References
Barrio, E. , Rosenblatt, L. , & Tajer, D. (2014). The logics of strict-tolerant logic. Journal of Philosophical Logic, 44(5), 551–571.
Barrio, E. A. , Pailos, F. , & Szmuc, D. (2019). (Meta)inferential levels of entailment beyond the Tarskian paradigm. Synthese. Online first.
Beall, J. et al. (2012). On the ternary relation and conditionality. Journal of Philosophical Logic, 41(3), 595–612.
Beall, J. & Restall, G. (2006). Logical Pluralism. Oxford: Oxford University Press.
Beall, J. & van Fraassen, B. (2003). Possibilities and Paradox: An Introduction to Modal and Many-Valued Logic. Oxford: Oxford University Press.
Belnap, N. D. (1962). Tonk, plonk and plink. Analysis, 22, 130–134.
Belnap, N. D. (1977a). How a computer should think. In Ryle, G (ed.), Contemporary Aspects of Philosophy (pp. 30–55). Boston: Oriel Press.
Belnap, N. D. (1977b). A useful four-valued logic. In Dunn, J & Epstein, G (eds.), Modern Uses of Multiple-Valued Logics (pp. 8–37). Dordrecht: Reidel.
Berto, F. & Restall, G. (2019). Negation on the Australian plan. Journal of Philosophical Logic, 48(6), 1119–1144.
Blackburn, P. , de Rijke, M. , & Venema, Y. (2001). Modal Logic. Cambridge University Press.
Blamey, S. (1986). Partial logic. In Gabbay, D & Guenthner, F (eds.), Handbook of Philosophical Logic, volume III (pp. 261–353). Dordrecht: D. Reidel.
Brady, R. T. (1971). The consistency of the axioms of abstraction and extensionality in a three-valued logic. Notre Dame Journal of Formal Logic, 12, 447–453.
Brandom, R. (1983). Asserting. Noûs, 17(4), 637–650.
Brandom, R. B. (2000). Articulating Reasons: An Introduction to Inferentialism. Cambridge, MA: Harvard University Press.
Brouwer, L. E. J. (1913). Intuitionism and formalism. Bulletin of the American Mathematical Society, 20, 91–96. Reprinted as Brouwer (1999). Brouwer, L. E. J. (1999). Intuitionism and formalism. Bulletin of the American Mathematical Society, 37(1), 55–64. Reprint of Brouwer (1913). Carroll, L. (1895). What the Tortoise said to Achilles. Mind, 4(14), 278–280.
Chellas, B. F. (1980). Modal Logic: An Introduction. Cambridge: Cambridge University Press.
Cobreros, P. , Egré, P. , Ripley, D. , & van Rooij, R. (2012). Tolerant, classical, strict. Journal of Philosophical Logic, 41(2), 347–385.
Cobreros, P. , Egré, P. , Ripley, D. , & van Rooij, R. (2015). Vagueness, truth and permissive consequence. In Achourioti, T, Galinon, H, Martínez Fernández, J, & Fujimoto, K (eds.), Unifying the Philosophy of Truth (pp. 409–430). Dordrecht: Springer Netherlands.
Coffa, J. A. (1993). The Semantic Tradition from Kant to Carnap. Cambridge, UK: Cambridge University Press. Edited by Linda, Wessels.
Copeland, B. (1983). Pure semantics and applied semantics. Topoi, 2, 197–204.
Copeland, B. J. (1979). On when a semantics is not a semantics: some reasons for disliking the Routley-Meyer semantics for relevance logic. Journal of Philosophical Logic, 8(1), 399–413.
Dummett, M. (1977). Elements of Intuitionism. Oxford: Oxford University Press.
Dunn, J. M. (1976). Intuitive semantics for first-degree entailments and ‘coupled trees’. Philosophical Studies, 29(3), 149–168.
Dunn, J. M. (2000). Partiality and its dual. Studia Logica, 65, 5–40.
Dunn, J. M. & Restall, G. (2002). Relevance logic. In Gabbay, D. M (ed.), Handbook of Philosophical Logic, volume 6 (pp. 1–136). Dordrecht: Kluwer Academic Publishers, second edition.
Égré, P. (2021). Half-truths and the liar. In Nicolai, C & Stern, J (eds.), Modes of Truth: The Unified Approach to Truth, Modality and Paradox (pp. 18–40). London: Routledge.
Feferman, S. (1995). Definedness. Erkenntnis, 43(3), 295–320.
Fjellstand, A. (2015). How a semantics for tonk should be. The Review of Symbolic Logic, 8(3), 488–505.
French, R. (2016). Structural reflexivity and the paradoxes of self-reference. Ergo, an Open Access Journal of Philosophy, 3, 113–31.
