Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-20T20:12:05.606Z Has data issue: false hasContentIssue false

3 - Magnetized plasma equilibrium

Published online by Cambridge University Press:  04 August 2010

Get access

Summary

‘The objective of the controlled thermonuclear fusion program is to heat a gas composed of light elements to a temperature considerably hotter than the centre of the sun and to confine this hot plasma long enough for the resulting nuclear reactions to produce more energy than was consumed.’

Batemann (1978)

Considerably more energy, one might add – in the planned ITER experiment, Qα (1.5) is expected to reach a maximum value of 2 and a steady-state value of 1. How is it possible to achieve this extraordinary level of plasma energy confinement in a laboratory environment? The theoretical framework developed in the previous chapter provides a simple answer: by embedding the plasma in a strong ambient magnetic field, such that the thermal pressure, p, is supported by the magnetic pressure, B2/2µ0, see (2.198) and (2.247). Indeed, after no less than half a century of international research, the strategy of magnetic confinement appears to offer the most promising route to realizing the long-held dream of constructing a technologically feasible and commercially viable fusion reactor. Yet, it is not immediately obvious what such a reactor should look like, e.g. what is the optimal magnetic geometry? How strong does the ambient magnetic field have to be? Can this field be generated by the plasma itself or are external coils and/or antennas required? etc.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×