Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T08:39:24.592Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  13 July 2017

Knut Stamnes
Affiliation:
Stevens Institute of Technology, New Jersey
Gary E. Thomas
Affiliation:
University of Colorado Boulder
Jakob J. Stamnes
Affiliation:
Universitetet i Bergen, Norway
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aas,, E. 1987. Two-stream irradiance model for deep waters. Appl. Opt., 26, 2095–2101.Google Scholar
Abramowitz, M., and Stegun, I. A. 1965. Handbook of Mathematical Functions. Dover.
Ackerman, T. P. 1992. The physics of the greenhouse effect. Pages 63–80 of: Global Climate Change: Implications, Challenges and Mitigation Measures. Pennsylvania Academy of Science, edited by S. K., Majumdar et al.
Ahmad, S. P., and Deering, D. W. 1992. A simple analytical function for bidirectional reflectance. J. Geophys. Res., 97, 8,867–18,886.Google Scholar
Ahmad, Z., Franz, B. A.,McClain, C. R., Kwiatkowska, E. J.,Werdell, J., Shettle, E. P., and Holben, B. N. 2010. New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans. Appl. Opt., 49, 5545–5560.Google Scholar
Albritton, D. L., Watson, R. T., Megie, G., and (Eds.), P. J., Aucamp. 1985. Global Ozone Research and Monitoring Project. Pages 355–362 of: Report No. 16. World Meteorological Organization.
Anderson, D. E. 1983. The troposphere–stratosphere radiation field at twilight: a spherical model. Planet. Space Sci., 31, 1517–1523.Google Scholar
Anderson, G. P., Clough, S. A., Kneizys, F. X., Chetwynd, J. H., and Shettle, E. P. 1986. AFGL Atmospheric Constituent Profiles (0–120 km), AFGL-TR-86-0110 (OPI). Hanscom AFB, MA 01736.
Anderson, J. G., Toohey, D. W., and Brune, W. H. 1991. Free radicals within the Antarctic vortex: the role of CFCs in Antarctic ozone loss. Science, 251, 39–46.Google Scholar
Apostol, Tom M. 2007. Calculus, vol. 1. John Wiley & Sons.
Appleby, J. F., and Irvine, W. M. 1973. Path length distributions of photons diffusely reflected from a semi-infinite atmosphere. Astrophys. J., 183, 337–346.Google Scholar
Arfken, G. 1985. Mathematical Methods of Physics, 3rd ed. Academic Press.
Armstrong, B. H. 1967. Spectrum line profiles: the Voigt function. J. Quant. Spectrosc. Radiat. Transfer, 7, 61–88.Google Scholar
Babin, Marcel, Morel, André, Fournier-Sicre, Vincent, Fell, Frank, and Stramski, Dariusz. 2003a. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnol. Oceanogr., 48(2), 843–859.Google Scholar
Babin, Marcel, Stramski, Dariusz, Ferrari, Giovanni M., Claustre, Herve, Bricaud, Annick, Obolensky, Grigor, and Hoepffner, Nicolas. 2003b. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J. Geophys. Res.: Oceans, 108(C7).Google Scholar
Bates, D. R. 1984. Rayleigh scattering by air. Planet. Space Sci., 32, 785–790.Google Scholar
Baum, Bryan A., Yang, Ping, Heymsfield, Andrew J., Schmitt, Carl G., Xie, Yu, Bansemer, Aaron, Hu, Yong-Xiang, and Zhang, Zhibo. 2011. Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds. J. Appl. Meteorol. Clim., 50(5), 1037–1056.Google Scholar
Bellman, R., Kalaba, R., and Prestrud, M. 1963. Invariant Imbedding and Radiative Transfer in Slabs of Finite Thickness. Elsevier.
Bellman, R., Kawigada, H., Kalaba, R., and Ueno, S. 1967. Invariant imbedding equations for the dissipation functions of an inhomogeneous finite slab with anisotropic scattering. J. Math. Phys., 8, 2137–2142.Google Scholar
Berk, Alexander, Anderson, Gail P., Acharya, Prabhat K., Bernstein, Lawrence S.,Muratov, Leon, Lee, Jamine, Fox, Marsha, Adler-Golden, SteveM., Chetwynd, James H., Hoke, Michael L., et al. 2005. MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update. Pages 662–667 of: Defense and Security. International Society for Optics and Photonics.
Berk, Alexander, Conforti, Patrick, Kennett, Rosemary, Perkins, Timothy, Hawes, Frederick, and van den Bosch, Jeannette. 2014. MODTRAN6: a major upgrade of the MODTRAN radiative transfer code. Pages 90880H–90880H of: SPIE Defense+ Security. International Society for Optics and Photonics.
Bodyko, M. I. 1969. The effect of solar radiation variations on the climate of the Earth. Tellus, 21, 611–619.Google Scholar
Bodyko, M. I. 1975. Climate and Life. Academic Press.
Bohren, C. 1987. Multiple scattering of light and some of its observable consequences. American Journ. Physics, 55, 524–533.Google Scholar
Bohren, C. F. 1989. Selected papers on scattering in the atmosphere. In: SPIE Milestone Series, vol. MS07. SPIE.Google Scholar
Bohren, C. F. 1990. All that's best of dark and bright. Weatherwise, 43, 160–163.Google Scholar
Bohren, C. F. 1991. What Light through Yonder Window Breaks? Wiley.
Bohren, C. F., and Huffman, D. R. 1998. Absorption and Scattering of Light by Small Particles. John Wiley.
Born, M., and Wolf, E. 1980. Principles of Optics. Cambridge University Press.
Brasseur, Guy P., and Solomon, Susan. 2006. Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, vol. 32. Springer Science & Business Media.
Bréviére, E., and others (Eds.). 2015. Surface Ocean Lower Atmosphere Study (SOLAS) Scientific Steering Committee. In: SOLAS 2015-2025: Science Plan and Organisation. Kiel: SOLAS International Project Office. /www.solas-int.org/.
Bricaud, Annick, Morel, André, Babin, Marcel, Allali, Karima, and Claustre, Hervé. 1998. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models. J. Geophys. Res. Oceans, 103(C13), 31033–31044.Google Scholar
Briegleb, B. P. 1992. Longwave band model for thermal radiation in climate studies. J. Geophys. Res., 97, 11,475–11,485.Google Scholar
Burden, R. L., and Faires, J. D. 1985. Numerical Analysis, 3rd ed. Prindle, Weber and Schmidt, p. 153.
Carder, K., Chen, F., Cannizarro, J., Campbell, J., and Mitchell, B. 2004. Performance of MODIS semi analytical ocean colour algorithm for chlorophyll-a. Adv. Space Res., 33, 1152–1159.Google Scholar
Cess, Robert D., Potter, G. L., Blanchet, J. P., Boer, G. J., Del Genio, A. D., Deque, M., Dymnikov, V., Galin, V., Gates, W. L., Ghan, S. J., et al. 1990. Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res.: Atmos., 95(D10), 16601–16615.Google Scholar
Chamberlain, J.W., and Hunten, D. M. 1987. Theory of Planetary Atmospheres. Academic Press.
Chami, Malik, Santer, Richard, and Dilligeard, Eric. 2001. Radiative transfer model for the computation of radiance and polarization in an ocean–atmosphere system: polarization properties of suspended matter for remote sensing. Appl. Opt., 40(15), 2398–2416.Google Scholar
Chandrasekhar, S. 1950. Radiative Transfer. Clarendon.
Chandrasekhar, S. 1960. Radiative Transfer. Dover.
Charlock, T. P., and Ramanathan, V. 1985. The albedo field and cloud radiative forcing produced by a general circulation model with internally generated cloud optics. J. Atmos. Sci., 42, 1408–1429.Google Scholar
Chen, C.-T., and Roeckner, E. 1996. Validation of the earth radiation budget as simulated by the Max Planck Institute for Meteorology general circulation model ECHAM4 using satellite observations of the Earth Radiation Budget Experiment. J. Geophys. Res., 101, 4269–4287.Google Scholar
Cheyney, H., and Arking, A. 1976. A new formulation for anisotropic radiative transfer problems, I, Solution with a variational technique. Astrophys. J., 207, 808–819.Google Scholar
Chou, M.-D., and Kouvaris, L. 1991. Calculations of the transmission functions in the infrared CO2 and O3 bands. J. Geophys. Res., 96, 9003–9012.Google Scholar
Chowdhary, Jacek, Cairns, Brian, Waquet, Fabien, Knobelspiesse, Kirk, Ottaviani, Matteo, Redemann, Jens, Travis, Larry, and Mishchenko, Michael. 2012. Sensitivity of multiangle, multispectral polarimetric remote sensing over open oceans to waterleaving radiance: analyses of RSP data acquired during the MILAGRO campaign. Remote Sensing of Environment, 118, 284–308.Google Scholar
Clough, S. A., Kneizys, F. X., Rothman, L. S., and Gallery, W. O. 1981. Atmospheric spectral transmittance and radiance: FASCOD1 B. Pages 152–167 of: 1981 Technical Symposium East. International Society for Optics and Photonics.
