Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-07T20:49:46.296Z Has data issue: false hasContentIssue false

7 - Finding stationary points and reaction paths on potential energy surfaces

Published online by Cambridge University Press:  03 December 2009

Martin J. Field
Affiliation:
Laboratoire de Dynamique Moléculaire, Grenoble
Get access

Summary

Introduction

In the last three chapters we have discussed how to calculate the potential energy, and some of its derivatives, for a single geometry of the atoms in a system. Although the calculation of an energy for one or a small number of configurations may sometimes be necessary, it can give only limited information about a system's properties. To investigate the latter more thoroughly it is necessary to identify interesting or important regions on the system's potential energy surface and develop ways in which they can be explored. Methods to do this will be investigated in this chapter.

Exploring potential energy surfaces

The function that represents a system's potential energy surface is a multidimensional function of the positions of all the system's atoms. It is this surface that determines, in large part, the behaviour and the properties of the system. A little reflection shows that the number of configurations or geometries available to a system with more than a few atoms is enormous. A simple example should make this clear. Take a diatomic molecule or, more generally, any system comprising two atoms in vacuum. The geometry of such a molecule is completely determined by specifying the distance between the two atoms and so the potential energy surface is a function of only one geometrical variable. It is easy to search the entire potential energy surface for this system. Start with a small interatomic distance, calculate the energy, increase the distance by a certain amount and then repeat the procedure. In this way we can obtain a picture similar to those in Figures 5.1, 5.2 and 5.5.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×