Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-20T19:31:49.637Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 August 2012

Jonathan A. Jones
Affiliation:
University of Oxford
Dieter Jaksch
Affiliation:
University of Oxford
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abragam, A. 1983. The Principles of Nuclear Magnetism. Oxford: Oxford University Press.Google Scholar
Ashkin, A. 1997. Optical trapping and manipulation of neutral particles using lasers. Proc. Natl. Acad. Sci. USA, 94, 4853–4860.CrossRefGoogle ScholarPubMed
Aspect, A., Grangier, P., and Roger, G. 1981. Experimental tests of realistic local theories via Bell's theorem. Phys. Rev. Lett., 47, 460–463.CrossRefGoogle Scholar
Aspect, A., Dalibard, J., and Roger, G. 1982. Experimental test of Bell's inequalities using time-varying analyzers. Phys. Rev. Lett., 49, 1804–1807.CrossRefGoogle Scholar
Bakr, W. S., Peng, A., Tai, M. E., Ma, R., Simon, J., Gillen, J. I., Foelling, S., Pollet, L., and Greiner, M. 2010. Probing the superfluid to Mott insulator transition at the single atom level. Science, 329, 547–550.CrossRefGoogle ScholarPubMed
Beauchamp, K. G. 1987. Transforms for Engineers. Oxford: Clarendon Press.Google Scholar
Bell, J. S. 1964. On the Einstein–Podolsky–Rosen paradox. Physics, 1, 195.CrossRefGoogle Scholar
Bennett, C.H. 1973. Logical reversibility of computation. IBM J. Res. Devel., 17, 525–532.CrossRefGoogle Scholar
Bennett, C.H. 1982. The thermodynamics of computation – a review. Int. J. Theor. Phys., 21, 905–940.CrossRefGoogle Scholar
Bennett, C. H. and Brassard, G. 1984. Quantum cryptography: Public key distribution and coin tossing. Proc. IEEE Int. Conf. on Computers, Systems, and Signal Processing, Bangalore, p. 175.Google Scholar
Bennett, C. H. and DiVincenzo, D. P. 2000. Quantum information and computation. Nature, 404, 247–255.CrossRefGoogle ScholarPubMed
Bernstein, D. J., Buchmann, J., and Dahmen, E. (eds). 2010. Post-Quantum Cryptography. Berlin: Springer-Verlag.
Bertlmann, R. A. and Zeilinger, A. 2002. Quantum [Un]speakables. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Binney, J. and Skinner, D. 2010. The Physics of Quantum Mechanics. Great Malvern, UK: Capella Archive.Google Scholar
Blatt, R., Häffner, H., Roos, C. F., Cecher, C., and Schmidt-Kaler, F. 2004. Ion trap quantum computing with Ca+ ions. Quant. Inf. Proc., 3, 61–73.CrossRefGoogle Scholar
Bouwmeester, D., Pan, J-W., Mattle, K., Eibl, M., Weinfurter, H., and Zeilinger, A. 1997. Experimental quantum teleportation. Nature, 390, 575.CrossRefGoogle Scholar
Bouwmeester, D., Ekert, A., and Zeilinger, A. (eds). 2000. The Physics of Quantum Information. Berlin: Springer.CrossRef
Bowman, G. E. 2008. Essential Quantum Mechanics. Oxford: Oxford University Press.Google Scholar
Braunstein, S. and Lo, H-K. 2000. Experimental proposals for quantum computation. Fort. der Physik, 48, 767.Google Scholar
Budker, D., Kimball, D. F., and DeMille, D. P. 2004. Atomic Physics. Oxford: Oxford University Press.Google Scholar
Cirac, J. I. and Zoller, P. 1995. Quantum computations with cold trapped ions. Phys. Rev. Lett., 74, 4091–4094.CrossRefGoogle ScholarPubMed
Cleve, R., Ekert, A., Macchiavello, C., and Mosca, M. 1998. Quantum algorithms revisited. Proc. Roy. Soc. Lond.A, 454, 339–354.CrossRefGoogle Scholar
Cohen-Tannoudji, C., Dupont-Roc, J., and Grynberg, G. 1992. Atom–Photon Interactions. Chichester: John Wiley & Sons.Google Scholar
Cory, D. G., Laflamme, R., Knill, E., Viola, L., Havel, T. F., Boulant, N., Boutis, G., et al. 2000. NMR based quantum information processing: Achievements and prospects. Fort. der Physik, 48, 875–907.Google Scholar
Deutsch, D. 1985. Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. Roy. Soc. Lond.A, 400, 97–117.CrossRefGoogle Scholar
DiVincenzo, D. P. 2000. The physical implementation of quantum computation. Fort. der Physik, 48, 771–783.Google Scholar
Einstein, A., Podolsky, B., and Rosen, N. 1935. Can quantum-mechanical description of physical reality be considered complete?Phys. Rev., 47, 777.CrossRefGoogle Scholar
Ekert, A. K. 1991. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett., 67, 661.CrossRefGoogle ScholarPubMed
Ernst, R. R., Bodenhausen, G., and Wokaun, A. 1987. Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford: Oxford University Press.Google Scholar
Estève, D., Raimond, J.-M., and Dalibard, J. (eds). 2003. Quantum Entanglement and Information Processing. Amsterdam: Elsevier.