Clough, S. A., Shephard, M.W.,Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D. 2005. Atmospheric radiative transfer modeling: a summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233–244.Google Scholar
Clough, Shepard A., Iacono, Michael J., and Moncet, Jean-Luc. 1992. Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor. J. Geophys. Res.: Atmos. (1984–2012), 97(D14), 15761–15785.Google Scholar
Cogley, A. C., and Borucki, W. J. 1976. Exponential approximation for daily average solar heating or photolysis. J. Atmos. Sci, 33, 1347–1356.Google Scholar
Collins, D. G., Blattner, W. G., Wells, M. B., and Horak, H. G. 1972. Backward Monte- Carlo calculations of the polarization characteristics of the radiation field emerging fom spherical shell atmospheres. Appl. Opt., 11, 2684–2705.Google Scholar
Cooper, J., Hubeny, I., and Oxenius, J. 1983. On the line profile coefficient for stimulated emission. Astron. Astrophys., 127, 224–226.Google Scholar
Coulson, Kinsell L. 1988. Polarization and Intensity of Light in the Atmosphere. A Deepak Pub.
Covey, C. 1989. Mechanisms of climatic change. Pages 11–33 of: Global Climate Change: Human and Natural Influences. Paragon House, edited by S. F., Singer.
Cox, C., and Munk, W. 1954. Measurement of the roughness of the sea surface from photographs of the sun's glitter. J. Opt. Soc. Am, 44, 838–850.Google Scholar
Dahlback, A., and Stamnes, K. 1991. A new spherical model for computing the radiation field available for photolysis and heating at twilight. Planet. Space Sci., 39, 671–683.Google Scholar
Dahlback, Arne. 1996. Measurements of biologically effective UV doses, total ozone abundances, and cloud effects with multichannel, moderate bandwidth filter instruments. Appl. Opt., 35(33), 6514–6521.Google Scholar
Danielson, R. E., Moore, D. R., and van de Hulst, H. C. 1969. Backward Monte-Carlo calculations of the polarization characteristics of the radiation field emerging fom spherical shell atmospheres. J. Atmos. Sci., 26, 1078–1087.Google Scholar
Davies, C. N. 1974. Size distribution of atmospheric particles. J. Aerosol Sci., 5, 293–300.Google Scholar
Davies, R., Ridgeway, W. L., and Kim, K.-E. 1984. Spectral absorption of solar radiation in cloudy atmospheres: a 20 cm-1 model. J. Atmos. Sci., 41, 2126–2137.Google Scholar
Deirmendjian, D. 1969. Electromagnetic Scattering on Spherical Polydispersions. Elsevier.
Dera, J. 1992. Marine Physics. Elsevier.
Deschamps, Pierre Yves, Bréon, F-M, Leroy, Marc, Podaire, Alain, Bricaud, Annick, Buriez, Jean-Claude, and Seze, Genevieve. 1994. The POLDER mission: instrument characteristics and scientific objectives. Geoscience and Remote Sensing, IEEE Transactions, 32(3), 598–615.Google Scholar
Diehl, P., and Haardt, H. 1980. Measurement of the spectral attenuation to support biological research in a “plankton tube” experiment. Oceanol. Acta., 3, 89–96.Google Scholar
Dobson, G. M. B. 1931. A photo electric spectrophotometer for measuring the amount of atmospheric ozone. Proc. Phys. Soc. London, 43, 324–339.Google Scholar
Du, Hong. 2004. Mie-scattering calculation. Appl. Opt., 43(9), 1951–1956.Google Scholar
Dutton, E. G., and Christy, J. R. 1992. Solar radiative forcing at selected locations and evidence for global lower tropospheric cooling following the eruptions of El Chichon and Pinatubo. Geophys. Res. Lett., 19, 2313–2316.Google Scholar
Dutton, J. A. 1995. An analytical model of atmospheric feedback and global temperature change. J. Clim., 8, 1122–1139.Google Scholar
Eddington, A. S. 1916. On the radiative equilibrium of the stars. Monthly Notices of the Royal Astronomical Society, 77, 16–35.Google Scholar
Edwards, Charles Henry. 1990. Calculus and Analytic Geometry. Prentice Hall PTR.
Edwards, D. P. 1992. A General Line-by-Line Atmospheric Transmittance and Radiance Model. NCAR Technical note, NCAR/TN-367+STR. NCAR, Boulder, Colorado.
Einstein, A., and Infeld, L. 1966. The Evolution of Physics. Simon and Schuster.
El-Sayed, S. Z., Stephens, F. C., Bidigard, R. R., and Ondrusek, M. E. 1990. Effect of ultraviolet on Antarctic marine phytoplankton. Pages 379–385 of: Antarctic Ecosystems, Ecological Change and Conservation. Springer-Verlag, edited by K. R., Kerry and G., Hempel.
Ellingson, R. G., Ellis, J., and Fels, S. 1992. The intercomparison of radiation codes used in climate models: longwave results. J. Geophys. Res., 96, 8929–8953.Google Scholar
Ellingson, Robert G., and Fouquart, Yves. 1991. The intercomparison of radiation codes in climate models: an overview. J. Geophys. Res.: Atmos., 96(D5), 8925–8927.Google Scholar
Elsasser, W. M. 1942. Heat Transfer by Infrared Radiation in the Atmosphere. Harvard University Blue Hill Meteorological Observatory.
Esposito, L. W., and House, L. L. 1978. Radiative transfer calculated from a Markov chain formalism. Ap. J., 219, 1058–1067.Google Scholar
Esposito, Larry W. 1979. An “adding” algorithm for the Markov chain formalism for radiation transfer. Ap. J., 233, 661–663.Google Scholar
Fan, Lingling, Li, Wei, Dahlback, Arne, Stamnes, Jakob J., Stamnes, Snorre, and Stamnes, Knut. 2014. New neural-network-based method to infer total ozone column amounts and cloud effects from multi-channel, moderate bandwidth filter instruments. Opt. Express, 22(16), 19595–19609.Google Scholar
Fan, Yongzhen, Li, Wei, Calzado, Violeta Sanjuan, Trees, Charles, Stamnes, Snorre, Fournier, Georges, McKee, David, and Stamnes, Knut. 2015a. Inferring inherent optical properties and water constituent profiles from apparent optical properties. Opt. Express, 23(15), A987–A1009.Google Scholar
Fan, Yongzhen, Li, Wei, Stamnes, Knut, Stamnes, Jakob J., and Sorensen, Kai. 2015b. Simultaneous retrieval of aerosol and marine parameters in coastal areas using a coupled atmosphere–ocean radiative transfer model. Page 82 of: Sentinel-3 for Science Workshop, vol. 734.Google Scholar
Fan, Yongzhen, Li, Wei, Voss, Kenneth J., Gatebe, Charles K., and Stamnes, Knut. 2016. Neural network method to correct bidirectional effects in water-leaving radiance. Appl. Opt., 55(1), 10–21.Google Scholar
Farman, J. C., Gardiner, G., and Shanklin, J. D. 1985. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207–210.Google Scholar
Farmer, C. B., and Norton, R. H. 1989. A High-Resolution Atlas of the Infrared Spectrum of the Sun and the Earth Atmosphere from Space, 650 to 3350 cm-1, vol. II. Stratosphere and Mesosphere, cm-1. NASA Reference Publication 1224.
