Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-26T01:14:12.559Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  04 August 2010

Alisa Bokulich
Affiliation:
Boston University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Reexamining the Quantum-Classical Relation
Beyond Reductionism and Pluralism
, pp. 177 - 190
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, S. (2003), Why decoherence has not solved the measurement problem: A response to P. W. Anderson, Studies in History and Philosophy of Modern Physics 34B: 135–42.CrossRefGoogle Scholar
Bacciagaluppi, G. (2004), The role of decoherence in quantum mechanics, in Zalta, E. N. (ed.) The Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/archives/sum2005/entries/qm-decoherence/.Google Scholar
Baker, A. (2005), Are there genuine mathematical explanations of physical phenomena?, Mind 114: 223–38.CrossRefGoogle Scholar
Ballentine, L. (1970), The statistical interpretation of quantum mechanics, Reviews of Modern Physics 42: 358–381. Reprinted in L. Ballentine (1988), Foundations of Quantum Mechanics since the Bell Inequalities, Selected Reprints. College Park: American Association of Physics Teachers, pp. 9–32.CrossRefGoogle Scholar
Ballentine, L. (2004), Quantum-to-classical limit in a Hamiltonian system, Physical Review A 70: 032111–1 to 032111–7.CrossRefGoogle Scholar
Ballentine, L., Yang, Y., and Zibin, J. P. (1994), Inadequacy of Ehrenfest's theorem to characterize the classical regime, Physical Review A: 50: 2854–9.CrossRefGoogle ScholarPubMed
Baranger, H., Jalabert, R., and Stone, D. (1993), Quantum-chaotic scattering effects in semiconductor microstructures, Chaos, 3: 665–82.CrossRefGoogle ScholarPubMed
Batterman, R. (1991), Chaos, quantization, and the correspondence principle, Synthese, 89: 189–227.CrossRefGoogle Scholar
Batterman, R. (1992), Explanatory instability, Noûs 26: 325–48.CrossRefGoogle Scholar
Batterman, R. (1993), Quantum chaos and semiclassical mechanics, PSA 1992, Proceedings of the Biennial Meeting of the Philosophy of Science Association, Vol. Two: Symposia and Invited Papers, 50–65.Google Scholar
Batterman, R. (1995), Theories between theories: asymptotic limiting intertheoretic relations, Synthese 103: 171–201.CrossRefGoogle Scholar
Batterman, R. (2002), The Devil in the Details: Asymptotic Reasoning in Explanation, Reduction and Emergence. Oxford: Oxford University Press.Google Scholar
Batterman, R. (2005), Response to Belot's “Whose devil? Which details?”, Philosophy of Science, 72: 154–63.CrossRefGoogle Scholar
Beller, M. (1996), The rhetoric of antirealism and the Copenhagen spirit, Philosophy of Science 63: 183–204.CrossRefGoogle Scholar
Beller, M. (1999), Quantum Dialogue: The Making of a Revolution. Chicago: University of Chicago Press.Google Scholar
Belot, G. (2000), Chaos and fundamentalism, Philosophy of Science 67 (Proceedings): S454–S465.CrossRefGoogle Scholar
Belot, G. (2005), Whose devil? Which details?, Philosophy of Science, 72: 128–53.CrossRefGoogle Scholar
Berry, M. V. (1977), Regular and irregular semiclassical wavefunctions, Journal of Physics A 10 (12): 2083–91.CrossRefGoogle Scholar
Berry, M. V. (1982), Semiclassical weak reflections above analytic and nonanalytic potential barriers, Journal of Physics A 15: 3693–704.CrossRefGoogle Scholar
Berry, M. V. (1983), Semiclassical mechanics of regular and irregular motion, in Iooss, G., Helleman, R. H. G., and Stora, R., (eds.), Les Houches Lecture Series Session XXXVI, Amsterdam: North-Holland, 171–271.Google Scholar
Berry, M. V. (1987), Quantum chaology (The Bakerian Lecture), Proceedings of the Royal Society A 413: 183–98.