French, R. & Ripley, D. (2018). Valuations: Bi, tri, and tetra. Studia Logica, 107(6), 1313–1346.
Gamut, L. T. F. (1991). Logic, Language, and Meaning: Volume 2, Intensional Logic and Logical Grammar. Chicago: University of Chicago Press.
Genesereth, M. & Kao, E. J. (2016). Introduction to Logic. Morgan & Claypool Publishers LLC.
Gentzen, G. (1935a). Untersuchungen über das logische schließen. I. Mathematische Zeitschrift, 39(1), 176–210.
Gentzen, G. (1935b). Untersuchungen über das logische schließen. II. Mathematische Zeitschrift, 39(1), 405–431.
Gentzen, G. (1969). The Collected Papers of Gerhard Gentzen. Amsterdam: North Holland.
Gilmore, P. C. (1974). The consistency of partial set theory without extensionality. In Scott, Dana S (ed.), Axiomatic Set Theory, volume 13 of Proceedings of Symposia in Pure Mathematics (pp. 147–153). Providence, Rhode Island: American Mathematical Society.
Gupta, A. & Belnap, N. (1993). The Revision Theory of Truth. Cambridge, MA: MIT Press.
Gupta, A. & Standefer, S. (2017). Conditionals in theories of truth. Journal of Philosophical Logic, 46, 27–63.
Gupta, A. & Standefer, S. (2018). Intersubstitutivity principles and the generalization function of truth. Synthese, 195(3), 1065–1075.
Halbach, V. (2011). Axiomatic Theories of Truth. Cambridge, UK: Cambridge University Press.
Horsten, L. (2011). The Tarskian Turn: Deflationism and Axiomatic Truth. Cambridge, MA: The MIT Press.
Hughes, G. & Cresswell, M. (1996). A New Introduction to Modal Logic. London: Routledge.
Kleene, S. C. (1950). Introduction to Metamathematics. Princeton: D. van Nostrand.
Kripke, S. (1975). Outline of a theory of truth. The Journal of Philosophy, 72(19), 690–716.
Lackey, J. (2007). Norms of assertion. Noûs, 41(4), 594–626.
Lance, M. & White, W. H. (2007). Stereoscopic vision: Persons, freedom, and two spaces of material inference. Philosophers’ Imprint, 7(4), 1–21.
Martin, R. L. & Woodruff, P. W. (1975). On representing ‘true-in-L’ in L. Philosophia (Israel), 5, 213–217.
Milne, P. (2002). Harmony, purity, simplicity and a ‘seemingly magical fact’. Monist, 85(4), 498–534.
Pelletier, F. J. (1999). A brief history of natural deduction. History and Philosophy of Logic, 20(1), 1–31.
Petersen, U. (2000). Logic without contraction as based on inclusion and unrestricted abstraction. Studia Logica, 64(3), 365–403.
Petersen, U. (2003). LiDZλ as a basis for PRA. Archive for Mathematical Logic, 42(7), 665–694.
Poggiolesi, F. (2008). A cut-free simple sequent calculus for modal logic s5. Review of Symbolic Logic, 1, 3–15.
Poggiolesi, F. (2009). The method of tree-hypersequents for modal propositional logic. In Makinson, D, Malinowski, J, & Wansing, H (eds.), Towards Mathematical Philosophy, volume 28 (pp. 31–51). Dordrecht: Springer Netherlands.
Poggiolesi, F. (2010). Gentzen Calculi for Modal Propositional Logic. Trends in Logic. Dordrecht: Springer.
Poggiolesi, F. & Restall, G. (2012). Interpreting and applying proof theories for modal logic. In Restall, G & Russell, G (eds.), New Waves in Philosophical Logic (pp. 39–62). Basingstoke, UK: Palgrave Macmillan.
Prawitz, D. (1965). Natural Deduction: A Proof Theoretical Study. Stockholm: Almqvist and Wiksell.
Prawitz, D. (1973). Towards a foundation of general proof theory. In Suppes, P, Henkin, L, Joja, A, & Moisil, G. C (eds.), Logic, Methodology and Philosophy of Science IV (pp. 225–250). Amsterdam: North Holland.
Prawitz, D. (1974). On the idea of a general proof theory. Synthese, 27, 63–77.
Prawitz, D. (2019). The fundamental problem of general proof theory. Studia Logica, 107(1), 11–29.
Priest, G. (1979). The logic of paradox. Journal of Philosophical Logic, 8(1), 219–241.
Prior, A. N. (1960). The runabout inference-ticket. Analysis, 21(2), 38–39.