Feautrier, P., 1964. Sur la resolution numerique de l'equation de transfert. C. R. Acad. Sci. Paris, 258, 3189–3191.Google Scholar
Fleury, P., and de Boer, J. 1962. Symbols units and nomenclature in physics. Physics Today, 15(6), 20–30.Google Scholar
Fournier, G. R., and Forand, J. L. 1994. Analytic phase function for ocean water. Proc. Ocean Optics XII, SPIE, 2558, 194–201.Google Scholar
Fu, Q., and Liou, K. N. 1993. Parametrization of the radiative properties of cirrus clouds. J. Atmos., Sci., 21, 115–150.Google Scholar
Fukushima, Hajime, Suzuki, Kazunori, Li, Liping, Suzuki, Naoya, and Murakami, Hiroshi. 2009. Improvement of the ADEOS-II/GLI sun-glint algorithm using concomitant microwave scatterometer-derived wind data. Advances in Space Research, 43(6), 941–947.Google Scholar
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z.-L., and Zhang, M. 2011. The Community Climate System Model Version 4. J. Clim., 24(19), 4973–4991.Google Scholar
Goldman, A., Murcray, F. J., Rinsland, C. P., Blatherwick, R. D., Murcray, F. H., and Murcray, D. G. 1991. Analysis of atmospheric trace constituents from high resolution infrared balloon-borne and ground-based solar absorption spectra. Proc. of the Symposium on Remote Sensing of Atmospheric Chemistry, Society of Photo- Optical Instrumentation Engineers (SPIE), 1491, 194–202.Google Scholar
Goody, R. M., and Yung, Y. L. 1989. Atmospheric Radiation, Theoretical Basis. Oxford University Press.
Goody, R.M.,West, R., Chen, L., and Crisp, D. 1989. The correlated-k method for radiation calculations in nonhomogeneous atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 42, 539–550.Google Scholar
Gordon, H. R. 1994. Modeling and simulating radiative transfer in the ocean. Pages 3–3 of: Oxford Monographs on Geology and Geophysics. Oxford University Press, edited by R. W., Spinrad, K. L., Carder, and M. J., Perry.
Gordon, H. R. 1997. Atmospheric correction of ocean color imagery in the Earth Observation System era. J. Geophys. Res., 102, 17081–17106.Google Scholar
Gordon, Howard R., and Boynton, G. Chris. 1997. RadianceÑirradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: homogeneous waters. Appl. Opt., 36(12), 2636–2641.Google Scholar
Gordon, Howard R., and Boynton, G. Chris. 1998. Radiance–irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: vertically stratified water bodies. Appl. Opt., 37(18), 3886–3896.Google Scholar
Graedel, T., and Crutzen, P. C. 1993. Atmospheric Change: An Earth System Perspective. W. H. Freeman.
Grenfell, T. C., and Maykut, G. A. 1977. Spectral albedo of antarctic snow. J. Glaciol., 18, 445–463.Google Scholar
Grenfell, Thomas C., Warren, Stephen G., and Mullen, Peter C. 1994. Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths. J. Geophys. Res.: Atmos., 99(D9), 18669–18684.Google Scholar
Hamre, B., Stamnes, S., Stamnes, K., and Stamnes, J. J. 2013. C-DISORT: a versatile tool for radiative transfer in coupled media like the atmosphere–ocean system. Pages 923–926 of: Radiation Process in the Atmosphere and the Ocean (IRS2012): Proceedings of the International Radiation Symposium (IRC/IAMAS), vol. 1531. AIP Publishing, edited by R. F., Cahalan.
Hamre, Børge, Winther, Jan-Gunnar, Gerland, Sebastian, Stamnes, Jakob J., and Stamnes, Knut. 2004. Modeled and measured optical transmittance of snow-covered first-year sea ice in Kongsfjorden, Svalbard. J. Geophys. Res.: Oceans, 109(C10).Google Scholar
Hamre, Børge, Stamnes, Jakob J., Frette, Øyvind, Erga, Svein Rune, and Stamnes, Knut. 2008. Could stratospheric ozone depletion lead to enhanced aquatic primary production in the polar regions? Limnol. Oceanogr., 53(1), 332–338.Google Scholar
Hanel, R. A., and Conrath, B. J. 1970. Thermal Emission Spectra of the Earth and Atmosphere Obtained from the Nimbus 4 Michelson Interferometer Experiment. NASA Report X-620-70-244.
Hansen, J., Lacis, A., Rind, D., Russell, G., Stone, P., Fung, I., Ruedy, R., and Lerner, J. 1985. Climate response times: dependence on climate sensitivity and ocean mixing. Science, 229, 857–859.Google Scholar
Hansen, J., Lacis, A., Ruedy, R., and Sato, M. 1992. Potential climate impact of Mount Pinatubo eruption. Geophys. Res. Lett., 19, 215–218.Google Scholar
Hansen, J. E, and Travis, L. D. 1974. Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527–610.Google Scholar
Hapke, B. 1963. A theoretical photometric function for the lunar surface. J. Geophys. Res., 68, 4571–4586.Google Scholar
Hapke, Bruce. 2012. Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press.
Harmel, Tristan, and Chami, Malik. 2013. Estimation of the sunglint radiance field from optical satellite imagery over open ocean: multidirectional approach and polarization aspects. J. Geophys. Res.: Oceans, 118(1), 76–90.Google Scholar
Harrison, E. F., Minnis, P., Barkstrom, B. R., Ramanathan, V., Cess, R. D., and Gibson, G. G. 1990. Seasonal variations of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res., 95, 18,687–18,703.Google Scholar
Harshvardhan, , and King, M. D. 1993. Comparative accuracy of diffuse radiative properties computed using selected multiple scattering approximations. J. Atmos. Sci., 50, 247–259.Google Scholar
Hartmann, D. L. 1990. Modeling climate change. Pages 97–140 of: Global Climate and Ecosystems Change. Plenum Press, edited by G., MacDonald and I., Settorio.
Hartmann, D. L., Ramanathan, V., Berroir, A., and Hunt, G. E. 1986. Earth radiation budget data and climate research. Rev. of Geophysics, 24, 439–468.Google Scholar
Hays, Paul B., Abreu, Vincent J., Dobbs, Michael E., Gell, David A., Grassl, Heinz J., and Skinner, Wilbert R. 1993. The high-resolution doppler imager on the Upper Atmosphere Research Satellite. J. Geophys. Res.: Atmos., 98(D6), 10713–10723.Google Scholar
Heald, M. A., and Marion, J. B. 1995. Classical Electromagnetic Radiation. Saunders College Publ. Co.
Heaslet, M. A., and Warming, R. F. 1968. Radiative source predictions for finite and semiinfinite non-conservative atmospheres. Astrophys. and Space Science, 1, 460–498.Google Scholar
Henyey, L. C., and Greenstein, J. L. 1941. Diffuse radiation in the galaxy. Astrophys. J., 93, 70–83.Google Scholar
Herzberg, G. 1950. Molecular Spectroscopy and Molecular Structure: I. Spectra of Diatomic Molecules. D. van Nostrand.
Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A. 1998. AERONET – a federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 1–16.Google Scholar
Holben, B. N., Tanre, D., Smirnov, A., Eck, T. F., Slutsker, I., Abuhassan, N., Newcomb, W. W., Schafer, J., Chatenet, B., Lavenue, F., Kaufman, Y. J., Castle, J. Vande, Setzer, A., Markham, B., Clark, D., Frouin, R., Halthore, R., Karnieli, A., O'Neill, N. T., Pietras, C., Pinker, R. T., Voss, K., and Zibordi, G. 2001. An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. J. Geophys. Res., 106, 12067–12097.Google Scholar
Houghton, J. T., Taylor, F. T., and Rodgers, C. D. 1984. Remote Sounding of Atmospheres. Cambridge University Press.
Houghton, J. T., Filho, L. G.Meira, Bruce,, J., Lee, Hoesung, Callendar, B. A., Haites, E., Harris, N., and Maskell, K. (eds.). 1995. Radiative forcing of climate change and an evaluation of the IPCC 1S92 emission scenarios. Page 339 of: Climate Change 1994. Cambridge University Press, edited by J. T., Houghton.
Houghto, J. T., Filho, L. G. Meiro, Callande, B. A., Harris, N., Kattenburg, A., and Maskell, K. 1996. Climate Change 1995: The Science of Climate Change, Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Hu, Y. X. 1994. A Study of the Link between Cloud Microphysics and Climate Change. Ph. D. Thesis – University of Alaska, Fairbanks, USA.
