Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-06T16:03:28.216Z Has data issue: false hasContentIssue false

9 - Rheology of thermoreversible gels

Published online by Cambridge University Press:  16 May 2011

Fumihiko Tanaka
Affiliation:
Kyoto University, Japan
Get access

Summary

This chapter is devoted to the molecular rheology of transient networks made up of associating polymers in which the network junctions break and recombine. After an introduction to theoretical description of the model networks, the linear response of the network to oscillatory deformations is studied in detail. The analysis is then developed to the nonlinear regime. Stationary nonlinear viscosity, and first and second normal stresses, are calculated and compared with the experiments. The criterion for thickening and thinning of the flows is presented in terms of the molecular parameters. Transient flows such as nonlinear relaxation, start-up flow, etc., are studied within the same theoretical framework. Macroscopic properties such as strain hardening and stress overshoot are related to the tension–elongation curve of the constituent network polymers.

Networks with temporal junctions

In most polymer blends and solutions of practical interest, the polymer chains carry functional groups that interact with each other by associative forces capable of forming reversible bonds. These forces include hydrogen bonding, ionic association, stereo-complex formation, cross-linking by the crystalline segments, or solvent complexation. Because the bond energy is often comparable to the thermal energy, bond formation is reversible by a change in temperature or concentration.

Type
Chapter
Information
Polymer Physics
Applications to Molecular Association and Thermoreversible Gelation
, pp. 281 - 330
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Jenkins, R. D.; Silebi, C. A.; El-Asser, M. S., ACS Symp. Ser. 462, 222 (1991).CrossRef
[2] Annable, T.; Buscall, R.; Ettelaie, R.; Whittlestone, D., J. Rheol. 37, 695 (1993).CrossRef
[3] Annable, T.; Ettelaie, R., Macromolecules 27, 5616 (1994).CrossRef
[4] Annable, T.; Buscall, R.; Ettelaie, R.; Shepherd, P.; Whittlestone, D., Langmuir 10, 1060 (1994).CrossRef
[5] Yekta, A.; Xu, B.; Duhamel, J.; Adiwidjaja, H.; Winnik, M. A., Macromolecules 28, 956 (1995).CrossRef
[6] Kujawa, P.; Watanabe, H.; Tanaka, F.; Winnik, F. M., Eur. Phys. J. E 17, 129 (2005).CrossRef
[7] Kujawa, P.; Segui, F.; Shaban, S.et al. Macromolecules 39, 341 (2006).CrossRef
[8] Quellet, C.; Eicke, H.-F.; Xu, G.; Hauger, Y., Macromolecules 23, 3347 (1990).CrossRef
[9] Mortensen, K.; Brown, W.; Jorgensen, E., Macromolecules 27, 5654 (1994).CrossRef
[10] Odenwald, M.; Eicke, H.-F.; Meier, W., Macromolecules 28, 5069 (1995).CrossRef
[11] Green, M. S.; Tobolsky, A. V., J. Chem. Phys. 14, 80 (1946).CrossRef
[12] Lodge, A. S., Trans. Faraday Soc. 52, 120 (1956).CrossRef
[13] Yamamoto, M., J. Phys. Soc. Jpn. 11, 413 (1956); 12, 1148 (1957); 13, 1200 (1958).CrossRef
[14] Flory, P. J., Trans. Faraday Soc. 56, 722 (1960).CrossRef