Berry, M. V. (1988), Random renormalization in the semiclassical long-time limit of a precessing spin, Physica D 33: 26–33.CrossRefGoogle Scholar
Berry, M. V. (1989), Quantum chaology, not quantum chaos, Physica Scripta 40: 335–6.CrossRefGoogle Scholar
Berry, M. V. (1991), Some quantum-to-classical asymptotics, in Giannoni, M. J., Voros, A., and Zinn-Justin, J. (eds.) Chaos and Quantum Physics. Amsterdam: North-Holland, 250–303.Google Scholar
Berry, M. V. (1994), Asymptotics, singularities and the reduction of theories, in Prawitz, D., Skyrms, B., and Westerstahl, D. (eds.) Logic, Methodology and Philosophy of Science IX. Amsterdam: Elsevier.Google Scholar
Berry, M. V. (2001), Chaos and the semiclassical limit of quantum mechanics (Is the moon there when somebody looks?), in Russell, R. J., Clayton, P., Wegter-McNelly, K., and Polkinghorne, J. (eds.) Quantum Mechanics: Scientific Perspectives on Divine Action. Vatican Observatory: CTNS Publications.Google Scholar
Berry, M. V. (2002), Singular limits, Physics Today, 55(5): 10–11.CrossRefGoogle Scholar
Berry, M. V. and Mount, K. (1972), Semiclassical approximations in wave mechanics, Reports on Progress in Physics, 35: 315–97.CrossRefGoogle Scholar
Bohr, N. (1913), On the constitution of atoms and molecules, Philosophical Magazine 26: 1–25, 476–502, 857–75.Google Scholar
Bohr, N. (1918), The quantum theory of line-spectra, D. Kgl. Danske Vidensk. Selsk. Skrifter, naturvidensk. og mathem. Afd. 8. Reikke, IV.1, reprinted in Bohr (1976), pp. 67–102.
Bohr, N. (1920), On the series spectra of the elements, Lecture before the German Physical Society in Berlin (27 April 1920), translated by A. D. Udden, in Bohr (1976), 241–82.
Bohr, N. (1921a), Foreword to German translation of early papers on atomic structure, in Bohr (1976), 325–337; translation of “Geleitwort” in Stintzing, H. (ed.) Abhandlungen űber Atombau aus den Jahren 1913–1916, Braunschweig: F. Vieweg & Sohn (1921).Google Scholar
Bohr, N. (1921b), Constitution of atoms, in Bohr (1977), pp. 99–174.
Bohr, N. (1922), Seven lectures on the theory of atomic structure, in Bohr (1977), pp. 341–419.
Bohr, N. (1924), On the application of the quantum theory to atomic structure, Proceedings of the Cambridge Philosophical Society (suppl.). Cambridge: Cambridge University Press, pp. 1–42. Reprinted in Bohr (1976), pp. 457–99.Google Scholar
Bohr, N. (1925), Atomic theory and mechanics, Nature (suppl.) 116, 845–852. Reprinted in Bohr (1984), pp. 273–80.CrossRefGoogle Scholar
Bohr, N. (1928), The quantum postulate and the recent development of atomic theory, Nature (suppl.) 121: 580–590. Reprinted Bohr (1985), pp. 148–58.CrossRefGoogle Scholar
Bohr, N. ([1929] 1934) Introductory survey, in Atomic Theory and the Description of Nature, (Cambridge University Press, Cambridge, [1929] 1934), pp. 1–24. Reprinted in Bohr (1985), pp. 279–302.Google Scholar
Bohr, N. (1931), Maxwell and modern theoretical physics, Nature 128 (3234): 691–692. Reprinted in Bohr (1985), pp. 359–60.CrossRefGoogle Scholar
Bohr, N. (1935), Can quantum-mechanical description of physical reality be considered complete?, Physical Review 48: 696–702. Reprinted in Bohr (1996), pp. 292–8.CrossRefGoogle Scholar
Bohr, N. (1948), On the notions of causality and complementarity, Dialectica 2, 312–319. Reprinted in Bohr (1996), pp. 330–7.CrossRefGoogle Scholar
Bohr, N, (1949), Discussion with Einstein on epistemological problems in atomic physics, in Schilpp, P. A. (ed.) Albert Einstein: Philosopher-Scientist, The Library of Living Philosophers, Vol. VII. La Salle, IL: Open Court, pp. 201–41. Reprinted in Bohr (1996), pp. 341–81.Google Scholar
Bohr, N. (1958b), Quantum physics and philosophy: causality and complementarity, in Klibansky, R., (ed.) Philosophy in the Mid-Century: A Survey. Firenze: La Nuova Italia Editrice. Reprinted in Bohr (1996), pp. 388–94.Google Scholar
Bohr, N. (1976), Niels Bohr Collected Works, Vol. 3: The Correspondence Principle (1918–1923), Nielsen, J. R. (ed.). Amsterdam: North-Holland Publishing.Google Scholar