Hu, Y.-X., and Stamnes, K. 1993. An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Clim., 6, 728–742.Google Scholar
Hu, Y.-X., Wielicki, B., Lin, B., Gibson, G., Tsay, S.-C., Stamnes, K., and Wong, T. 2000. Delta-fit: a fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least squares fitting. J. Quant. Spectrosc. Radiat. Transfer, 65, 681–690.Google Scholar
Hu, Yongxiang, Stamnes, K., Vaughan, M., Pelon, Jacques, Weimer, C., Wu, D., Cisewski, M., Sun, W., Yang, P., Lin, B., et al. 2008. Sea surface wind speed estimation from space-based lidar measurements. Atmospheric Chemistry and Physics, 8(13), 3593–3601.Google Scholar
Humme, D. G., and Rybicki, G. 1967. Computational methods for non-LTE line-transfer problems. Pages 53–126 of: Methods in Computational Physics. Academic Press, edited by A., Alder, S., Fernbach, and M., Rotheberg.
Humphrey, W. J. 1929. Physics of the Air, 2nd ed. McGraw-Hill.
Hun, G. E., and Gran, I. P. 1969. Discrete space theory of radiative transfer and its application to problems in planetary atmospheres. J. Atmos. Sci., 26, 963–972.Google Scholar
Irvine, W. M. 1968. Monochromatic phase curves and albedos for Venus. J. Atmos. Sci., 25, 610–616.Google Scholar
Irvin, W. M. 1975. Multiple scattering in planetary atmospheres. Icarus, 25, 175–204.Google Scholar
Isaac, R. G., Wang, W-C., Worsha, R. D., and Goldenberg, S. 1987. Multiple scattering in LOWTRAN and FASCODE models. Appl. Opt., 26, 1272–1281.Google Scholar
Jahnke, E., and Emde, F. 1945. Tables of Functions. Dover.
Jerlo, N. G. 1968. Optical Oceanography. Elsevier.
Jerlo, N. G. 1976. Marine Optics. Elsevier.
Jiang, Shigan, Stamnes, Knut, Li, Wei, and Hamre, Børge. 2005. Enhanced solar irradiance across the atmosphere–sea ice interface: a quantitative numerical study. Appl. Opt., 44(13), 2613–2625.Google Scholar
Jin, Z., and Stamnes, K. 1994. Radiative transfer in non-uniformly refracting media: atmosphere-ocean system. Appl. Opt., 33, 431–442.Google Scholar
Jin, Z., Stamnes, K., Week, W. F., and Tsa, S. C. 1994. The effect of sea ice on the solar energy budget in the atmosphere–sea ice–ocean system: a model study. J. Geophys. Res., 99, 25281–25294.Google Scholar
Josep, J. H.,Wiscombe, W. J., and Weinma, J. A. 1976. The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33, 2452–2459.Google Scholar
Kahnert, F. Michael. 2003. Numerical methods in electromagnetic scattering theory. J. Quant. Spectrosc. Radiat. Transf., 79, 775–824.Google Scholar
Kahnert, Michael, Sandvik, Anne Dagrun, Biryulina, Marina, Stamnes, Jakob J., and Stamnes, Knut. 2008. Impact of ice particle shape on short-wave radiative forcing: a case study for an arctic ice cloud. J. Quant. Spectrosc. Radiat. Transf., 109(7), 1196–1218.Google Scholar
Kalkofen, W. 1984. Methods in Computational Physics. Cambridge University Press, edited by W., Kalkofen.
Karentz, D. 1988. DNA repair mechanisms in Antarctic marine organisms. Antarctic. J. U.S., 23, 114–115. Google Scholar
Kar, A. H., Greenstad, J. J., and Filmor, J. A. 1980. Radiative transfer through an arbitrarily thick, scattering atmosphere. J. Quant. Spectrosc. Radiat. Transfer, 24, 391–406.Google Scholar
Kattawa, G. W. 1991. Selected papers on scattering in the atmosphere: methods. In: SPIE Milestone Series, vol. MS42. SPIE.
Kattawa, G. W., Plas, G. N., and Quin, J. A. 1973. Monte-Carlo calculation of polarization of radiation in the earth's atmosphere–ocean system. J. Phys. Oceanogr., 3, 353–372.Google Scholar
Kay, Susan, Hedley, John D., and Lavender, Samantha. 2009. Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths. Remote Sensing, 1(October), 697–730.Google Scholar
Key, Jeffrey R., and Schweiger, Axel J. 1998. Tools for atmospheric radiative transfer: Streamer and FluxNet. Computers & Geosciences, 24(5), 443–451.Google Scholar
Kieh, J. T., and Briegle, B. P. 1993. The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science, 260, 311–314.Google Scholar
Kieh, J. T., and Ramanathan, V. 1983. CO2 radiative parameterization used in climate models: comparison with narrow band models and with laboratory data. J. Geophys. Res., 88, 5191–5202.Google Scholar
Kieh, J. T., and Trenbert, K. E. 1997. Earth's annual global mean energy budget. Bull. Amer. Met. Soc., 78, 197–208.Google Scholar
Kin, M. D., and Harshvardhan. 1986. Comparative accuracy of selected multiple scattering approximations. J. Atmos. Sci., 43, 784–801.Google Scholar
King, Michael D., and Arking, Albert. 1984. A model of the radiative properties of the El Chichon stratospheric aerosol layer. J. Clim. Appl. Meteorol., 23(7), 1121–1137.Google Scholar
Kirk, J. T. O. 1994. Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. Cambridge University Press.
Klige, D. S., Lewi, J. W., and Randal, C. E. 1990. Elliptical polarizers and retarders. In: Polarized Light in Optics and Spectroscopy. Academic Press.
Kooper, G. A.A., and Murtag, D. P. 1996. Model studies of the influence of O2 photodissociation parameterizations in the Schumann–Runge bands on ozone related photolysis in the upper atmosphere. Ann. Geophysicae, 14, 68–79.Google Scholar
Kopp, Greg, and Lean, Judith L. 2011. A new, lower value of total solar irradiance: evidence and climate significance. Geophys. Res. Lett., 38(1).Google Scholar
Kotchenova, Svetlana Y., and Vermote, Eric F. 2007. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces. Appl. Opt., 46(20), 4455–4464.Google Scholar
Kotchenova, Svetlana Y., Vermote, Eric F., Matarrese, Raffaella, Klemm Jr, Frank J., et al. 2006. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Appl. Opt., 45(26), 6762–6774.Google Scholar
Kou, Linhong, Labrie, Daniel, and Chylek, Petr. 1993. Refractive indices of water and ice in the 0.65 to 2.5-μm spectral range. Appl. Opt., 32(19), 3531–3540.Google Scholar
Kourganoff, V. 1952. Basic Methods in Transfer Problems. Clarendon Press.
Kyl, T. G. 1991. Atmospheric Transmission, Emission and Scattering. Permagon Press.
Kylling, A. 1992. Radiation Transport in Cloudy and Aerosol Loaded Atmospheres. PhD Thesis – University of Alaska, Fairbanks, USA.
Kylling, A., Stamnes, K., and Tsay, S.-C. 1995. A reliable and efficient two-stream algorithm for radiative transfer: documentation of accuracy in realistic layered media. J. Atmos. Chem., 21, 115–150.Google Scholar
Lacis, A., Hansen, J., and Sato, M. 1992. Climate forcing by stratospheric aerosols. Geophys. Res. Lett., 19, 1607–1610.Google Scholar
Laci, A. A., Chowdhary, J., Mishchenk, M. I., and Cairns, B. 1998. Modeling errors in diffuse-sky radiation: vector vs. scalar treatment. Geophys. Res. Lett., 25, 135–138.Google Scholar
Lacis, Andrew, Hansen, James, Russell, Gary, Oinas, Valdar, and Jonas, Jeffrey. 2013. The role of long-lived greenhouse gases as principal LW control knob that governs the global surface temperature for past and future climate change. Tellus B, 65.Google Scholar
Lacis, Andrew A., and Oinas, Valdar. 1991. A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res., Atmos. (1984–2012), 96(D5), 9027–9063.Google Scholar
Laszlo, Istvan, Stamnes, Knut,Wiscombe, Warren J., and Tsay, Si-Chee. 2016. The discrete ordinate algorithm, DISORT for radiative transfer. Pages 3–65 of: Light Scattering Reviews, vol. 11. Springer, edited by A., Kokhanovsky.