Everitt, H. 2004. Special issue on experimental aspects of quantum computing. Quant. Inf. Proc., 3, 1–4.CrossRefGoogle Scholar
Feynman, R. P. 1999. Feynman Lectures on Computation. London: Penguin Books.Google Scholar
Foot, C. J. 2005. Atomic Physics. Oxford: Oxford University Press.Google Scholar
Fredkin, E. and Toffoli, T. 1982. Conservative logic. Int. J. Theor. Phys., 21, 219–253.CrossRefGoogle Scholar
Freeman, R. 1998. Spin Choreography: Basic Steps in High Resolution NMR. Oxford: Oxford University Press.Google Scholar
Gasiorowicz, S. 2003. Quantum Physics, 3rd edn. ChichesterJohn Wiley & Sons.Google Scholar
Gerry, C. C., and Knight, P. L. 2005. Introductory Quantum Optics. Cambridge: Cambridge University Press.Google Scholar
Gisin, N., Ribordy, G., Tittel, W., and Zbinden, H. 2002. Quantum cryptography. Rev. Mod. Phys., 74(1), 145–195.CrossRefGoogle Scholar
Goldman, M. 1988. Quantum Description of High-Resolution NMR in Liquids. Oxford: Oxford University Press.Google Scholar
Grover, L. K. 1997. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 79, 325–328.CrossRefGoogle Scholar
Häffner, H., Roos, C. F., and Blatt, R. 2008. Quantum computing with trapped ions. Phys. Rep., 469, 155–203.CrossRefGoogle Scholar
Halmos, P. R. 1974. Finite-Dimensional Vector Spaces. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Hecht, E. 2002. Optics, 4th edn. New York: Addison Wesley.Google Scholar
Hore, P. J. 1995. Nuclear Magnetic Resonance. Oxford: Oxford Chemistry Primers.Google Scholar
Hore, P. J., Jones, J. A., and Wimperis, S. 2000. NMR: The Toolkit. Oxford: Oxford Chemistry Primers.Google Scholar
Hughes, M. D., Lekitsch, B., Broersma, J. A., and Hensinger, W. K. 2011. Microfabricated ion traps. Contemp. Phys., 52, 505–529.CrossRefGoogle Scholar
Hughes, R. 2004. Quantum information science and technology roadmap. Technical Report.
Jaksch, D., Briegel, H.-J., Cirac, J. I., Gardiner, C. W., and Zoller, P. 1999. Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett., 82, 1975–1978.CrossRefGoogle Scholar
Jessen, P. S., Deutsch, I. S., and Stock, R. 2004. Quantum information processing with trapped neutral atoms. Quant. Inf. Proc., 3, 91–103.CrossRefGoogle Scholar
Jones, J. A. 2001. NMR quantum computation. Prog. NMR Spectrosc., 38, 325–360.CrossRefGoogle Scholar
Jones, J. A. 2011. Quantum computing with NMR. Prog. NMR Spectrosc., 59, 91–120.CrossRefGoogle ScholarPubMed
Kafatos, M. (ed.). 1989. Bell's Theorem, Quantum Theory, and Conceptions of the Universe. Dordrecht: Kluwer. Also available at http://arxiv.org/abs/0712.0921.
Knill, E., Laflamme, R., and Zurek, W. H. 1998. Resilient quantum computation. Science, 279, 342.CrossRefGoogle Scholar
Knill, E., Laflamme, R., and Milburn, G. J. 2001. A scheme for efficient quantum computation with linear optics. Nature, 409, 46–52.CrossRefGoogle ScholarPubMed
Ladd, T. D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., and O'Brien, J. L. 2010. Quantum computers. Nature, 464, 45–53.CrossRefGoogle ScholarPubMed
Landauer, R. 1982. Uncertainty principle and minimal energy dissipation in the computer. Int. J. Theor. Phys., 21, 283–297.CrossRefGoogle Scholar
Le Bellac, M. 2006. Quantum Information and Quantum Computation. Cambridge: Cambridge University Press.Google Scholar
Levitt, M. H. 2008. Spin Dynamics: Basics of Nuclear Magnetic Resonance, 2nd edn. Chichester: John Wiley & Sons.Google Scholar
Ling, A. 2011. See e.g. http://quantumlah.org/research/group/index.php?PI=21 and http://en.wikipedia.org/wiki/CubeSat.