Read, S. (2008). Harmony and modality. In Dégremont, C, Kieff, L, & Rückert, H (eds.), Dialogues, Logics and Other Strange Things: Essays in Honour of Shahid Rahman (pp. 285–303). London: College Publications.
Read, S. (2015). Semantic pollution and syntactic purity. The Review of Symbolic Logic, 8(4), 649–661.
Restall, G. (2000). An Introduction to Substructural Logics. London: Routledge.
Restall, G. (2005). Multiple conclusions. In Hájek, P, Valdés-Villanueva, L, & Westerståhl, D (eds.), Logic, Methodology and Philosophy of Science: Proceedings of the Twelfth International Congress (pp. 189–205). London: kcl Publications.
Restall, G. (2009). Truth values and proof theory. Studia Logica, 92(2), 241–264.
Restall, G. (2012). A cut-free sequent system for two-dimensional modal logic, and why it matters. Annals of Pure and Applied Logic, 163(11), 1611–1623.
Restall, G. (2013). Assertion, denial and non-classical theories. In Tanaka, K, Berto, F, Mares, E, & Paoli, F (eds.), Paraconsistency: Logic and Applications (pp. 81–99). Dordrecht: Springer.
Restall, G. (2014). Pluralism and proofs. Erkenntnis, 79(2), 279–291.
Restall, G. (2019). Generality and existence 1: Quantification and free logic. Review of Symbolic Logic, 12, 1–29.
Restall, G. & Standefer, S. (2021). Collection frames for substructural logics. Paper in progress.
Restall, G. & Standefer, S. (2022). Logical Methods. Cambridge, MA: MIT Press. In press.
Ripley, D. (2011). Contradictions at the borders. In Nouwen, R, van Rooij, R, Sauerland, U, & Schmitz, H.-C (eds.), Vagueness in Communication (pp. 169–188). Berlin, Heidelberg: Springer Berlin Heidelberg.
Ripley, D. (2015a). Anything goes. Topoi, 34(1), 25–36.
Ripley, D. (2015b). Comparing substructural theories of truth. Ergo, an Open Access Journal of Philosophy, 2(20190926), 299–328.
Ripley, D. (2015c). ‘Transitivity’ of consequence relations. In van der Hoek, W, Holliday, W, & Wang, W (eds.), Logic, Rationality, and Interaction (pp. 328–340). Berlin, Heidelberg: Springer Berlin Heidelberg.
Ripley, D. (2017). Bilateralism, coherence, warrant. In Moltmann, F & Textor, M (eds.), Act-Based Conceptions of Propositional Content (pp. 307–324). Oxford: Oxford University Press.
Routley, R. & Meyer, R. K. (1973). Semantics of entailment. In Leblanc, H (Ed.), Truth, Syntax and Modality (pp. 194–243). North Holland. Proceedings of the Temple University Conference on Alternative Semantics.
Routley, R. & Routley, V. (1972). Semantics of first degree entailment. Noûs, 6(4), 335–359.
Sher, G. (1991). The Bounds of Logic. Cambridge, MA: MIT Press.
Sider, T. (2010). Logic for Philosophy. Oxford: Oxford University Press.
Sieg, W. (2013). Hilbert’s Programs and Beyond. New York: Oxford University Press.
Smullyan, R. M. (1968). First-Order Logic. Berlin: Springer-Verlag Reprinted by Dover Press, 1995.
Standefer, S. (2015). Solovay-type theorems for circular definitions. The Review of Symbolic Logic, 8(3), 467–487.
Standefer, S. (2016). Contraction and revision. The Australasian Journal of Logic, 13(3), 58–77.
Steinberger, F. (2011). Why conclusions should remain single. Journal of Philosophical Logic, 40(3), 333–355.
Stevenson, J. T. (1961). Roundabout the runabout inference-ticket. Analysis, 21(6), 124–128.
Van Dalen, D. (1986). Intuitionistic logic. In Gabbay, D & Guenthner, F (eds.), Handbook of Philosophical Logic, volume III (pp. 225–339). Dordrecht: D. Reidel.
Von Plato, J. (2001). Natural deduction with general elimination rules. Archive for Mathematical Logic, 40, 541–567.
Williamson, T. (2013). Modal Logic as Metaphysics. Oxford: Oxford University Press.
Zach, R. (1999). Completeness before Post: Bernays, Hilbert, and the development of propositional logic. Bulletin of Symbolic Logic, 5(3), 331–366.
Zach, R. (2019). Hilbert’s Program. In Zalta, E. N (ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford, CA: Stanford University, Fall 2019 edition.
Zardini, E. (2011). Truth without contra(di)ction. The Review of Symbolic Logic, 4(4), 498–535.