Bohr, N. (1977), Niels Bohr Collected Works, Vol. 4: The Periodic System (1920–1923), Nielsen, J. R. (ed.). Amsterdam: North-Holland Publishing.Google Scholar
Bohr, N. (1984), Niels Bohr Collected Works, Vol. 5: The Emergence of Quantum Mechanics (Mainly 1924–1926), Stolzenburg, K. (ed.). Amsterdam: North-Holland Publishing.Google Scholar
Bohr, N. (1985), Niels Bohr Collected Works, Vol. 6: Foundations of Quantum Physics I (1926–1932), Kalckar, J. (ed.). Amsterdam: North-Holland Publishing.Google Scholar
Bohr, N. (1996), Niels Bohr Collected Works, Vol. 7: Foundations of Quantum Physics II (1933–1958), Kalckar, J. (ed.). Amsterdam: North-Holland Publishing.Google Scholar
Bokulich, A. (2001) Philosophical perspectives on quantum chaos: Models and interpretations. Ph.D. Dissertation, University of Notre Dame.
Bokulich, A. (2004), Open or closed? Dirac, Heisenberg, and the relation between classical and quantum mechanics, Studies in History and Philosophy of Modern Physics 35: 377–96.CrossRefGoogle Scholar
Bokulich, A. (2006), Heisenberg meets Kuhn: Closed theories and paradigms, Philosophy of Science 73: 90–107.CrossRefGoogle Scholar
Bokulich, A. (2008), Can classical structures explain quantum phenomena?, British Journal for the Philosophy of Science 59 (2): 217–35.CrossRefGoogle Scholar
Bokulich, A. (2008), Paul Dirac and the Einstein-Bohr debate, Perspectives on Science 16(1): 103–14.CrossRefGoogle Scholar
Bokulich, P. and Bokulich, A. (2005), Niels Bohr's generalization of classical mechanics, Foundations of Physics 35: 347–71.CrossRefGoogle Scholar
Born, M. (1926), Problems of Atomic Dynamics. Cambridge, MA: MIT Press.Google Scholar
Born, M. and Heisenberg, W. ([1927] 1928), La mécanique des quanta, in Institut International Solvay, Physique (ed.) Électrons et Photons: Rapports et Discussions du Cinquième Conseil de Physique Tenu à Bruxelles du 24 au 29 Octobre 1927 sous les Auspices de l'Institut International de Physique Solvay. Paris: Gauthier-Villars, 143–84. Reprinted in Heisenberg (1984), 58–96.Google Scholar
Brillouin, L. (1926), La mécanique ondulatoire de Schrödinger; Une méthod général de résolution par approximations successives, Comptes Rendus de Séances de l'Academie des Sciences, 183: 24–6.Google Scholar
Bueno, O. (1997), Empirical adequacy: A partial structures approach, Studies in History and Philosophy of Science 28: 585–610.CrossRefGoogle Scholar
Bueno, O. (1999), What is structural empiricism? Scientific change in an empiricist setting, Erkenntnis 50: 59–85.CrossRefGoogle Scholar
Bueno, O. (2000), Empiricism, scientific change and mathematical change, Studies in History and Philosophy of Science 31: 269–96.CrossRefGoogle Scholar
Bueno, O., French, S., and Ladyman, J. (2002), On representing the relationship between the mathematical and the empirical, Philosophy of Science 69: 452–73.CrossRefGoogle Scholar
Cartwright, N. (1995), The metaphysics of the disunified world, in Hull, D., Forbes, M., and Burian, R. (eds.) PSA 1994, vol. 2. East Lansing, MI: Philosophy of Science Association, pp. 357–64.Google Scholar
Cartwright, N. (1999), The Dappled World: A Study of the Boundaries of Science. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Casati, G. and Chirikov, B. (1995), The legacy of chaos in quantum mechanics, in Casati, G. and Chirikov, B. (eds.) Quantum Chaos: Between Order and Disorder. Cambridge: Cambridge University Press, pp. 3–53.CrossRefGoogle Scholar
Cassidy, D. (1992), Uncertainty: The Life and Science of Werner Heisenberg. New York: Freeman Press.Google Scholar
Chevalley, C. (1988), Physical reality and closed theories in Werner Heisenberg's early papers, in Batens, D. and Bendegem, J. P. (eds.) Theory and Experiment: Recent Insights and New Perspectives on their Relation. Dordrecht, Reidel, 159–76.CrossRefGoogle Scholar
Clifton, R. (1998) Scientific explanation in quantum theory, Unpublished manuscript on PhilSci Archive: http://philsci-archive.pitt.edu/archive/00000091/.