Lee, J.-S., and Meie, R. R. 1980. Angle-dependent frequency distribution in a planeparallel medium: External source case. Astrophys. J., 240, 185–195.Google Scholar
Lenci, F., Ghetti, F., Colombetti, G., Häder, D.-P., and Pill-Soon, Song 1991. Effects of enhanced solar ultraviolet radiation on aquatic ecosystems. Pages 157–172 of: Biophysics of photoreceptors and photomovements in microorganisms. Springer.Google Scholar
Lenoble, J. 1985. Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures. Deepak.
Lenoble, J. 1993. Atmospheric Radiative Transfer. Deepak.
Lenoble, J., Herman, M., Deuzé, J. L., Lafrance, B., Santer, R., and Tanré, D. 2007. A successive order of scattering code for solving the vector equation of transfer in the Earth's atmosphere with aerosols. J. Quant. Spectrosc. Radiat. Transf., 107(3), 479–507.Google Scholar
Li, W., Stamnes, K., Spurr, R., and Stamne, J. J. 2008. Simultaneous retrieval of aerosols and ocean properties: a classic inverse modeling approach. II. SeaWiFS case study for the Santa Barbara Channel. Int. J. Rem. Sens., 29, 5689–5698.Google Scholar
Lin, Z., Stamnes, S., Jin, Z., Laszlo, I., Tsa, S. C.,Wiscombe,W. J., and Stamnes, K. 2015. Improved discrete ordinate solutions in the presence of an anisotropically reflecting lower boundary: upgrades of the DISORT computational tool. J. Quant. Spectrosc. Radiat. Transf., 157, 119–134.Google Scholar
Lin, Zhenyi, Li, Wei, Gatebe, Charles, Poudyal, Rajesh, and Stamnes, Knut. 2016. Radiative transfer simulations of the two-dimensional ocean glint reflectance and determination of the sea surface roughness. Appl. Opt., 55(6), 1206–1215.Google Scholar
Liou, K.-N. 1980. An Introduction to Atmospheric Radiation. Academic Press.
Liou, K.-N. 1992. Radiation and Cloud Processes in the Atmosphere. Oxford University Press.
Liou, K.-N., and Takano, Y. 1994. Light scattering by non-spherical particles: remote sensing and climatic implications. Atmos. Res., 31, 271–298.Google Scholar
Liou, Kuo-Nan. 2002. An Introduction to Atmospheric Radiation, vol. 84. Academic Press.
Loisel, H., and Morel, A. 1998. Light scattering and chlorophyll concentration in case 1 waters: a re-examination. Limnol. Oceanogr., 43, 847–857.Google Scholar
Lommel, E. 1887. Die Photometrie der diffusen Zurückwerfung. Sitzber. Acad. Wissensch. München, 17, 95–124.Google Scholar
Lubin, D., Frederic, J. E., Boot, C. R., Lucas, T., and Neuschuler, D. 1989. Measurements of enhanced springtime ultraviolet radiation at Palmer Station, Antarctica. Geophys. Res. Lett., 16, 783–787.Google Scholar
Lyzeng, D. R. 1973. Note on the modified two-stream approximation of Sagan and Pollack. Icarus, 19, 240–243.Google Scholar
Manabe, S., and Strickle, R. F. 1964. Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21, 361–385.Google Scholar
Margulis, L., and Lovelock, J. E. 1989. Gaia and Geognosy. Pages 1–30 of: Global Ecology. Academic Press.
Maritorena, S., Siegel, D. A., and Peterson, A. 2002. Optimization of a semi-analytical ocean color model for global scale applications. Appl. Opt., 41(15), 2705–2714.Google Scholar
Masuda, Kazuhiko. 1998. Effects of the speed and direction of surface winds on the radiation in the atmosphere–ocean system. Remote Sensing of Environment, 64(1), 53–63.Google Scholar
McCartney, E. J. 1976. Optics of the Atmosphere: Scattering by Molecules and Particles. Wiley.
McCave, I. N. 1983. Particulate size spectra, behavior, and origin of nephloid layers over the Nova Scotia continental rise. J. Geophys. Res., 88, 7647–7660.Google Scholar
McClatchey, R. A., Fenn, W., Selb, J. E.A., Volz, F. E., and Garing, J. S. 1971. Optical Properties of the Atmosphere. AFCRL-71-0279, Air Force Cambridge Research Laboratories.
McKellar, A. F., and Box, M. A. 1981. Scaling group of the Radiative Transfer Equation. J. Atmos. Sci., 38, 1063–1068.Google Scholar
Meador, W. E., and Weaver, W. R. 1980. Two-stream approximations to radiative transfer in planetary atmospheres: a unified description. J. Atmos. Sci., 37, 630–643.Google Scholar
Meier, R. R. 1991. Ultraviolet spectroscopy and remote sensing of the upper atmosphere. Space Sci. Rev., 58, 1–185.Google Scholar
Meier, R. R., and Lee,, J.-S. 1981. Angle-dependent frequency redistribution: internal source case. Astrophys. J., 250, 376–383.Google Scholar
Menzel, D. H. 1966. Selected Papers on the Transfer of Radiation. Dover.
Mie, G. 1908. Beiträge zur Optik trüber Medien, Speziell Kolloidaler Metallösungen. Annalen der Physik, 25, 377–445.Google Scholar
Mihalas, D. 1978. Stellar Atmospheres. W. H. Freeman.
Mihalas, D. 1985. The computation of radiation transport using Feautrier variables, 1, Static Media. J. Comput. Phys., 57, 1–25.Google Scholar
Milne, E. A. 1930. Thermodynamics of the stars. Handbuch der Astrophysik, 3, Part I, Chapter 2, pp. 65–255. Springer.
Milne, E. A. 1966. Thermodynamics of the stars. Pages 77–269 of: Selected Papers on the Transfer of Radiation. Dover, edited by D. H., Menzel.
Min, Qilong, and Duan, Minzheng. 2004. A successive order of scattering model for solving vector radiative transfer in the atmosphere. J. Quant. Spectrosc. Radiat. Transf., 87(3), 243–259.Google Scholar
Minnaert, Marcel. 1995. Light and Color in the Outdoors, vol. 17. Springer Science & Business Media.
Minnaert, Marcel Gilles Jozef. 1954. The Nature of Light and Colour in the Open Air Translation. Dover, translated by H. M., Krener-Priest, revised edition edited by K. E., Brian Jay.
Minschwaner, K., Thomas, R. J., and Rusch, D.W. 1995a. Scattered ultraviolet radiation in the upper stratosphere 1: observations. J. Geophys. Res., 100, 11,157–11, 163.Google Scholar
Minschwaner, K., Anderson, G. P., Hall, L. A., Chetwynd, J. H., R. J., Thomas, D. W., Rusch, Berk, A., and Conant, J. A. 1995b. Scattered ultraviolet radiation in the upper stratosphere 2: models and measurements. J. Geophys. Res., 100, 11, 165–11, 171.Google Scholar
Mishchenko, Michael I., and Travis, Larry D. 1994. T-matrix computations of light scattering by large spheroidal particles. Optics Communications, 109(1–2), 16–21.Google Scholar
Mobley, C. D. 1994. Light and Water. Academic Press.
Mobley, C. D., Gentili, B., Gordon, H. R., Jin, Z., Kattawar, G.W., Morel, A., Reinersman, P., Stamnes, K., and Stavn, R. H. 1993. Comparison of numerical models for computing underwater light fields. Appl. Opt., 32, 7484–7504.Google Scholar
Mobley, C. P., Sundman, L. K., and Boss, E. 2002. Phase function effects on oceanic light fields. Appl. Opt., 41, 1035–1050.Google Scholar
Möller, F. 1972. Radiation in the atmosphere. Pages 43–71 of: Meteorological Challenges: A History. Information Canada, edited by D. P., McIntyre.
Morel, A. 1974. Optical properties of pure water and pure seawater. Pages 1–24 of: Optical Aspects of Oceanography. Academic Press, edited by N. G., Jerlov and E. S., Nielsen.
Morel, A., and Gentili, B. 1991. Diffuse reflectance of oceanic waters: its dependence on sun angle as influenced by the molecular scattering contribution. Appl. Opt., 30, 4427– 4437.Google Scholar
Morel, André, Antoine, David, and Gentili, Bernard. 2002. Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function. Appl. Opt., 41(30), 6289–6306.Google Scholar
Morse, P. M., and Feschbach, H. 1950. Methods of Theoretical Physics. Dover.