Lipson, A., Lipson, S. G., and Lipson, H. 2011. Optical Physics, 4th edn. Cambridge: Cambridge University Press.Google Scholar
Mermin, N. D. 1990. Boojums All The Way Through. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Mermin, N. D. 2007. Quantum Computer Science. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Nielsen, M. A., and Chuang, I. L. 2000. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press.Google Scholar
Ospelkaus, C., Warring, U., Colombe, Y., Brown, K. R., Amini, J. M., Leibfried, D., and Wineland, D. J. 2011. Microwave quantum logic gates for trapped ions. Nature, 476(7359), 181–184.CrossRefGoogle ScholarPubMed
Ozeri, R. 2011. The trapped-ion qubit tool box. Contemp. Phys., 52, 531–550.CrossRefGoogle Scholar
Pan, J-W., Bouwmeester, D., Daniell, M., Weinfurter, H., and Zeilinger, A. 2000. Experimental test of quantum nonlocality in three-photon GHZ entanglement. Nature, 403, 515.CrossRefGoogle Scholar
Preskill, J. 19972011. Quantum computation. http://www.theory.caltech.edu/preskill/ph229/.
Riley, K. F., Hobson, M. P., and Bence, S. J. 2006. Mathematical Methods for Physics and Engineering, 3rd edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Rueckner, W., Georgi, J., Goodale, D., Rosenberg, D., and Tavilla, D. 1995. Rotating saddle Paul trap. Am. J. Phys., 63, 186–187.CrossRefGoogle Scholar
Ryan, C. A., Negrevergne, C., Laforest, M., Knill, E., and Laflamme, R. 2008. Liquid-state nuclear magnetic resonance as a testbed for developing quantum control methods. Phys. Rev.A, 78, 012328.CrossRefGoogle Scholar
Schneier, B. 1995. Applied Cryptography: Protocols, Algorithms and Source Code in C. Chichester: John Wiley & Sons.Google Scholar
Schumacher, B. and Westmoreland, M. D. 2010. Quantum Processes, Systems, and Information. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Schweiger, A. and Jeschke, G. 2001. Principles of Pulse Electron Paramagnetic Resonance. Oxford: Oxford University Press.Google Scholar
Sherson, J. F., Weitenberg, C., Endres, M., Cheneau, M., Bloch, I., and Kuhr, S. 2010. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature, 467, 68–72.CrossRefGoogle ScholarPubMed
Shor, P. W. 1999. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev., 41, 303–332.CrossRefGoogle Scholar
Slichter, C. P. 1989. Principles of Magnetic Resonance. Berlin: Springer-Verlag.Google Scholar
Southwell, K. 2008. Quantum coherence. Nature, 453, 1003.CrossRefGoogle ScholarPubMed
Stolze, J. and Suter, D. 2008. Quantum Computing, 2nd edn. New York: Wiley-VCH.Google Scholar
Suter, D. and Mahesh, T. S. 2008. Spins as qubits: Quantum information processing by nuclear magnetic resonance. J. Chem. Phys., 128, 052206.CrossRefGoogle ScholarPubMed
Timoney, N., Baumgart, I., Johanning, M., Varon, A. F., Plenio, M. B., Retzker, A., and Wunderlich, Ch. 2011. Quantum gates and memory using microwave-dressed states. Nature, 476(7359), 185–188.CrossRefGoogle ScholarPubMed
Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., et al. 2007. Entanglement-based quantum communication over 144 km. Nature Physics, 3, 481.CrossRefGoogle Scholar
Vandersypen, L. M. K. and Chuang, I. L. 2004. NMR techniques for quantum control and computation. Rev. Mod. Phys., 76, 1037–1069.Google Scholar
Vedral, V. 2005. Modern Foundations of Quantum Optics. London: Imperial College Press.CrossRefGoogle Scholar
Vedral, V. 2006. Introduction to Quantum Information Science. Oxford: Oxford University Press.CrossRefGoogle Scholar
Weitenberg, C., Endres, M., Sherson, J. F., Cheneau, M., Schausz, P., Fukuhara, T., Bloch, I., and Kuhr, S. 2011. Single-spin addressing in an atomic Mott insulator. Nature, 471, 319–324.CrossRefGoogle Scholar
Wiesner, S. 1983. Conjugate coding. SIGACT News, 15, 78–88.CrossRefGoogle Scholar
Wineland, D. J. and Leibfried, D. 2011. Quantum information processing and metrology with trapped ions. Laser Phys. Lett., 8, 175–188.CrossRefGoogle Scholar
Wooters, W. K. and Zurek, W. H. 1982. A single quantum cannot be cloned. Nature, 299, 802–803.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Jonathan A. Jones, University of Oxford, Dieter Jaksch, University of Oxford
  • Book: Quantum Information, Computation and Communication
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139028509.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Jonathan A. Jones, University of Oxford, Dieter Jaksch, University of Oxford
  • Book: Quantum Information, Computation and Communication
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139028509.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Jonathan A. Jones, University of Oxford, Dieter Jaksch, University of Oxford
  • Book: Quantum Information, Computation and Communication
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139028509.020
Available formats
×