 GB1035CrossRefGoogle Scholar
Caron, D. A.Dennett, M. R. 1999 Phytoplankton growth and mortality during the 1995 Northeast monsoon and spring intermonsoon in the Arabian SeaDeep-Sea Res. II 46 1665CrossRefGoogle Scholar
Carr, M. E.Friedrichs, M. A.M.Schmeltz, M.Aita, M. N.Antoine, D.Arrigo, K. R.Asanuma, I.Aumont, O.Barber, R.Behrenfeld, M.Bidigare, R.Buitenhuis, E. T.Campbell, J.Ciotti, A.Dierssen, H.Dowell, M.Dunne, J.Esaias, W.Gentili, B.Gregg, W.Groom, S.Hoepffner, N.Ishizaka, J.Kameda, T.Le Quéré, C.Lohrenz, S.Marra, J.Melin, F.Moore, K.Morel, A.Reddy, T. E.Ryan, J.Scardi, M.Smyth, T.Turpie, K.Tilstone, G.Waters, K.Yamanaka, Y. 2006 A comparison of global estimates of marine primary production from ocean colorDeep-Sea Res. II 53 741CrossRefGoogle Scholar
Corno, G.Letelier, R. M.Abbott, M. R.Karl, D. M. 2006 Assessing primary production variability in the North Pacific Subtropical Gyre: a comparison of fast repetition rate fluorometry and C-14 measurementsJ. Phycol 42 513CrossRefGoogle Scholar
Cowles, T. J.Olson, R. J.Chisholm, S. W. 1988 Food selection by copepods – discrimination on the basis of food qualityMar. Biol 100 41CrossRefGoogle Scholar
Chavez, F. P.Buck, K. R.Coale, K. H.Martin, J. H.DiTullio, G. R.Welschmeyer, N. A.Jacobson, A. C.Barber, R. T. 1991 Growth rates, grazing, sinking, and iron limitation of equatorial Pacific phytoplanktonLimnol. Oceanogr 36 1816CrossRefGoogle Scholar
Chen, B. Z.Liu, H. B.Landry, M. R.Dai, M. H.Huang, B. Q.Jun, S. 2009 Close coupling between phytoplankton growth and microzooplankton grazing in the western South China SeaLimnol. Oceanogr 54 1084CrossRefGoogle Scholar
Delizo, L.Smith, W. O.Hall, J. 2007 Taxonomic composition and growth rates of phytoplankton assemblages at the subtropical convergence east of New ZealandJ. Plankton Res 29 655CrossRefGoogle Scholar
Dolan, J. R.McKeon, K. 2005 The reliability of grazing rate estimates from dilution experiments: have we over-estimated rates of organic carbon consumption by microzooplankton?Ocean Science 1 1CrossRefGoogle Scholar
Dolan, J. R.Gallegos, C. L.Moigis, A. G. 2000 Dilution effects on microzooplankton in dilution grazing experimentsMar. Ecol. Prog. Ser 200 127CrossRefGoogle Scholar
Dussart, B. M. 1965 Les différentes catégories de planctonHydrobiologia 26 72CrossRefGoogle Scholar
Esaias, W. E.Abbott, M. R.Barton, I.Brown, O. B.Campbell, J. W.Carder, K. L.Clark, D. K.Evans, R. H.Hoge, F. E.Gordon, H. R.Balch, W. M.Letelier, R.Minnett, P. J. 1998 An overview of MODIS capabilities for ocean science observationsIEEE Trans. Geosci. Rem. Sensing 36 1250CrossRefGoogle Scholar
Evans, G. T.Paranjape, M. A. 1992 Precision of estimates of phytoplankton growth and microzooplankton grazing when the functional response of grazers may be nonlinearMar. Ecol. Prog. Ser 80 285CrossRefGoogle Scholar
Falkowski, P. G.Kolber, Z. 1995 Variations in chlorophyll fluorescence yields in phytoplankton in the world oceansAust. J. Plant. Physiol 22 341CrossRefGoogle Scholar
Falkowski, P. G.Raven, J. A 2007 Aquatic PhotosynthesisPrincetonPrinceton University PressGoogle Scholar
Field, C. B.Behrenfeld, M. J.Randerson, J. T.Falkowski, P. G. 1998 Primary production of the biosphere: Integrating terrestrial and oceanic componentsScience 281 237CrossRefGoogle ScholarPubMed
Fileman, E.Burkill, P. 2001 The herbivorous impact of microzooplankton during two short-term lagrangian experiments off the NW coast of Galicia in summer 1998Prog. Oceanogr 51 361CrossRefGoogle Scholar
First, M. R.Lavrentyev, P. J.Jochem, F. J. 2007 Patterns of microzooplankton growth in dilution experiments across a trophic gradient: Implications for herbivory studiesMar. Biol 151 1929CrossRefGoogle Scholar