Myhre, Gunnar, Shindell, Drew, Bréon, François-Marie, Collins, William, Fuglestvedt, Jan, Huang, Jianping, Koch, Dorothy, Lamarque, Jean-François, Lee, David, Mendoza, Blanca, et al. 2013. Anthropogenic and natural radiative forcing. Climate Change, 423, 659–740.Google Scholar
Nakajima, T., and Tanaka, M. 1988. Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation. J. Quant. Spectrosc. Radiat. Transfer, 40, 51–69.Google Scholar
Nicolet, M. 1989. Solar spectral irradiances with their diversity between 120 nm and 900 nm. Planet. Space Sci., 37, 1249–1289.Google Scholar
Ottaviani, Matteo, Spurr, Robert, Stamnes, Knut, Li, Wei, Su, Wenying, and Wiscombe, Warren. 2008. Improving the description of sunglint for accurate prediction of remotely sensed radiances. J. Quant. Spectrosc. Radiat. Transf., 109(14), 2364–2375.Google Scholar
Ozisik, M. N. 1973. Radiative Transfer and Interactions with Conduction and Convection. Wiley-Interscience.
Page, Chester Hall, and Vigoureux, Paul. 1977. The International System of Units (SI). U.S. Department of Commerce, National Bureau of Standards.
Peixoto, J. P., and Oort, A. H. 1992. Physics of Climate. American Institute of Physics.
Pekeris, C. L. 1932. The Development and the Present Status of the Heat Balance of the Atmosphere. MIT Professional Note 5, Massachussuetts Institute of Technology.
Petzold, T. L. 1972. Volume Scattering Functions for Selected OceanWaters. Visibility Lab. Report, Scripps Inst. Oceanogr., 72–78.
Pickard, George L., and Emery, William J. 1990. Descriptive Physical Oceanography: an Introduction. Elsevier.
Planck, M. 1914. The Theory of Heat Radiation. P. Blakiston's Son & Co.
Planck, M. 1991. The Theory of Heat Radiation. Dover.
Plass, G. N., and Kattawar, G. W. 1968. Monte Carlo calculations of light scattering from clouds. Appl. Opt., 7, 415–419.Google Scholar
Plass, G. N., Kattawar, G.W., and Catchings, F. E. 1973. Matrix operator theory of radiative transfer, I, Rayleigh scattering. Appl. Opt., 12, 314–329.Google Scholar
Pollack, J. B., Toon, O. B., and Boese, R. 1980. Greenhouse models of Venus' high surface temperature as constrained by Pioneer Venus measurements. J. Geophys. Res., 85, 8223–8231.Google Scholar
Pope, Robin M., and Fry, Edward S. 1997. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt., 36(33), 8710–8723.Google Scholar
Preisendorfer, R. W. 1965. Radiative Transfer on Discrete Spaces. Pergamon.
Ramanathan, V. 1982. Commentary. Pages 278–283 of: Carbon Dioxide Review. Clarendon Press, edited by W. C., Clark.
Ramanathan, V., Cicerone, R. J., Singh, H. B., and Kiehl, J. T. 1985. Trace gas trends and their potential role in climate change. J. Geophys. Res., 90, 5547–5566.Google Scholar
Ramanathan, V., Cess, R. D., Harrison, E. F., Minnis, P., Barkstrom, B. R., Ahmad, E., and Hartmann, D. 1989. Radiative cloud forcing and climate: results from the Earth Radiation Budget Experiment. Science, 243, 57–63.Google Scholar
Rampino, M. R., and Self, S. 1993. Climate-volcanism feedback and the Toba eruption of ~ 74,000 years ago. Quaternary Res., 40, 269–280.Google Scholar
Raschke, E. 1980. Terminology and Units of Radiation Quantities and Measurements. Radiation Commission (IAMAP), Boulder, Colorado.
Rayleigh, L. 1920a. A re-examination of the light scattered by gases in respect of polarization. I. Experiments on the common gases. Proc. Roy. Soc., 98, 435–450.Google Scholar
Rayleigh, L. 1920b. A re-examination of the light scattered by gases in respect of polarization. II. Experiments on helium and argon. Proc. Roy. Soc., 98, 57–64.Google Scholar
Reif, F. 1965. Fundamentals of Statistical and Thermal Physics. McGraw-Hill.
Ricchiazzi, Paul, Yang, Shiren, Gautier, Catherine, and Sowle, David. 1998. SBDART: a research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere. Bull. Am. Meteor. Soc., 79(10), 2101–2114.Google Scholar
Rodgers, C. D. 2000. Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific.
Rothman, L. S., Goldman, A., Gillis, J. R., Gamache, R. R., Pickett, H. M., Poynter, R. L., Husson, N., and Chedin, A. 1983. AFGL trace gas compilation: 1982 version. Appl. Opt., 22(11), 1616–1627.Google Scholar
Rothman, Laurence S., Gamache, R. R., Tipping, R. H., Rinsland, C. P., Smit, M. A.H., Benner, D. Chris, Devi, V. Malathy, Flaud, J.-M., Camy-Peyret, C., Perrin, A., et al. 1992. The HITRAN molecular database: editions of 1991 and 1992. J. Quant. Spectrosc. Radiat. Transf., 48(5-6), 469–507.Google Scholar
Rothman, Laurence S., Gordon, Iouli E., Babikov, Yury, Barbe, Alain, Benner, D. Chris, Bernath, Peter F., Birk, Manfred, Bizzocchi, Luca, Boudon, Vincent, Brown, Linda R., et al. 2013. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf., 130, 4–50.Google Scholar
Rottman, G. J., Woods, T. N., and Sparn, T. P. 1993. Solar Stellar Irradiance Comparison Experiment I. Instrument design and operation. J. Geophys. Res., 98, 10,667–10,678.Google Scholar
Ruddick, K., Bouchra, N., and collaborators. 2013. Coastcoulor Round Robin – Final Report. ftp://ccrropen@ftp.coestcolour.org/\RoundRobin/CCRRreport.pdf with annex: ftp://ccrropen@ftp.coastcolour.org/RoundRobin/\CCRR_report_OCSMART.pdf.
Russell, J. M. III, Gordley, L. L., Park, J. H., Drayson, S. R., Hesketh, W. D., Cicerone, R. J., Tuck, A. F., Frederick, J. E., Harries, J. E., and Crutzen, P. J. 1993. The Halogen Occultation Experiment. J. Geophys. Res., 98, 10,777–10,797.Google Scholar
Rybicki, R. G., and Lightman, A. P. 1979. Radiative Processes in Astrophysics. Wiley.
Schuster, A. 1905. Radiation through a foggy atmosphere. Ap. J., 21, 1–22.Google Scholar
Schwarzschild, K. 1906. On the equilibrium of the Sun's Atmosphere. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Math.-phys. Klasse, 195, 41–53.Google Scholar
Scott, N. A., and Chedin, A. 1981. A fast line-by-line method for atmospheric absorption computations: the automated atmospheric absorption atlas. J. Appl. Meteorol., 20, 801–812.Google Scholar
Segelstein, D. J. 1981. The Complex Refractive Index of Water. M.S. Thesis – Department of Physics. University of Missouri–Kansas City.
Shaw, Joseph A., and Churnside, James H. 1997. Scanning-laser glint measurements of sea-surface slope statistics. Appl. Opt., 36(18), 4202–4213.Google Scholar
Shettle, E. P., and Weinman, J. A. 1970. The transfer of solar irradiance through inhomogeneous turbid atmospheres evaluated by Eddington's approximation. J. Atmos. Sci., 27, 1048–1055.Google Scholar
Shu, F. H. 1991. The Physics of Astrophysics, vol. 1. Radiation. University Science Books.
Siegel, R., and Howell, J. R. 1992. Thermal Radiation Heat Transfer, 3rd ed. Hemisphere.
Smith, R. C., and Baker, K. S. 1981. Optical properties of the clearest natural waters (200–800 nm). Appl. Optics, 36, 177–184.Google Scholar
Smith, R. C., and Baker, K. S. 1989. Stratospheric ozone, middle ultraviolet radiation and phytoplankton productivity. Oceanogr. Mag., 2, 4–11.Google Scholar
Smith, R. C., Prezelin, B. B., Baker, K. S., Bidigare, R. R., Boucher, N. P., Coley, T., Karentz, D., McIntyre, S., Matlick, H. A., Menzies, D., Ondrusek, M., Wan, Z., and Waters, K. J. 1992. Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science, 255, 952–959.Google Scholar
Sobolev, V. V. 1963. A Treatise on Radiative Transfer. D. Van Nostrand.