Craver, C. (2006), When mechanistic models explain, Synthese 153: 355–76.CrossRefGoogle Scholar
Crowe, M. J. (1990), Theories of the World from Antiquity to the Copernican Revolution. New York: Dover.Google Scholar
Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G., Vattay, G., Whelan, N., and Wirzba, A. (2005), Chaos: Classical and Quantum. http://ChaosBook.org/version11 (Niels Bohr Institute, Copenhagen).
da Costa, N. and French, S. (2000), Models, theories, and structures: Thirty years on, Philosophy of Science 67: S116–S127.CrossRefGoogle Scholar
da Costa, N. and French, S. (2003), Science as Partial Truth: A Unitary Approach to Models and Scientific Reasoning. Oxford: Oxford University Press.CrossRefGoogle Scholar
Darrigol, O. (1992), From c-Numbers to q-Numbers: The Classical Analogy in the History of Quantum Theory. Berkeley: University of California Press.Google Scholar
Darrigol, O. (1997), Classical concepts in Bohr's atomic theory (1913–1925), Physis: Rivista Internazionale di Storia della Scienza 34: 545–67.Google Scholar
Delos, J. B., Knudson, S. K. and Noid, D. W. (1983), Highly excited states of a hydrogen atom in a strong magnetic field, Physical Review A 28: 7–21.CrossRefGoogle Scholar
Delos, J. B., and Du, M.-L. (1988), Correspondence principles: the relationship between classical trajectories and quantum spectra, IEEE Journal of Quantum Electronics 24: 1445–52.CrossRefGoogle Scholar
Dirac, P. A. M. (1925), The fundamental equations of quantum mechanics, Proceedings of the Royal Society of London, Series A, 109: 642–53.CrossRefGoogle Scholar
Dirac, P. A. M. (1926a), Quantum mechanics and preliminary investigation of the hydrogen atom, Proceedings of the Royal Society of London, Series A, 110: 561–79.CrossRefGoogle Scholar
Dirac, P. A. M. (1926b), The elimination of the nodes in quantum mechanics, Proceedings of the Royal Society of London, Series A, 110: 281–305.CrossRefGoogle Scholar
Dirac, P. A. M. (1932), Relativistic quantum mechanics, Proceedings of the Royal Society of London. Series A, 136: 453–64. Reprinted in Dirac (1995), pp. 621–34.CrossRefGoogle Scholar
Dirac, P. A. M. ([1933] 2005), The Lagrangian in quantum mechanics, Physikalische Zeitschrift der Sowjetunion, 3.1 (1933): 64–72. Reprinted in L. M. Brown (ed.) (2005), Feynman's Thesis: A New Approach to Quantum Theory. London: World Scientific, pp. 113–21.Google Scholar
Dirac, P. A. M. (1938), Classical theory of radiating electrons, Proceedings of the Royal Society of London, Series A, 167, 148–69.CrossRefGoogle Scholar
Dirac, P. A. M. (1939), The relation between mathematics and physics, Proceedings of the Royal Society (Edinburgh), 59: 122–9. Reprinted in Dirac (1995), pp. 905–14.CrossRefGoogle Scholar
Dirac, P. A. M. (1945), On the analogy between classical and quantum mechanics, Reviews of Modern Physics, 17, 195–99.CrossRefGoogle Scholar
Dirac, P. A. M. ([1948] 1995), “Quelques développements sur la théorie atomique” Conférence faites an Palais de la Découverte, 6 December 1945. Paris: Université de Paris, 1948. Translated and reprinted in Dirac (1995), 1246–67.Google Scholar
Dirac, P. A. M. (1951a), The relation of classical to quantum mechanics, Proceedings of the Second Mathematical Congress, Vancouver, 1949. Toronto: University of Toronto Press, pp. 10–31.Google Scholar
Dirac, P. A. M. (1951b), Is there an aether?, Nature, 168, 906–7.CrossRefGoogle Scholar
Dirac, P. A. M. (1952), Is there an aether?, Nature, 169, 702.CrossRefGoogle Scholar
Dirac, P. A. M. (1953), The Lorentz transformation and absolute time, Physica, 19, 888–96.CrossRefGoogle Scholar
Dirac, P. A. M. (1958), The Principles of Quantum Mechanics (4th edn.). Oxford: Clarendon Press.Google Scholar
Dirac, P. (1962, April 1st), Oral history interview of P.A.M. Dirac by Thomas Kuhn. Archive for the History of Quantum Physics, deposit at Harvard University, Cambridge, MA.