Frost, B. W. 1972 Effects of size and concentration of food particles on the feeding behaviour of the marine planktonic copepod Limnol. Oceanogr 17 805CrossRefGoogle Scholar
Gallegos, C. L. 1989 Microzooplankton grazing on phytoplankton in the Rhode River, Maryland: nonlinear feeding kineticsMar. Ecol. Prog. Ser 57 23CrossRefGoogle Scholar
Geider, R. J.MacIntyre, H. L.Kana, T. M. 1998 A dynamic regulatory model of phytoplankton acclimation to light, nutrients, and temperatureLimnol. Oceanogr 43 679CrossRefGoogle Scholar
Gieskes, W. W.Kraay, G. W. 1986 Analysis of Phytoplankton Pigments by HPLC before, during and after mass occurrence of the microflagellate during the spring bloom in the open northern North-Sea in 1983Mar. Biol 92 45CrossRefGoogle Scholar
Gieskes, W. W.Kraay, G. W. 1986 Floristic and physiological differences between the shallow and the deep nanophytoplankton community in the euphotic zone of the open Tropical Atlantic revealed by HPLC analysis of pigmentsMar. Biol 91 567CrossRefGoogle Scholar
Gieskes, W. W.C.Kraay, G. W. 1989 Estimating the carbon-specific growth-rate of the major algal species groups in eastern Indonesian waters by C-14 labeling of taxon-specific carotenoidsDeep-Sea Res 36 1127CrossRefGoogle Scholar
Goericke, R. 1992 The chlorophyll-labeling method – the radiochemical purity of chlorophyll-aJ. Plankton Res 14 1781CrossRefGoogle Scholar
Goericke, R. 1998 Response of phytoplankton community structure and taxon-specific growth rates to seasonally varying physical forcing in the Sargasso Sea off BermudaLimnol. Oceanogr 43 921CrossRefGoogle Scholar
Goericke, R. 2002 Top-down control of phytoplankton biomass and community structure in the monsoonal Arabian SeaLimnol. Oceanogr 47 1307CrossRefGoogle Scholar
Goericke, R.Welschmeyer, N. A. 1992 Pigment turnover in the marine diatom . I. The 14CO2-labeling kinetics of chlorophyll J. Phycol 28 498CrossRefGoogle Scholar
Goericke, R.Welschmeyer, N. A. 1992 Pigment turnover in the marine diatom . II. The 14CO2-labeling kinetics of carotenoidsJ. Phycol 28 507CrossRefGoogle Scholar
Goericke, R.Welschmeyer, N. A. 1993 The chlorophyll-labeling method: measuring specific rates of chlorophyll synthesis in cultures and in open oceanLimnol. Oceanogr 38 80CrossRefGoogle Scholar
Goericke, R.Welschmeyer, N. A. 1993 The carotenoid-labelling method: measuring specific rates of carotenoid synthesis in natural phytoplankton communitesMar. Ecol. Prog. Ser 98 157CrossRefGoogle Scholar
Gorbunov, M. Y.Kolber, Z. S.Lesser, M. P.Falkowski, P. G. 2001 Photosynthesis and photoprotection in symbiotic coralsLimnol. Oceanogr 46 75CrossRefGoogle Scholar
Gutiérrez-Rodríguez, A.Latasa, M.Mourre, B.Laws, E. A. 2009 Coupling between phytoplankton growth and microzooplankton grazing in dilution experiments: potential artefactsMar. Ecol. Prog. Ser 383 1CrossRefGoogle Scholar
Hansen, P. J.Calado, A. J. 1999 Phagotrophic mechanisms and prey selection in free-living dinoflagellatesJ. Eukaryot. Microbiol 46 382CrossRefGoogle Scholar
Huot, Y.Brown, C. A.Cullen, J. J. 2005 New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data productsLimnol. Oceanogr. Methods 3 108CrossRefGoogle Scholar
Irigoien, X.Flynn, K. J.Harris, R. P. 2005 Phytoplankton blooms: a ‘loophole’ in microzooplankton grazing impact?J. Plankton Res 27 313CrossRefGoogle Scholar
Jacobson, D. M.Anderson, D. M. 1986 Thecate heterotrophic dinoflagellates – feeding-behavior and mechanismsJ. Phycol 22 249CrossRefGoogle Scholar
