Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-20T21:19:03.249Z Has data issue: false hasContentIssue false

Appendix: Quantum mechanics

Published online by Cambridge University Press:  05 August 2012

Jonathan A. Jones
Affiliation:
University of Oxford
Dieter Jaksch
Affiliation:
University of Oxford
Get access

Summary

Throughout this text we assume that the reader is familiar with elementary quantum mechanics and the properties of complex vector spaces, and in this appendix we provide a brief reminder of these topics. In particular, we introduce Dirac's notation for describing quantum mechanical systems. Many areas of quantum mechanics studied in undergraduate degrees can be described without using Dirac notation, and its importance is unclear. In other areas, however, the advantages of Dirac notation are huge, and it is essentially the only notation in use. This is particularly true of quantum information theory.

Dirac's notation is closely related to that used to describe abstract vector spaces known as Hilbert spaces, and many formal arguments about the properties of quantum systems are in fact arguments about the properties of Hilbert spaces. Here we aim to steer a careful course between the twin perils of excessive mathematical sophistication and of taking too much on trust. We will not prove some elementary results whose proof can be found elsewhere, but will concentrate on how these results can be used.

Hilbert space

A Hilbert space is an abstract vector space. As such, it has many properties in common with the use of ordinary three-dimensional vectors, but it also differs in several important ways. Firstly, the vector space is not three-dimensional, but can have any number of dimensions. (The description below largely assumes that the number of dimensions is finite, but it is also possible to extend these results to infinite-dimensional spaces.) Secondly, when the vectors are multiplied by scalar numbers these numbers can be complex.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×