Dirac, P. A. M. (1963, May 14th), Oral history interview of P.A.M. Dirac by Thomas Kuhn. Archive for the History of Quantum Physics, deposit at Harvard University, Cambridge, MA.
Dirac, P. A. M. (1963), The evolution of the physicist's picture of nature, Scientific American, 208(5), 45–53.CrossRefGoogle Scholar
Dirac, P. A. M. (1970), Can equations of motion be used in high-energy physics?, Physics Today, April, 29–31.CrossRefGoogle Scholar
Dirac, P. A. M. (1971), The Development of Quantum Theory: J. Robert Oppenheimer Memorial Prize Acceptance Speech. New York: Gordon and Breach Science Publishers.Google Scholar
Dirac, P. A. M. (1974), Einstein and Bohr: The great controversy, Unpublished lecture. Paul A. M. Dirac Collection, Series 2, Box 29, Folder 4, Florida State University, Tallahassee, Florida, USA.
Dirac, P. A. M. (1977), Recollections of an exciting era, in Weiner, C. (ed.) History of Twentieth Century Physics, Proceedings of the International School of Physics “Enrico Fermi” 1972. New York: Academic Press, pp. 109–46.Google Scholar
Dirac, P. A. M. ([1979] 1982), The early years of relativity, in Holton, G. and Elkana, Y. (eds.) Albert Einstein: Historical and Cultural Perspectives, Jerusalem Einstein Centennial Symposium 14–23 March 1979 (pp. 79–90). Princeton, NJ: Princeton University Press.Google Scholar
Dirac, P. A. M. (1987), The inadequacies of quantum field theory, in Kursunoglu, B. and Wigner, E. (eds.) Reminiscences About a Great Physicist: P.A.M. Dirac. Cambridge: Cambridge University Press, pp. 194–8.Google Scholar
Dirac, P. A. M. (1995), The Collected Works of P. A. M. Dirac: 1924–1948, edited by Dalitz, R. H.. Cambridge: Cambridge University Press.Google Scholar
Du, M.-L., and Delos, J. B. (1988), Effect of closed classical orbits on quantum spectra: Ionization of atoms in a magnetic field. I. Physical picture and calculations, Physical Review A 38: 1896–912.CrossRefGoogle Scholar
Dupré, J. (1995), Against scientific imperialism, in Hull, D., Forbes, M., and Burian, R. (eds.), PSA 1994, vol. 2, East Lansing, MI: Philosophy of Science Association, 374–81.Google Scholar
Dupré, J. (1996a), The Disorder of Things: Metaphysical Foundations of the Disunity of Science. Cambridge, MA: Harvard University Press.Google Scholar
Dupré, J. (1996b), Metaphysical disorder and scientific disunity, in Galison, P. and Stump, D. (eds.), The Disunity of Science. Stanford: Stanford University Press, 101–17.Google Scholar
Einstein, A. (1917), Zum Quantensatz von Sommerfeld und Epstein, Verhandlungen der Deutschen Physikalischen Gesellschaft, 19: 82–92. Translated into English and reprinted in Einstein (1997), pp. 434–43.Google Scholar
Einstein, A. (1926), [Letter to Max Born on December 4, 1926]. Translated and reprinted in The Born-Einstein Letters: Correspondence between Albert Einstein and Max and Hedwig Born from 1916 to 1955 with Commentaries by Max Born. New York: Walker and Co., 90–1.Google Scholar
Einstein, A. ([1927] 1928), Comments in “Discussion générale des idées nouvelles émises”. Électrons et photons: rapports et discussions du cinquième conseil de physique, tenu à Bruxelles du 24 and 29 Octobre 1927, sous les auspices de l'Institut International de Physique Solvay. Paris: Gauthier-Villars et Cie. Reprinted in J. Kalckar (ed.), Niels Bohr Collected Works, Volume 6: Foundations of Quantum Physics I 1926–1932). Amsterdam: North-Holland, 1985, 101–3.Google Scholar
Einstein, A. ([1933] 1934), On the method of theoretical physics, The Herbert Spencer Lecture, Delivered at Oxford, June 10, 1933. Reproduced in Philosophy of Science 1: 163–9.CrossRefGoogle Scholar
Einstein, A. ([1949] 1970), Remarks to the essays appearing in this volume, in Schilpp, P. (ed), Albert Einstein: Philosopher-Scientist. La Salle: Open Court. pp. 663–88.
