Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-20T15:19:56.497Z Has data issue: false hasContentIssue false

5 - Modularity Analysis of Protein Interaction Networks

Published online by Cambridge University Press:  28 January 2010

Aidong Zhang
Affiliation:
State University of New York, Buffalo
Get access

Summary

INTRODUCTION

The component proteins within protein-protein interaction (PPI) networks are associated in two types of groupings: protein complexes and functional modules. Protein complexes are assemblages of proteins that interact with each other at a given time and place, forming a single multimolecular machine. Functional modules consist of proteins that participate in a particular cellular process while binding to each other at various times and places. The detection of these groupings, known as modularity analysis, is an area of active research. In particular, the graphic representation of PPI networks has facilitated the discrimination of protein clusters through data-mining techniques.

The methods of data mining can be applied to identify various aspects of network organization. For example:

  • Proteins located at neighboring positions in a graph are generally considered to share functions (“guilt by association”). On this basis, the functions of a protein may be predicted by examining the proteins with which it interacts and the protein complexes to which it belongs.

  • Densely connected subgraphs in the network are likely to form protein complexes that function as single units in a particular biological process.

  • Investigation of network topological features can shed light on the biological system [29]. For example, networks may be scale-free, governed by the power law, or of various sizes.

A cluster is a set of objects that share some common characteristics. Clustering is the process of grouping data objects into sets (clusters); objects within a cluster demonstrate greater similarity than do objects in different clusters. In a PPI network, these sets will be either protein complexes or functional modules.

Type
Chapter
Information
Protein Interaction Networks
Computational Analysis
, pp. 50 - 62
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×