Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-20T23:06:02.241Z Has data issue: false hasContentIssue false

12 - Accretion discs in astrophysics

Published online by Cambridge University Press:  05 June 2012

Cathie Clarke
Affiliation:
University of Cambridge
Bob Carswell
Affiliation:
University of Cambridge
Get access

Summary

By far the most important application of the Navier–Stokes equations in astrophysics is to the case of circular shear flows, also known (for reasons that will become obvious once we have derived their properties) as accretion discs.

Such flows are encountered in many astronomical environments where gas is in nearly circular orbit around a massive central object. The scales of these flows vary immensely according to the nature of the central objects involved, which range from planets to stars to supermassive black holes. Figure 12.1 shows an example of what is believed to be an accretion disc around a black hole at the centre of a galaxy. Although, as we shall see, there are many qualitative aspects of these flows that are similar in all cases, the manner in which such rotating shear flows are created differs according to the type of astronomical system involved. For example, in the case of the primordial solar nebula, from which the planets in our Solar System were formed, the flow inherited its angular momentum from the slowly rotating cloud core which collapsed to form the Solar System. In the case of discs around supermassive black holes in the cores of galaxies, the origin of the gas orbiting the hole is not entirely understood, but virtually any explanation one could think of – be it gas shed from stars in the inner galaxy, or debris from stars tidally shredded by the black hole, or the swallowing of a small satellite galaxy – would involve gas that possessed significant angular momentum with respect to the central black hole.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×