Einstein, A. (1997), The Collected Papers of Albert Einstein, vol. 6. Engel, A. (trans.), Princeton: Princeton University Press.Google Scholar
Elgin, M. and Sober, E. (2002), Cartwright on explanation and idealization, Erkenntnis 57: 441–50.CrossRefGoogle Scholar
Emerson, J. (2001), Chaos and quantum-classical correspondence for coupled spins, Ph.D. Dissertation, Simon Fraser University.
Epstein, P. (1916), Zur Quantentheorie, Annalen der Physik, 51: 168–88.CrossRefGoogle Scholar
Ezra, G. S. (1998), Classical-quantum correspondence and the analysis of highly excited states: Periodic orbits, rational tori, and beyond, in Hase, W. (ed.) Advances in Classical Trajectory Methods, Vol. 3. Greenwich, CT: JAI Press, pp. 35–72.Google Scholar
Ezra, G. S., Richter, K., Tanner, G., and Wintgen, D. (1991), Semiclassical cycle expansion for the helium atom, Journal of Physics B, 24: L413–L420.CrossRefGoogle Scholar
Faye, J. and Folse, H. (eds.) (1994), Niels Bohr and Contemporary Philosophy, Boston Studies in the Philosophy of Science, Vol. 153. Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
Fedak, W. A., and Prentis, J. J. (2002), Quantum jumps and classical harmonics, American Journal of Physics 70: 332–44.CrossRefGoogle Scholar
Feyerabend, P. (1962), Explanation, reduction, and empiricism, in Feigl, H. and Maxwell, G. (eds.) Minnesota Studies in the Philosophy of Science. Minneapolis: University of Minnesota Press, pp. 28–97.Google Scholar
Feyerabend, P. ([1965] 1983), Problems of empiricism, in Colodny, R. (ed.) Beyond the Edge of Certainty: Essays in Contemporary Science and Philosophy. Lanham, MD: University Press of America, pp. 145–260.Google Scholar
Feynman, R. (1948), Space-time approach to non-relativistic quantum mechanics, Reviews of Modern Physics 10: 367–87.CrossRefGoogle Scholar
Feynman, R. (1965), The development of the space-time view of quantum electrodynamics, Nobel Lecture. http://nobelprize.org/nobel_prizes/physics/laureates/1965/feynman-lecture.html
Fine, A. (1996), The Shaky Game: Einstein, Realism and The Quantum Theory, 2nd edition, Chicago: University of Chicago Press.CrossRefGoogle Scholar
Fodor, J. (1974), Special sciences (or: The disunity of science as a working hypothesis), Synthese 28: 97–115.CrossRefGoogle Scholar
Fodor, J. (1997), Special sciences: Still autonomous after all these years, Noûs 31, Supplement: Philosophical Perspectives, 11, Mind, Causation, and World, 149–63.CrossRefGoogle Scholar
Ford, J. and Mantica, G. (1992), Does quantum mechanics obey the correspondence principle? Is it complete?, American Journal of Physics 60: 1086–98.CrossRefGoogle Scholar
Frappier, M. (2004), Heisenberg's Notion of Interpretation. Ph.D. Dissertation. London, Ontario: The University of Western Ontario.
