Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-29T07:36:23.501Z Has data issue: false hasContentIssue false

2 - Classical and semiclassical transport

Published online by Cambridge University Press:  05 June 2012

Yuli V. Nazarov
Affiliation:
Technische Universiteit Delft, The Netherlands
Yaroslav M. Blanter
Affiliation:
Technische Universiteit Delft, The Netherlands
Get access

Summary

We devoted Chapter 1 to a purely quantum-mechanical approach to electron transport: the scattering approach. Electrons were treated as quantum waves that propagate between reservoirs – the contact pads of a nanostructure. The waves experience scattering, and the transport properties are determined by the scattering matrix of these waves. As we have seen, this approach becomes progressively impractical with the increasing number of transport channels, and can rarely be applied for GGQ, where G is the conductance of the system.

A different starting point is well known from general physics, or, more simply, from general life experience, which is rather classical. In this context, a nanostructure is regarded as an element of an electric circuit, which conducts electric currents. If one makes a more complicated circuit by combining these elements, one does not have to involve quantum mechanics to figure out the result. Rather, one uses Ohm's law or, generally, Kirchhoff rules. The number of parameters required for this description is fewer than in the quantum-mechanical scattering approach. For example, the phase shifts of the scattering matrix do not matter.

In this chapter, we will bridge the gap between these opposite starting points. The first bridge is rather obvious: it is important to understand that these two opposite approaches do not contradict each other. In Section 2.1, we illustrate the difference and the link between the approaches with a comprehensive example of a double-junction nanostructure.

Type
Chapter
Information
Quantum Transport
Introduction to Nanoscience
, pp. 124 - 210
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×