Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-16T00:20:29.137Z Has data issue: false hasContentIssue false

13 - Classical Logic

from Part V - Types and Propositions

Published online by Cambridge University Press:  05 March 2016

Robert Harper
Affiliation:
Carnegie Mellon University, Pennsylvania
Get access

Summary

In constructive logic, a proposition is true exactly when it has a proof, a derivation of it from axioms and assumptions, and is false exactly when it has a refutation, a derivation of a contradiction from the assumption that it is true. Constructive logic is a logic of positive evidence. To affirm or deny a proposition requires a proof, either of the proposition itself, or of a contradiction, under the assumption that it has a proof. We are not always able to affirm or deny a proposition. An open problem is one for which we have neither a proof nor a refutation—constructively speaking, it is neither true nor false.

In contrast, classical logic (the one we learned in school) is a logic of perfect information where every proposition is either true or false.We may say that classical logic corresponds to “god's view” of the world—there are no open problems, rather all propositions are either true or false. Put another way, to assert that every proposition is either true or false is to weaken the notion of truth to encompass all that is not false, dually to the constructively (and classically) valid interpretation of falsity as all that is not true. The symmetry between truth and falsity is appealing, but there is a price to pay for this: the meanings of the logical connectives are weaker in the classical case than in the constructive.

The law of the excluded middle provides a prime example. Constructively, this principle is not universally valid, as we have seen in Exercise 12.1. Classically, however, it is valid, because every proposition is either false or not false, and being not false is the same as being true. Nevertheless, classical logic is consistent with constructive logic in that constructive logic does not refute classical logic. As we have seen, constructive logic proves that the law of the excluded middle is positively not refuted (its double negation is constructively true). Consequently, constructive logic is stronger (more expressive) than classical logic, because it can express more distinctions (namely, between affirmation and irrefutability), and because it is consistent with classical logic.

Proofs in constructive logic have computational content: they can be executed as programs, and their behavior is described by their type. Proofs in classical logic also have computational content, but in a weaker sense than in constructive logic.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Classical Logic
  • Robert Harper, Carnegie Mellon University, Pennsylvania
  • Book: Practical Foundations for Programming Languages
  • Online publication: 05 March 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316576892.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Classical Logic
  • Robert Harper, Carnegie Mellon University, Pennsylvania
  • Book: Practical Foundations for Programming Languages
  • Online publication: 05 March 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316576892.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Classical Logic
  • Robert Harper, Carnegie Mellon University, Pennsylvania
  • Book: Practical Foundations for Programming Languages
  • Online publication: 05 March 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316576892.015
Available formats
×