French, S. (1997), Partiality, pursuit and practice, in dalla Chiara, M. L., Doets, K., Mundici, D., and Benthem, J. (eds.) Logic and Scientific Methods, Volume One of the Tenth International Congress of Logic, Methodology and Philosophy of Science, Florence, August 1995. Dordrecht: Kluwer Academic, pp. 35–52.Google Scholar
French, S. (2000), The reasonable effectiveness of mathematics: Partial structures and the application of group theory to physics, Synthese 125: 103–20.CrossRefGoogle Scholar
French, S. and Ladyman, J. (1999), Reinflating the model-theoretic approach, International Studies in the Philosophy of Science 13: 99–117.CrossRefGoogle Scholar
French, S. and Ladyman, J. (2003), Remodelling structural realism: Quantum physics and the metaphysics of structure, Synthese 136: 31–56.CrossRefGoogle Scholar
Friedman, M. (1974), Explanation and scientific understanding, Journal of Philosophy 71: 5–19.CrossRefGoogle Scholar
Frisch, M. (2002), Non-locality in classical electrodynamics, British Journal for the Philosophy of Science 53: 1–19.CrossRefGoogle Scholar
Frisch, M. (2005), Inconsistency, Asymmetry, and Non-Locality: A Philosophical Investigation of Classical Electrodynamics. Oxford: Oxford University Press.CrossRefGoogle Scholar
Galison, P. (1997), Image and Logic: A Material Culture of Microphysics. Chicago: University of Chicago Press.Google Scholar
Garton, W. and Tomkins, F. (1969), Diamagnetic Zeeman effect and magnetic configuration mixing in long spectral series of Ba I, The Astrophysical Journal 158: 839–45.CrossRefGoogle Scholar
Granger, B. E. (2001), Quantum and Semiclassical Scattering Matrix Theory for Atomic Photoabsorption in External Fields, Ph.D. Thesis, University of Colorado.
Gutzwiller, M. (1971), Periodic orbits and classical quantization conditions, Journal of Mathematical Physics 12: 343–58.CrossRefGoogle Scholar
Gutzwiller, M. (1990), Chaos in Classical and Quantum Mechanics. New York: Springer-Verlag.CrossRefGoogle Scholar
Habib, S., Shizume, K., and Zurek, W. (1998), Decoherence, chaos, and the correspondence principle, Physical Review Letters 80: 4361–5.CrossRefGoogle Scholar
Haggerty, M. R., Spellmeyer, N., Kleppner, D., and Delos, J. B. (1998), Extracting classical trajectories from atomic spectra, Physical Review Letters 81: 1592–5.CrossRefGoogle Scholar
Hassoun, G. and Kobe, D. (1989), Synthesis of the Planck and Bohr formulations of the correspondence principle, American Journal of Physics 57(7): 658–62.CrossRefGoogle Scholar
Heisenberg, W. ([1925] 1967), Quantum-theoretical re-interpretation of kinematic and mechanical relations, in Waerden, B. (ed.) Sources of Quantum Mechanics. New York: Dover Publications, 261–276. Translation of “Über quantentheorische Umdeutung kinematischer und mechanischer Beziehungen”, Zeitschrift für Physik 33: 879–93.Google Scholar
Heisenberg, W. ([1927] 1983), The physical content of quantum kinematics and mechanics, translated and reprinted in Wheeler, J. A. and Zurek, W. H. (eds.) Quantum Theory and Measurement. Princeton, NJ: Princeton University Press, pp. 62–84.Google Scholar
Heisenberg, W. (1930), The Physical Principles of the Quantum Theory. Translated by Eckart, C. and Hoyt, F. C.. Chicago: University of Chicago Press.Google Scholar
Heisenberg, W. ([1934] 1979), Recent changes in the foundations of exact science, in Hayes, F. C. (trans.) Philosophical Problems of Quantum Physics. Woodbridge, CT: Ox Bow Press, pp. 11–26.Google Scholar
Heisenberg, W. ([1935] 1979), Questions of principle in modern physics, Lecture delivered at Vienna University on November 27, 1935. Published in Heisenberg, W., Philosophical Problems of Quantum Physics. Woodbridge, CT: Ox Bow Press, 41–52.Google Scholar
