Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-29T13:24:34.227Z Has data issue: false hasContentIssue false

4 - Randomness and interference

Published online by Cambridge University Press:  05 June 2012

Yuli V. Nazarov
Affiliation:
Technische Universiteit Delft, The Netherlands
Yaroslav M. Blanter
Affiliation:
Technische Universiteit Delft, The Netherlands
Get access

Summary

This chapter treats quantum interference effects in disordered conductors. We have already discussed interference phenomena for the few-channels case in Section 1.6, and in Chapter 2 we have seen that the scattering approach becomes increasingly complicated for many transport channels. This is why we need special methods to treat many-channel diffusive conductors. Some of their properties can be understood if we replace the Hamiltonian or a scattering matrix by a random matrix. In Section 4.1 we discuss random matrices as mathematical objects and review the properties of their eigenvalues and eigenvectors. We then use random matrix theory to describe the properties of energy levels (Section 4.2) and transmission eigenvalues (Section 4.3).

To describe interference effects in a very broad class of conductors, we develop in Section 4.4 the methods to handle interference corrections for a circuit theory, which allows us to take account of all nanostructure details. We evaluate universal conductance fluctuations and the weak localization correction to conductance.

We also find that, in some situations, electrons are localized – confined to small regions of space. Section 4.5 discusses under which conditions this strong localization occurs and briefly outlines transport properties associated with this regime.

Random matrices

In this section, we describe disordered and chaotic systems. Disordered systems contain some defects that scatter electrons; chaotic ones do not have any defects, but scattering at the boundaries induces a very different motion for particles with very close energies. In these systems, the positions of energy levels and transmission eigenvalues are random and vary from sample to sample. We have already encountered such a situation when discussing the transport properties of diffusive conductors in Chapter 2.

Type
Chapter
Information
Quantum Transport
Introduction to Nanoscience
, pp. 299 - 373
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×