Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-08T09:16:00.443Z Has data issue: false hasContentIssue false

10 - Some important thermoreversible gels

Published online by Cambridge University Press:  16 May 2011

Fumihiko Tanaka
Affiliation:
Kyoto University, Japan
Get access

Summary

This chapter applies the thermodynamic and rheological theories developed so far to the specific important network-forming associating polymer solutions. The topics include modification of the phase separation and gelation of associating polymers by added surfactants, transition from intramolecular association to intermolecular association, competitive and coexisting hydration and hydrophobic association, and thermoreversible gelation strongly coupled to the polymer conformational change. With an increase in the number of components, or the degree of freedom in the system, phase transitions and flow properties become complex. However, the basic ideas to treat them stay within the fundamental theoretical framework presented in the preceding chapters. All systems are modeled from a unified point of view.

Polymer–surfactant interaction

The problem of the interaction between polymers and surfactants was laid initially in the study of proteins associated with natural lipids, and later extended to their association with synthetic surfactants [1, 2]. More recently, the interaction of water-soluble synthetic polymers such as poly(ethylene oxide) with ionic and non-ionic surfactants [3–7] has attracted the interest of researchers because of its scientific and technological implications.

Adding surfactants to polymer solutions, or vice versa, followed by the formation of a polymer/surfactant complex, can substantially alter the original physical properties substances involved.