Sobolev, V. V. 1975. Light Scattering in Planetary Atmospheres (translation of Rasseianie sveta v atmosferakh planet, Moscow, IzdatelÕstvo Nauka, 1972). Pergamon Press (International Series of Monographs in Natural Philosophy, vol. 76), 263, 1.
Sogandares, Frank M., and Fry, Edward S. 1997. Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements. Appl. Opt., 36(33), 8699–8709.Google Scholar
Solomon, S. 1990. Progress towards a quantitative understanding of Antarctic ozone depletion. Nature, 347, 347–354.Google Scholar
Stamnes, K. 1982. Reflection and transmission by a vertically inhomogeneous planetary atmosphere. Planet. Space Sci., 30, 727–732.Google Scholar
Stamnes, K. 1986. The theory of multiple scattering in plane parallel atmospheres. Rev. Geophys., 71, 299–310.Google Scholar
Stamnes, K., and Conklin, P. 1984. A new multi-layer discrete ordinate approach to radiative transfer in vertically inhomogeneous atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 31, 273–282.Google Scholar
Stamnes, K., and Stamnes, J. J. 2015. Radiative Transfer in Coupled Environmental Systems. Wiley-VCH.
Stamnes, K., Tsay, S. C., Wiscombe, W. J., and Jayaweera, K. 1988a. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 2502–2509.Google Scholar
Stamnes, K., Pegau, S., and Frederick, J. 1990. Uncertainties in total ozone amounts inferred from zenith sky observations: implications for ozone trend analyses. J. Geophys. Res., 45, 16,523–16,528.Google Scholar
Stamnes, K., Slusser, J., and Bowen, M. 1991. Derivation of total ozone abundance and cloud effects from spectral irradiance measurements. Appl. Opt., 30, 4418–4426.Google Scholar
Stamnes, K., Jin, Z., Slusser, J., Booth, C. R., and Lucas, T. 1992. Several-fold enhancement of biologically effective ultraviolet radiation at McMurdo Station Antarctica during the 1990 ozone hole. Geophys. Res. Lett., 19, 1013–1016.Google Scholar
Stamnes, K., Tsay, S. C., Wiscombe, W. J., and Laszlo, I. 2000. DISORT, a General- Purpose Fortran Program for Discrete-Ordinate-Method Radiative Transfer in Scattering and Emitting Layered Media: Documentation of Methodology. NASA report, lllab.phy.stevens.edu/disort/.
Stamnes, K., Hamre, B., Stamnes, J. J., Ryzhikov, G., Birylina, M.,Mahoney, R., Hauss, B., and Sei, A. 2011. Modeling of radiation transport in coupled atmosphere–snow–ice– ocean systems. J. Quant. Spectrosc. Radiat. Transfer, 112, 714–726.Google Scholar
Stamnes, Knut, Tsay, Si-Chee, and Nakajima, Teruyuki. 1988b. Computation of eigenvalues and eigenvectors for the discrete ordinate and matrix operator methods in radiative transfer. J. Quant. Spectrosc. Radiat. Transf., 39(5), 415–419.Google Scholar
Steinmetz, Francois, Deschamps, Pierre-Yves, and Ramon, Didier. 2011. Atmospheric correction in presence of sun glint: application toMERIS. Opt. Express, 19(10), 9783– 9800.Google Scholar
Stephens, G. L. 1980. Radiative transfer on a linear lattice: application to anisotropic ice crystals clouds. J. Atmos. Sci., 37, 2095–2104.Google Scholar
Stephens, G. L. 1984. Parameterization of radiation for numerical weather prediction and climate models. Mon. Wea. Rev., 112, 826–867.Google Scholar
Stephens, G. L. 1990. On the relationship between water vapor over the oceans and sea surface temperature. J. Clim., 3, 634–645.Google Scholar
Stephens, G. L., and Greenwald, T. J. 1991. The Earth's radiation budget and its relation to atmospheric hydrology. 1. Observations of the clear sky greenhouse effect. J. Geophys. Res., 96, 15,311–15,324.Google Scholar
Stokes, G. 1862. On the intensity of the light reflected from or transmitted through a pile of plates. Proc. R. Soc. London, 11, 545–556.Google Scholar
Stone, J. M. 1963. Radiation and Optics, an Introduction to the Classical Theory. McGraw- Hill.
Strickland, D. J. 1979. The transport of the resonance radiation in a non-isothermal medium: the effect of a varying Doppler width. J. Geophys. Res., 84, 5890–5896.Google Scholar
Strickland, D. J., and Donahue, T. M. 1970. Excitation and radiative transport of OI 1304 A radiation, 1, The dayglow. Planet. Space Sci., 18, 661–689.Google Scholar
Sykes, J. B. 1951. Approximate integration of the equation of transfer. Monthly Notices of the Royal Astronomical Society, 111, 377–386.Google Scholar
Takano, Y., and Liou, K. N. 1995. Radiative transfer in cirrus clouds. Part III: Light scattering by irregular ice crystals. J. Atmos. Sci., 52(7), 818–837.Google Scholar
Tanaka, M., and Nakajima, T. 1986. Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere. J. Quant. Spectrosc. Radiat. Transfer, 28, 13–21.Google Scholar
Taylor, B. N., Parker, W. H., and Langenberg, D. N. 1969. Determination of e h, using macroscopic quantum phase coherence in superconductors: implications for quantum electrodynamics and the fundamental physical constants. Reviews of Modern Physics, 41(3), 375.Google Scholar
Tomasko, M. 1983. The thermal balance of the lower atmosphere of Venus. Pages 355–362 of: Venus. University of Arizona Press, edited by D. M., Hunten et al.
Toon, O. B., McKay, C. P., Ackerman, T. P., and Santhanam, K. 1989. Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res., 94, 16287–1630.Google Scholar
Trenberth, K., Fasullo, J., and Kiehl, J. 2009. Earth's global energy budget. Bull. Amer. Meteorol. Soc., 90, 311–323.Google Scholar
Tsay, S.-C., Stamnes, K., and Jayaweera, K. 1990. Longwave band model for thermal radiation in climate studies. J. Quant. Spectrosc. Radiat. Transfer, 43, 133–148.Google Scholar
Tsay, Si-Chee, and Stamnes, Knut. 1992. Ultraviolet radiation in the Arctic: the impact of potential ozone depletions and cloud effects. J. Geophys. Res., Atmos., 97(D8), 7829–7840.Google Scholar
Twomey, S., Jacobowitz, H., and Howell, J. 1966. Matrix methods for multiple scattering problems. J. Atmos. Sci., 23, 289–296.Google Scholar
Uchiyama, A. 1992. Line-by-line computation of the atmospheric absorption spectrum using the decomposed Voigt line shape. J. Quant. Spectrosc. Radiative Transfer, 47, 521–532.Google Scholar
UNESCO. 1985. The International System of Units (SI) in Oceanography, Report of the IAPSO Working Group on Symbols, Units and Nomenclature in Physical Oceanography, UNESCO Technical Papers in Marine Science. IAPSO Scientific Publication No. 32.
van de Hulst, H. C. 1957. Light Scattering by Small Particles. Wiley.
van de Hulst, H. C. 1980. Multiple Light Scattering: Tables, Formulas, and Applications. Academic Press.
van de Hulst, H. C. 1981. Light Scattering by Small Particles. Dover.
van de Hulst, H. C., and Grossman, K. 1968. Multiple light scattering in planetary atmospheres. Pages 35–55 of: The Atmospheres of Venus and Mars. Gordon and Breach, edited by J. C., Brandt and M. V., McElroy.
