Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-06T14:14:27.605Z Has data issue: false hasContentIssue false

5 - Nanoscale optical microscopy

Published online by Cambridge University Press:  05 June 2012

Lukas Novotny
Affiliation:
University of Rochester, New York
Bert Hecht
Affiliation:
Universität Basel, Switzerland
Get access

Summary

Having discussed the propagation and focusing of optical fields, we now start to browse through the most important experimental and technical configurations employed in high-resolution optical microscopy. Various topics discussed in the previous chapters will be revisited from an experimental perspective. We shall describe both far-field and near-field techniques. Far-field microscopy, scanning confocal optical microscopy in particular, is discussed because the size of the focal spot routinely reaches the diffraction limit. Many of the experimental concepts that are used in confocal microscopy have naturally been transferred to near-field optical microscopy. In a near-field optical microscope a nanoscale optical probe is raster scanned across a surface much as in AFM or STM. There is a variety of possible experimental realizations in scanning near-field optical microscopy while in AFM and STM a (more or less) unique set-up exists. The main difference between AFM/STM and near-field optical microscopy is that in the latter an optical near-field has to be created at the sample or at the probe apex before any interaction can be ineasured. Depending how the near-field is measured, one distinguishes between different configurations. These are summarized in Table 5.1.

Far-field illumination and detection

Confocal microscopy

Confocal microscopy employs far-field illumination and far-field detection and has been discussed previously in Section 4.3. Despite the limited bandwidth of spatial frequencies imposed by far-field illumination and detection, confocal microscopy is successfully employed for high-position-accuracy measurements as discussed in Section 4.5 and for high-resolution imaging by exploiting nonlinear or saturation effects as discussed in Section 4.2.3.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×