Jespersen, A. M.Nielsen, J.Riemann, B.Sondergaard, M. 1992 Carbon-specific phytoplankton growth-rates – a comparison of methodsJ. Plankton Res 14 637CrossRefGoogle Scholar
John, E. H.Davidson, K. 2001 Prey selectivity and the influence of prey carbon: nitrogen ratio on microflagellate grazingJ. Exp. Mar. Biol. Ecol 260 93CrossRefGoogle ScholarPubMed
Karl, D. M.Bidigare, R. R.Letelier, R. M. 2002 Sustained and aperiodic variability in organic matter production and phototrophic microbial community structure in the North Pacific subtropical gyrePhytoplankton ProductivityLe, P. J.Williams, B.Thomas, D. N.Reynolds, C. S.OxfordBlackwell Science222CrossRefGoogle Scholar
Kiefer, D. A.Reynolds, R. A. 1992 Advances in understanding phytoplankton fluorescence and photosynthesisPrimary Productivity and Biogeochenical Cycles in the SeaFalkowski, P. G.Woodhead, A. D.New YorkPlenum155CrossRefGoogle Scholar
Klein, B.Gieskes, W. W.C.Kraay, G. G. 1986 Digestion of chlorophylls and carotenoids by the marine protozoan studied by HPLC analysis of algal pigmentsJ. Plankton Res 8 827CrossRefGoogle Scholar
Kolber, Z. S.Falkowski, P. G. 1993 Use of active fluorescence to estimate phytoplankton photosynthesis in situLimnol. Oceanogr 38 1646CrossRefGoogle Scholar
Kolber, Z. S.Prasil, O.Falkowski, P. G. 1998 Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocolsBiochim. Biophys. Acta-Bioenergetics 1367 88CrossRefGoogle ScholarPubMed
Kromkamp, J. C.Forster, R. M. 2003 The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminologyEur. J. Phycol 38 103CrossRefGoogle Scholar
Landry, M. R.Calbet, A. 2005 Reality checks on microbial food web interactions in dilution experiments: responses to the comments of Dolan and McKeonOcean Sci 1 39CrossRefGoogle Scholar
Landry, M. R.Hasset, R. P. 1982 Estimating the grazing impact of marine microzooplanktonMar. Biol 67 283CrossRefGoogle Scholar
Landry, M. R.Haas, L. W.Fagerness, V. L. 1984 Dynamics of microbial plankton communities – Experiments in Kaneohe Bay, HawaiiMar. Ecol. Prog. Ser 16 127CrossRefGoogle Scholar
Landry, M. R.Kirshtein, J.Constantinou, J. 1995 A refined dilution technique for measuring the community grazing impact of microzooplankton, with experimental tests in the central equatorial PacificMar. Ecol. Prog. Ser 120 53CrossRefGoogle Scholar
Landry, M. R.Constantinou, J.Latasa, M.Brown, S. L.Bidigare, R. R.Ondrusek, M. E. 2000 Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). III. Dynamics of phytoplankton growth and microzooplankton grazingMar. Ecol. Prog. Ser 201 57CrossRefGoogle Scholar
Landry, M. R.Brown, S. L.Neveux, J.Dupouy, C.Blanchot, J.Christensen, S.Bidigare, R. R. 2003 Phytoplankton growth and microzooplankton grazing in high-nutrient, low-chlorophyll waters of the equatorial Pacific: Community and taxon-specific rate estimates from pigment and flow cytometric analysesJ. Geophys. Res 108 8142CrossRefGoogle Scholar
Landry, M. R.Brown, S. L.Rii, Y. M.Selph, K. E.Bidigare, R. R.Yang, E. J.Simmons, M. P. 2008 Depth-stratified phytoplankton dynamics in Cyclone Opal, a subtropical mesoscale eddyDeep-Sea Res. II 55 1348CrossRefGoogle Scholar
Latasa, M.Landry, M. R.Schlüter, L.Bidigare, R. R. 1997 Pigment-specific growth and grazing rates of phytoplankton in the central equatorial PacificLimnol. Oceanogr 42 289CrossRefGoogle Scholar
Latasa, M.Moran, X.Scharek, R.Estrada, M. 2005 Estimating the carbon flux through main phytoplankton groups in the northwestern MediterraneanLimnol. Oceanogr 50 1447CrossRefGoogle Scholar
Laws, E. A. 1984 Improved estimates of phytoplankton carbon based on 14C incorporation into chlorophyll J. Theor. Biol 110 425CrossRefGoogle Scholar