Veverka, J., Goguen, J., Yange, S., and Elliot, J. 1978. Scattering of light from particulate surfaces I. A laboratory assessment of multiple scattering effects. Icarus, 34, 406–414.Google Scholar
Voigt, S., Orphal, J., Bogumil, K., and Burrows, J. P. 2001. The temperature dependence (203–293 K) of the absorption cross sections of O 3 in the 230–850 nm region measured by Fourier-transform spectroscopy. Journal of Photochemistry and Photobiology A: Chemistry, 143(1), 1–9.Google Scholar
Walsh, Edward J., Vandemark, Douglas C., Friehe, Carl A., Burns, Sean P., Khelif, Djamal, Swift, Robert, N., and Scott, John F. 1998. Measuring sea surface mean square slope with a 36-GHz scanning radar altimeter. J. Geophys. Res., Oceans (1978–2012), 103(C6), 12587–12601.Google Scholar
Wang, Menghua. 2002. The Rayleigh lookup tables for the SeaWiFS data processing: accounting for the effects of ocean surface roughness. Int. J. Remote Sens., 23(13), 2693–2702.Google Scholar
Wang, Menghua, and Bailey, Sean W. 2001. Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products. Appl. Opt., 40(27), 47902–47908.Google Scholar
Warren, Stephen G., and Brandt, Richard E. 2008. Optical constants of ice from the ultraviolet to the microwave: a revised compilation. J. Geophys. Res., Atmos., 113(D14).Google Scholar
Waterman, P. C. 1981. Matrix-exponential description of radiative transfer. J. Opt. Soc. Am., 71, 410–422.Google Scholar
Wendisch, Manfred, and Yang, Ping. 2012. Theory of Atmospheric Radiative Transfer. John Wiley & Sons.
West, R., Crisp, D., and Chen, L. 1990. Mapping transformations for broadband atmospheric radiation calculations. J. Quant. Spectrosc. Radiat. Transfer, 43, 191–199.Google Scholar
Whittaker, E. T., and Watson, G. N. 1915. Modern Analysis. Cambridge University Press.
Wick, G. C. 1943. Über ebene Diffusionsprobleme. Zeit. f. Phys., 121, 702–718.Google Scholar
Wiscombe, W. J. 1977a. The Delta-Eddington Approximation for a Vertically Inhomogeneous Atmosphere. NCAR Tech. Note: NCAR/TN-121+STR. NCAR.
Wiscombe, W. J. 1977b. The delta-M method: rapid yet accurate radiative flux calculations for strongly asymmetric phase functions. J. Atm. Sci., 34, 1408–1422.Google Scholar
Wiscombe, W. J. 1980. Improved Mie scattering algorithms. Appl. Opt., 19, 1505–1509.Google Scholar
Wiscombe, W. J. 1983. Atmospheric radiation: 1975-1983. Rev. Geophys., 21, 997–1021.Google Scholar
Wiscombe, W. J., and Evans, J. W. 1977. Exponential-sum fitting of radiative transmission functions. J. Comput. Phys., 24(4), 416–444.Google Scholar
Wiscombe, W. J., and Grams, G. W. 1976. The backscattered fraction in two-stream approximations. J. Atmos. Sci., 33, 2440–2451.Google Scholar
Wiscombe, W. J., and Joseph, J. H. 1977. The range of validity of the Eddington approximation. Icarus, 32, 362–377.Google Scholar
Worrest, R. C. 1986. The effect of solar UV-B radiation on aquatic systems: an overview. Pages 175–191 of: Effects of Changes in Stratospheric Ozone and Global Climate, Overview. U.S. Environmental Protection Agency and United Nations Environmental Program, edited by J. G., Titus.
Wu, Jin. 1990. Mean square slopes of the wind-disturbed water surface, their magnitude, directionality, and composition. Radio Science, 25(1), 37–48.Google Scholar
Wu, Jin. 1991. Effects of atmospheric stability on ocean ripples: a comparison between optical and microwave measurements. J. Geophys. Res., Oceans (1978–2012), 96(C4), 7265–7269.Google Scholar
Xu, Feng, Davis, Anthony B., West, Robert A., and Esposito, Larry W. 2011a. Markov chain formalism for polarized light transfer in plane-parallel atmospheres, with numerical comparison to the Monte Carlo method. Opt. Express, 19(2), 946–967.Google Scholar
Xu, Feng, Davis, Anthony B., West, Robert A., Martonchik, John V., and Diner, David J. 2011b. Markov chain formalism for vector radiative transfer in a plane-parallel atmosphere overlying a polarizing surface. Opt. Lett., 36(11), 2083–2085.Google Scholar
Xu, Feng, West, Robert A., and Davis, Anthony B. 2013. A hybrid method for modeling polarized radiative transfer in a spherical-shell planetary atmosphere. J. Quant. Spectrosc. Radiat. Transf., 117, 59–70.Google Scholar
Yang, Ping, and Liou, K. N. 1996a. Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space. JOSA A, 13(10), 2072–2085.Google Scholar
Yang, Ping, and Liou, K. N. 1996b. Geometric-optics–integral-equation method for light scattering by nonspherical ice crystals. Appl. Opt., 35(33), 6568–6584.Google Scholar
Yang, Ping, Bi, Lei, Baum, Bryan A., Liou, Kuo-Nan, Kattawar, George W., Mishchenko, Michael I., and Cole, Benjamin. 2013. Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm. J. Atmos. Sci., 70(1), 330–347.Google Scholar
Yanovitskij, E. G. 1997. Light Scattering in Inhomogeneous Atmospheres. Springer.
Young, A. T. 1982. Rayleigh scattering. Physics Today, 35, 42–48.Google Scholar
Yurkin, Maxim A., and Hoekstra, Alfons G. 2011. The discrete-dipole-approximation code ADDA: capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transf., 112(13), 2234–2247.Google Scholar
Zahn, M. 1979. Electromagnetic Theory, A Problem Solving Approach. Wiley.
Zdunkovski, W., Trautmann, T., and Bott, A. 2007. Radiation in the Atmosphere. Cambridge University Press.
Zdunkowski, W. G., Welch, R. M., and Korb, G. 1980. An investigation of the structure of typical two-stream-methods for the calculation of solar fluxes and heating rates in clouds. Contrib. Atmos. Phys., 53, 147–166.Google Scholar
Zdunkowski, Wilford, Trautmann, Thomas, and Bott, Andreas. 2007. Radiation in the Atmosphere: a Course in Theoretical Meteorology. Cambridge University Press.
Zender, C. S., and Kiehl, J. T. 1994. Radiative sensitivities of tropical anvils to small ice crystals. J. Geophys. Res., 99, 25,869–25,880.Google Scholar
Zeng, J., McKenzie, R., Stamnes, K., Wineland, M., and Rosen, J. 1994. Measured UV spectra compared with discrete ordinate method simulations. J. Geophys. Res., 99, 23019–23030.Google Scholar
Zhai, Peng-Wang, Hu, Yongxiang, Trepte, Charles R., and Lucker, Patricia L. 2009. A vector radiative transfer model for coupled atmosphere and ocean systems based on successive order of scattering method. Optics Express, 17(4), 2057–2079.Google Scholar
Zhai, Peng-Wang, Hu, Yongxiang, Chowdhary, Jacek, Trepte, Charles R., Lucker, Patricia L., and Josset, Damien B. 2010. A vector radiative transfer model for coupled atmosphere and ocean systems with a rough interface. J. Quant. Spectrosc. Radiat. Transf., 111(7), 1025–1040.Google Scholar
Zhang, Hao, and Wang, Menghua. 2010. Evaluation of sun glint models using MODIS measurements. J. Quant. Spectrosc. Radiat. Transf., 111(3), 492–506.Google Scholar
Zhang, W., and Haigh, J. D. 1995. Improved broadband emissivity for water vapor cooling rate calculations. J. Atmos. Sci., 52, 124–138.Google Scholar
Zibordi, Giuseppe, Mélin, Frédéric, Berthon, Jean-François, Holben, Brent, Slutsker, Ilya, Giles, David, D'Alimonte, Davide, Vandemark, Doug, Feng, Hui, Schuster, Gregory, et al. 2009. AERONET-OC: a network for the validation of ocean color primary products. Journal of Atmospheric and Oceanic Technology, 26(8), 1634–1651.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Knut Stamnes, Stevens Institute of Technology, New Jersey, Gary E. Thomas, University of Colorado Boulder, Jakob J. Stamnes, Universitetet i Bergen, Norway
  • Book: Radiative Transfer in the Atmosphere and Ocean
  • Online publication: 13 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781316148549.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Knut Stamnes, Stevens Institute of Technology, New Jersey, Gary E. Thomas, University of Colorado Boulder, Jakob J. Stamnes, Universitetet i Bergen, Norway
  • Book: Radiative Transfer in the Atmosphere and Ocean
  • Online publication: 13 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781316148549.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Knut Stamnes, Stevens Institute of Technology, New Jersey, Gary E. Thomas, University of Colorado Boulder, Jakob J. Stamnes, Universitetet i Bergen, Norway
  • Book: Radiative Transfer in the Atmosphere and Ocean
  • Online publication: 13 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781316148549.015
Available formats
×