[15] Fricker, H. S., Proc. Roy. Soc. London A 335, 267; 335, 289 (1973).CrossRef
[16] Tanaka, F.; Edwards, S. F., Macromolecules 25, 1516 (1992).CrossRef
[17] Tanaka, F.; Edwards, S. F., J. Non-Newtonian Fluid Mech. 43, 247 (1992).CrossRef
[18] Tanaka, F.; Edwards, S. F., J. Non-Newtonian Fluid Mech. 43, 272 (1992).CrossRef
[19] Tanaka, F.; Edwards, S. F., J. Non-Newtonian Fluid Mech. 43, 289 (1992).CrossRef
[20] Alami, E.; Rawiso, M.; Isel, F.; Beinert, G.; Binana-Limbele, W.; Francois, J., Model Hydrophobically End-Capped Poly (ethylene oxide) in Water. Advances in Chemistry Series, Vol. 248. American Chemical Society: Washington, DC, 1996.Google Scholar
[21] Alami, E.; Almgren, M.; Brown, W.; Francois, J., Macromolecules 29, 2229 (1996).CrossRef
[22] Alami, E.; Almgren, M.; Brown, W., Macromolecules 29, 5026 (1996).CrossRef
[23] Tanaka, F.; Koga, T., Macromolecules 39, 5913 (2006).CrossRef
[24] Rouse, P. E. Jr., J. Chem. Phys. 21, 1272 (1953).CrossRef
[25] Bird, B. B.; Curtiss, C. F.; Armstrong, R. C.; Hassager, O., Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics; Vol. 2, Kinetic Theory. Wiley: Chichester, 1987.Google Scholar
[26] Chandrasekhar, S., Rev. Mod. Phys. 15, 1 (1943).CrossRef
[27] Marrucci, G.; Bhargava, S.; Cooper, S. L., Macromolecules 26, 6483 (1993).CrossRef
[28] Vaccaro, A.; Marrucci, G., J. Non-Newtonian Fluid Mech. 121, 261 (2000).CrossRef
[29] Pellens, L.; Ahn, K. H.; Lee, S. J.; Mewis, J., J. Non-Newtonian Fluid Mech. 121, 87 (2004).CrossRef
[30] Tanaka, F., Langmuir 26, 5374 (2010).CrossRef
[31] Zhang, W.; Zou, S.; Wang, C.; Zhang, X., J. Phys. Chem. B 104, 10258 (2000).
[32] Bedrov, D.; Smith, D., J. Chem. Phys. 118, 6656 (2003).CrossRef
[33] Indei, T.; Tanaka, F., Macromol. Rapid Commun. 26, 701 (2005).CrossRef
[34] Kramers, H. A., Phys. Rev. 1940, VII, 284.
[35] Cox, W. P.; Merz, E. H., J. Polym. Sci. 118, 619 (1958).CrossRef
[36] Koga, T.; Tanaka, F., Macromolecules 43, 3052 (2010).CrossRef
[37] Pellens, L.; Corrales, R. G.; Mewis, J., J. Rheol. 48, 379 (2004).CrossRef
[38] Oesterhelt, F.; Rief, M.; Gaub, H. E., New J. Physics 1, 6 (1999). 1.CrossRef
[39] Koga, T.; Tanaka, F.; Kaneda, I.; Winnik, F. M., Langmuir 25, 8626 (2009).CrossRef
[40] Menezes, E. V.; Graessley, W. W., Rheol. Acta 19, 38 (1980).CrossRef
[41] Pearson, D.; Herbolzheimer, E.; Grizzuti, N.; Marrucci, G., J. Polym. Sci., Part B: Polym. Phys. 29, 1589 (1991).CrossRef
[42] Osaki, K.; Inoue, T.; Isomura, T., J. Polym. Sci., Part B: Polym. Phys. 38, 1917 (2000).3.0.CO;2-6>CrossRef
[43] Richardson, R. K.; Ross-Murphy, S. B., Int. J. Bio. Macromolecules 9, 250 (1987).CrossRef
[44] Richardson, R. K.; Ross-Murphy, S. B., Int. J. Bio. Macromolecules 9, 257 (1987).CrossRef
[45] Lodge, A. S.; Meissner, J. M., Rheol. Acta 11, 351 (1972).CrossRef
[46] Lodge, A. S., Rheol. Acta 14, 664 (1975).CrossRef
[47] Fuller, G. G.; Leal, L. G., J. Polym. Sci.: Polym. Phys. Ed. 59, 531 (1981).
[48] Doi, M.; Edwards, S. F., The Theory of Polymer Dynamics. Oxford University Press: Oxford, 1986.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×