Letelier, R. M.Abbott, M. R.Karl, D. M. 1997 Chlorophyll natural fluorescence response to upwelling events in the Southern OceanGeophys. Res. Lett 24 409CrossRefGoogle Scholar
Lewis, M. R.Harrison, W. G.Oakey, N. S.Hebert, D.Platt, T. 1986 Vertical nitrate fluxes in the oligotrophic oceanScience 234 870CrossRefGoogle ScholarPubMed
MacIntyre, H. L.Kana, T. M.Geider, R. J. 2000 The effect of water motion on short-term rates of photosynthesis by marine phytoplanktonTrends Plant. Sci 5 12CrossRefGoogle ScholarPubMed
Mantoura, R. F.C.Llewellyn, C. A. 1983 The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatographyAnal. Chim. Acta 151 297CrossRefGoogle Scholar
McManus, G. B. 1995 Phytoplankton abundance and pigment changes during simulated in situ dilution experiments in estuarine waters: possible artifacts caused by algal light adaptationJ. Plankton Res 17 1705CrossRefGoogle Scholar
McManus, G. B.Ederington-Cantrell, M. C. 1992 Phytoplankton pigments and growth rates, and microzooplankton grazing in a large temperate estuaryMar. Ecol. Prog. Ser 87 77CrossRefGoogle Scholar
Melrose, D. C.Oviatt, C. A.O'Reilly, J. E.Berman, M. S. 2006 Comparisons of fast repetition rate fluorescence estimated primary production and 14C uptake by phytoplanktonMar. Ecol. Prog. Ser 311 37CrossRefGoogle Scholar
Moigis, A. G. 2006 The clearance rate of microzooplankton as the key element for describing estimated non-linear dilution plots demonstrated by a modelMar. Biol 149 743CrossRefGoogle Scholar
Monger, B. C.Landry, M. R. 1991 Prey-size dependency of grazing by free-living marine flagellatesMar. Ecol. Prog. Ser 74 239CrossRefGoogle Scholar
Moore, C. M.Suggett, D.Holligan, P. M.Sharples, J.Abraham, E. R.Lucas, M. I.Rippeth, T. P.Fisher, N. R.Simpson, J. H.Hydes, D. J. 2003 Physical controls on phytoplankton physiology and production at a shelf sea front: a fast repetition-rate fluorometer based field studyMar. Ecol. Prog. Ser 259 29CrossRefGoogle Scholar
Moore, C. M.Lucas, M. I.Sanders, R.Davidson, R. 2005 Basin-scale variability of phytoplankton bio-optical characteristics in relation to bloom state and community structure in the Northeast AtlanticDeep-Sea Res. I 52 401CrossRefGoogle Scholar
Moore, C. M.Suggett, D. J.Hickman, A. E.Kim, Y. N.Tweddle, J. F.Sharples, J.Geider, R. J.Holligan, P. M. 2006 Phytoplankton photoacclimation and photoadaptation in response to environmental gradients in a shelf seaLimnol. Oceanogr 51 936CrossRefGoogle Scholar
Morel, A.André, J. M. 1991 Pigment distribution and primary production in the Western Mediterranean as derived and modeled from Coastal Zone Color Scanner observationsJ. Geophys. Res. Oceans 96 12685CrossRefGoogle Scholar
Neuer, S.Cowles, T. J. 1994 Protist herbivory in the Oregon upwelling systemMar. Ecol. Prog. Ser 113 147CrossRefGoogle Scholar
Obayashi, Y.Tanoue, E. 2002 Growth and mortality rates of phytoplankton in the northwestern North Pacific estimated by the dilution method and HPLC pigment analysisJ. Exp. Mar. Biol. Ecol 280 33CrossRefGoogle Scholar
Olson, M. B.Strom, S. L. 2002 Phytoplankton growth, microzooplankton herbivory and community structure in the southeast Bering Sea: insight into the formation and temporal persistence of an bloomDeep-Sea Res. II 49 5969CrossRefGoogle Scholar
Pinckney, J. L.Millie, D. F.Howe, K. E.Paerl, H. W.Hurley, J. P. 1996 Flow scintillation counting of 14C-labeled microalgal photosynthetic pigmentsJ. Plankton Res 18 1867CrossRefGoogle Scholar