Type
Chapter
Information
Polymer Physics
Applications to Molecular Association and Thermoreversible Gelation
, pp. 331 - 382
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tanaka, F., Macromolecules 31, 384 (1998).CrossRef
[2] Goddard, E. D.; Ananthapadmanabhan, K. P., Interactions of Surfactants with Polymers and Proteins. CRC Press: Boca Raton, CA, 1993.Google Scholar
[3] Cabane, B., J. Phys. Chem. 81, 1639 (1977).CrossRef
[4] Brown, G.; Chakrabarti, A., J. Chem. Phys. 96, 3251 (1992).CrossRef
[5] Feitosa, E.; Brown, W.; Hansson, P., Macromolecules 29, 2169 (1996).CrossRef
[6] Feitosa, E.; Brown, W.; Vasilescu, M.; Swason-Vethamuthu, M., Macromolecules 29, 6837 (1996).CrossRef
[7] Feitosa, E.; Brown, W.; Wang, K.; Barreleiro, P. C. A., Macromolecules 35, 201 (2002).CrossRef
[8] Ricka, J.; Meewes, M.; Nyffenegger, R.; Binkert, T., Phys. Rev. Lett. 65, 657 (1990).CrossRef
[9] Meewes, M.; Ricka, J.; de Silva, M.; Nyffenegger, R.; Binkert, T., Macromolecules 24, 5811 (1991).CrossRef
[10] Fredrickson, G. H., Macromolecules 26, 2825 (1993).CrossRef
[11] Seki, T.; Tohnai, A.; Tamaki, T.; Kaito, A., Macromolecules 29, 4813 (1996).CrossRef
[12] Alami, E.; Almgren, M.; Brown, W., Macromolecules 29, 5026 (1996).CrossRef
[13] Cabane, B.; Lindell, K.; Engström, S.; Lindman, B., Macromolecules 29, 3188 (1996).CrossRef
[14] Nyström, B.; Lindman, B., Macromolecules 28, 967 (1995).CrossRef
[15] Nyström, B.; Walderhaug, H.; Hansen, F. K.; Lindman, B., Langmuir 11, 750 (1995).CrossRef
[16] Nyström, B.; Kjonisken, A. L.; Lindman, B., Langmuir 12, 3233 (1996).CrossRef
[17] Wang, G.; Lindell, K.; Olofsson, G., Macromolecules 30, 105 (1997).CrossRef
[18] Annable, T.; Buscall, R.; Ettelaie, R.; Shepherd, P.; Whittlestone, D., Langmuir 10, 1060 (1994).CrossRef
[19] Nilsson, S., Macromolecules 28, 7837 (1995).CrossRef
[20] Xie, X.; Hogen-Esch, T. E., Macromolecules 29, 1734 (1996).CrossRef
[21] Sgashkina, J. A.; Philippova, O. E.; Zaroslov, Y. D.; Khokhlov, A. R.; Pryakhina, T. A., Langmuir 21, 1524 (2005).CrossRef
[22] Couillet, I.; Hughes, T.; Maitland, G.; Candau, F., Macromolecules 38, 5271 (2005).CrossRef
[23] Yoshida, T.; Taribagil, R.; Hillmyer, M. A.; Lodge, T. P., Macromolecules 40, 1615 (2007).CrossRef
[24] Lodge, T. P.; Taribagil, R.; Yoshida, T.; Hillmyer, M. C., Macromolecules 40, 4728 (2007).CrossRef
[25] Nakaya, K.; Ramos, L.; Tabuteau, H.; Ligoure, C., J. Rheology 52, 359 (2008).CrossRef
[26] Tabuteau, H.; Ramos, L.; Nakaya-Yaegashi, K.; Imai, M.; Ligoure, C., Langmuir 25, 2467 (2009).CrossRef
[27] D'Errico, G.; Ciccarelli, D.; Ortona, O.; Vitagliano, V., J. Mol. Liquids 100, 241 (2002).CrossRef
[28] Stillinger, F. H.; Ben-Naim, A., J. Chem. Phys. 74, 2510 (1981).CrossRef
[29] Tanaka, F.; Koga, T., Comp. Theor. Polym. Sci. 10, 259 (2000).CrossRef
[30] Jacobson, H.; Stochmayer, W. H., J. Chem. Phys. 18, 1600 (1950).CrossRef
[31] de Gennes, P. G., Scaling Concepts in Polymer Physics. Cornell University Press: Ithaca, NY, 1979.Google Scholar
[32] Preuschen, J.; Menchen, S.; Winnik, M. A.; Heuer, A.; Spiess, H. W., Macromolecules 32, 2690 (1999).CrossRef
[33] Sarkar, N., J. Appl. Polym. Sci. 24, 1073 (1979).CrossRef
[34] Guenet, J. M., Thermoreversible Gelation of Polymers and Biopolymers. Academic Press: London, 1992.Google Scholar
[35] Matsuyama, A.; Tanaka, F., Phys. Rev. Lett. 65, 341 (1990).CrossRef
[36] Takahashi, M.; Shimazaki, M.; Yamamoto, J., J. Polym. Sci., Part B: Polym. Phys. 39, 91 (2001).3.0.CO;2-C>CrossRef
[37] Kujawa, P.; Segui, F.; Shaban, S.et al., Macromolecules 39, 341 (2006).CrossRef
[38] Okada, Y.; Tanaka, F.; Kujawa, P.; Winnik, F. M., J. Chem. Phys. 2006, 125, 244902[1].CrossRef
[39] Tanford, C., The Hydrophobic Effect, 2nd edn. Wiley: New York, 1980.Google Scholar
[40] Motokawa, R.; Morishita, K.; Koizumi, S.; Nakahira, T.; Annaka, M., Macromolecules 38, 5748 (2005).CrossRef
[41] Degiorgio, V.; Corti, M., Physics of Amphiphiles: Micelles, Vesicles and Microemulsions, Chap. V. North-Holland: Amsterdam, 1985.Google Scholar
[42] Lafleche, F.; Durand, D.; Nicolai, T., Macromolecules 2003, 36, 1331; 1341.CrossRef
[43] Flory, P. J., Principles of Polymer Chemistry. Cornell University Press: Ithaca, NY, 1953.Google Scholar
[44] Burchard, W., British Polym. J. 17, 154 (1985).CrossRef
[45] Clark, A. H.; Ross-Murphy, S. B., British Polym. J. 17, 164 (1985).CrossRef
[46] te Nijenhuis, K., Adv. Polym. Sci. 130, 1 (1997).CrossRef
[47] Higgs, P. G.; Ball, R. C., J. Phys. Paris 50, 3285 (1989).CrossRef
[48] Viebke, C.; Piculell, L.; Nilsson, S., Macromolecules 27, 4160 (1994).CrossRef
[49] Berghmans, M.; Thijs, S.; Cornette, M.et al., Macromolecules 27, 7669 (1994).CrossRef
[50] Buyse, K.; Berghmans, H.; Bosco, M.; Paoletti, S., Macromolecules 31, 9224 (1998).CrossRef
[51] Hikmet, R. M.; Callister, S.; Keller, A., Polymer 29, 1378 (1988).CrossRef
[52] Callister, S.; Keller, A.; Hikmet, R. M., Makromol. Chem., Macromol. Symp. 39, 19 (1990).CrossRef
[53] Clark, A. H.; Ross-Murphy, S. B., Adv. Polym. Sci. 83, 57 (1987).CrossRef
[54] Biagio, P. L.; Palma, M. U., Biophys. J. 60, 508 (1991).CrossRef
[55] Tobitani, A.; Ross-Murphy, S. B., Macromolecules 1997, 30, 4845; 4855.CrossRef
[56] Xu, B.; Yekta, A.; Winnik, M. A., Langmuir 13, 6903 (1997).CrossRef
[57] Tanaka, F., Macromolecules 33, 4249 (2000).CrossRef
[58] Baulin, V. A.; Halperin, A., Macromolecules 35, 6432 (2002).CrossRef
[59] Tobolsky, A. V.; Eisenberg, A., J. Am. Chem. Soc. 81, 780 (1959).CrossRef
[60] Scott, R. L., J. Phys. Chem. 1965, 69, 261; 71, 352 (1967).CrossRef
[61] Rochas, C.; Rinaudo, M., Biopolymers 19, 1675 (1980).CrossRef
[62] Rochas, C.; Rinaudo, M., Biopolymers 23, 735 (1984).CrossRef
[63] Iliopoulos, I.; Audebert, R., Eur. Polym. J. 24, 171 (1988).CrossRef
[64] Iliopoulos, I.; Halary, J. L.; Audebert, R., J. Polym. Sci., Part A, Polym. Chem. 26, 275 (1988).CrossRef
[65] Morris, E. R.; Rees, D. A.; Thom, D.; Boyd, J., J. Carbohydro. Res. 66, 145 (1978).CrossRef
[66] Cuppo, F.; Reynaers, H.; Paoletti, S., Macromolecules 35, 539 (2002).CrossRef
[67] Tanaka, F., Macromolecules 36, 5392 (2003).CrossRef
[68] Borgström, J.; Quist, P.-O.; Piculell, L., Macromolecules 29, 5926 (1996).CrossRef
[69] Borgström, J.; Egermayer, M.; Sparrman, T.; Qest, P.-O.; Piculell, L., Langmuir 14, 4935 (1998).CrossRef
[70] Ramzi, M.; Borgström, J.; Piculell, L., Macromolecules 32, 2250 (1999).CrossRef
[71] Reid, D. S.; Bryce, T. A.; Clark, A. H.; Rees, D. A., Faraday Disc. Chem. Soc. 57, 230 (1974).CrossRef
[72] Tamura, Y.; Tanaka, F., J. Polym. Sci. Part B: Polym. Phys. 43, 3331 (2005).CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×