Pinckney, J. L.Richardson, T. L.Millie, D. F.Paerl, H. W. 2001 Application of photopigment biomarkers for quantifying microalgal community composition and in situ growth ratesOrg. Geochem 32 585CrossRefGoogle Scholar
Platt, T. 1986 Primary production of the ocean water column as a function of surface light-intensity – algorithms for remote-sensingDeep-Sea Res 33 149CrossRefGoogle Scholar
Platt, T.Herman, A. W. 1983 Remote-sensing of phytoplankton in the sea – Surface-layer chlorophyll as an estimate of water-column chlorophyll and primary productionInt. J. Remote Sens 4 343CrossRefGoogle Scholar
Platt, T.Sathyendranath, S. 1988 Oceanic primary production – Estimation by remote-sensing at local and regional scalesScience 241 1613CrossRefGoogle ScholarPubMed
Quevedo, M.Anadón, R. 2001 Protist control of phytoplankton growth in the subtropical north-east AtlanticMar. Ecol. Prog. Ser 221 29CrossRefGoogle Scholar
Raateoja, M.Seppala, J.Kuosa, H. 2004 Bio-optical modelling of primary production in the SW Finnish coastal zone, Baltic Sea: fast repetition rate fluorometry in Case 2 watersMar. Ecol. Prog. Ser 267 9CrossRefGoogle Scholar
Redalje, D. G. 1983 Phytoplankton carbon biomass and specific growth-rates determined with the labeled chlorophyll techniqueMar. Ecol. Prog. Ser 11 217CrossRefGoogle Scholar
Redalje, D. G. 1993 The labeled chlorophyll technique for determining photoautotrophic carbon specific growth rates and biomassHandbook of Methods in Aquatic Microbial EcologyKemp, P. F.Boca RatonLewis Publishers563Google Scholar
Redalje, D. G.Laws, E. A. 1981 A new method for estimating phytoplankton growth-rates and carbon biomassMar. Biol 62 73CrossRefGoogle Scholar
Redden, A. M.Sanderson, B. G.Rissik, D. 2002 Extending the analysis of the dilution method to obtain the phytoplankton concentration at which microzooplankton grazing becomes saturatedMar. Ecol. Prog. Ser 226 27CrossRefGoogle Scholar
Rivkin, R. B.Putland, J. N.Anderson, M. R.Deibel, D. 1999 Microzooplankton bacterivory and herbivory in the NE subarctic PacificDeep-Sea Res. II 46 2579CrossRefGoogle Scholar
Sathyendranath, S.Longhurst, A.Caverhill, C. M.Platt, T. 1995 Regionally and seasonally differentiated primary production in the North AtlanticDeep-Sea Res. I 42 1773CrossRefGoogle Scholar
Sherr, E. B.Sherr, B. F. 2007 Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the seaMar. Ecol. Prog. Ser 352 187CrossRefGoogle Scholar
Shuter, B. 1979 A model of physiological adaptation in unicellular algaeJ. Theor. Biol 78 519CrossRefGoogle ScholarPubMed
Smith, R. C. 1981 Remote-sensing and depth distribution of ocean chlorophyllMar. Ecol. Prog. Ser 5 359CrossRefGoogle Scholar
Smyth, T.Pemberton, K.Aiken, J.Geider, R. 2004 A methodology to determine primary production and phytoplankton photosynthetic parameters from fast repetition rate fluorometryJ. Plankton Res 26 1337CrossRefGoogle Scholar
Stelfox-Widdicombe, C. E.Edwards, E. S.Burkill, P. H.Sleigh, M. A. 2000 Microzooplankton grazing activity in the temperate and sub-tropical NE Atlantic: summer 1996Mar. Ecol. Prog. Ser 208 1CrossRefGoogle Scholar
Stelfox-Widdicombe, C.Archer, S.Burkill, P.Stefels, J. 2004 Microzooplankton grazing in and diatom-dominated waters in the southern North Sea in springJ. Sea Res 51 37CrossRefGoogle Scholar
Stoecker, D. K. 1988 Are marine planktonic ciliates suspension-feedersJ. Protozool 35 252CrossRefGoogle Scholar
Stoecker, D. K.Cucci, T. L.Hulburt, E. M.Yentsch, C. M. 1986 Selective feeding by sp. (Ciliata: Balanionidae) on phytoplankton that best support its growthJ. Exp. Mar. Biol. Ecol 95 113CrossRefGoogle Scholar
Strom, S. L. 2001 Light-aided digestion, grazing and growth in herbivorous protistsAquat. Microb. Ecol 23 253CrossRefGoogle Scholar
Strom, S. L.Loukos, H. 1998 Selective feeding by protozoa: model and experimental behaviors and their consequences for population stabilityJ. Plankton Res 20 831CrossRefGoogle Scholar
Strom, S. L.Welschmeyer, N. A. 1991 Pigment-specific rates of phytoplankton growth and microzooplankton grazing in the open subarctic Pacific OceanLimnol. Oceanogr 36 50CrossRefGoogle Scholar
Strom, S. L.Morello, T. A.Bright, K. J. 1998 Protozoan size influences algal pigment degradation during grazingMar. Ecol. Prog. Ser 164 189CrossRefGoogle Scholar
Strom, S. L.Brainard, M. A.Holmes, J. L.Olson, M. B. 2001 Phytoplankton blooms are strongly impacted by microzooplankton grazing in coastal North Pacific watersMar. Biol 138 355CrossRefGoogle Scholar
Strom, S. L.Macri, E. L.Olson, B. 2007 Microzooplankton grazing in the coastal Gulf of Alaska: Variations in top-down control of phytoplanktonLimnol. Oceanogr 52 1480CrossRefGoogle Scholar
Suggett, D.Kraay, G.Holligan, P.Davey, M.Aiken, J.Geider, R. 2001 Assessment of photosynthesis in a spring cyanobacterial bloom by use of a fast repetition rate fluorometerLimnol. Oceanogr 46 802CrossRefGoogle Scholar
Suggett, D.Oxborough, K.Baker, N.MacIntyre, H.Kana, T.Geider, R. J. 2003 Fast repetition rate and pulse amplitude modulation chlorophyll fluorescence measurements for assessment of photosynthetic electron transport in marine phytoplanktonEur. J. Phycol 38 371CrossRefGoogle Scholar
Suggett, D. J.Maberly, S. C.Geider, R. J. 2006 Gross photosynthesis and lake community metabolism during the spring phytoplankton bloomLimnol. Oceanogr 51 2064CrossRefGoogle Scholar
Suggett, D. J.Moore, C. M.Marañon, E.Omachi, C.Varela, R. A.Aiken, J.Holligan, P. M. 2006 Photosynthetic electron turnover in the tropical and subtropical Atlantic OceanDeep-Sea Res. II 53 1573CrossRefGoogle Scholar
Suggett, D.Moore, C. M.Hickman, A. E.Geider, R. J. 2009 Interpretation of fast repetition rate (FRR) fluorescence: signatures of phytoplankton community structure versus physiological stateMar. Ecol. Prog. Ser 376 1CrossRefGoogle Scholar
Verity, P. G. 1988 Chemosensory behaviour in marine planktonic ciliatesBull. Mar. Sci 43 772Google Scholar
Verity, P. G.Stoecker, D. K.Sieracki, M. E.Nelson, J. R. 1993 Grazing, growth and mortality of microzooplankton during the 1989 North Atlantic spring bloom at 47N, 18WDeep-Sea Res. I 40 1793CrossRefGoogle Scholar
Verity, P. G.Stoecker, D. K.Sieracki, M. E.Nelson, J. R. 1996 Microzooplankton grazing of primary production at 140 degrees W in the equatorial PacificDeep-Sea Res. II 43 1227CrossRefGoogle Scholar
Waterhouse, T. Y.Welschmeyer, N. A. 1995 Taxon-specific analysis of microzooplankton grazing rates and phytoplankton growth-ratesLimnol. Oceanogr 40 827CrossRefGoogle Scholar
Welschmeyer, N. A.Lorenzen, C. J. 1984 14C-labeling of phytoplankton carbon and chlorophyll- carbon – Determination of specific growth-ratesLimnol. Oceanogr 29 135CrossRefGoogle Scholar
Welschmeyer, N.Goericke, R.Strom, S.Peterson, W. 1991 Phytoplankton growth and herbivory in the Sub-Arctic Pacific – A chemotaxonomic analysisLimnol. Oceanogr 36 1631CrossRefGoogle Scholar
Westberry, T.Behrenfeld, M. J.Siegel, D. A.Boss, E. 2008 Carbon-based primary productivity modeling with vertically resolved photoacclimationGlobal Biogeochem. Cycles 22CrossRefGoogle Scholar
Worden, A. Z.Binder, B. J. 2003 Application of dilution experiments for measuring growth and mortality rates among and populations in oligotrophic environmentsAquat. Microb. Ecol 30 159CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×