Heisenberg, W. ([1938] 1994), The universal length appearing in the theory of elementary particles, in Miller, A. I. (ed.) Early Quantum Electrodynamics: A Sourcebook. Cambridge, Cambridge University Press, pp. 244–53.Google Scholar
Heisenberg, W. ([1941a] 1979), The teachings of Goethe and Newton on colour in light of modern physics, in Philosophical Problems of Quantum Physics. Woodbridge, CT: Ox Bow Press, pp. 60–76.Google Scholar
Heisenberg, W. ([1941b] 1990), On the unity of the scientific outlook on nature, in Philosophical Problems of Quantum Physics. Woodbridge, CT: Ox Bow Press, pp. 77–94.Google Scholar
Heisenberg, W. ([1942] 1998), Ordnung der Wirklichkeit. Translated into French by Catherine Chevalley as Philosophie: Le Manuscrit de 1942. Paris: Éditions du Seuil.Google Scholar
Heisenberg, W. ([1948] 1974), The notion of a “closed theory” in modern science, in Heisenberg, W.Across The Frontiers. New York: Harper & Row, Publishers, 39–46. Originally published as “Der Begriff ‘Abgeschlossene Theorie’ in der Modernen Naturwissenschaft”, Dialectica2: 331–6.Google Scholar
Heisenberg, W. (1958a), Physics and Philosophy: The Revolution in Modern Science. New York: Harper & Row.Google Scholar
Heisenberg, W. ([1958b] 1974), Planck's discovery and the philosophical problems of atomic theory, in Across The Frontiers. New York: Harper & Row, pp. 8–29.Google Scholar
Heisenberg, W. (1961), Goethe's view of nature and the world, in Wachsmuth, A. B. (ed.) Goethe–New Series of the Goethe Society Yearbook, Vol. 29. Weimar: Hermann Bohlaus Nachfolger, pp. 27–42. Reprinted in Heisenberg ([1970] 1990), pp. 121–41.Google Scholar
Heisenberg, W. (1963, February 15th), Oral history interview of Werner Heisenberg by Thomas Kuhn. Archive for the History of Quantum Physics, deposit at Harvard University, Cambridge, MA.
Heisenberg, W. (1963, February 27th), Oral history interview of Werner Heisenberg by Thomas Kuhn. Archive for the History of Quantum Physics, deposit at Harvard University, Cambridge, MA.
Heisenberg, W. (1963, February 28th), Oral history interview of Werner Heisenberg by Thomas Kuhn. Archive for the History of Quantum Physics, deposit at Harvard University, Cambridge, MA.
Heisenberg, W. (1963, July 5th), Oral history interview of Werner Heisenberg by Thomas Kuhn. Archive for the History of Quantum Physics, deposit at Harvard University, Cambridge, MA.
Heisenberg, W. (1966), Die Rolle der phänomenologischen Theorien im System der theoretischen Physik, in De-Shalit, A., Feshbach, H., and Hove, L. (eds.) Preludes in Theoretical Physics: In Honor of V. F. Weisskopf. Amsterdam: North-Holland Publishing Co., pp. 166–169. Reprinted in Heisenberg (1984), 384–7.Google Scholar
Heisenberg, W. (1968), Theory, criticism and a philosophy, in From a Life Of Physics: Evening Lectures at the International Centre for Theoretical Physics, Trieste, Italy. Wien: IAEA, 31–46. Reprinted in Heisenberg (1984), 423–38.Google Scholar
Heisenberg, W. ([1969] 1990), Changes of thought pattern in the progress of science, in Heisenberg ([1970] 1990), pp. 154–65.
Heisenberg, W. ([1970] 1990), Across the Frontiers, translated from German by Heath, Peter. Woodbridge, CT: Ox Bow Press.Google Scholar
Heisenberg, W. (1971), Atomic physics and pragmatism (1929), in Physics and Beyond: Encounters and Conversations. New York: Harper & Row, pp. 93–102.Google Scholar
Heisenberg, W. ([1972] 1983), The correctness-criteria for closed theories in physics, in Heisenberg, W.Encounters with Einstein: And Other Essays on People, Places, and Particles. Princeton, NJ: Princeton University Press, pp. 123–9.Google Scholar
Heisenberg, W. ([1952] 1979), Philosophical Problems of Quantum Physics. Woodbridge, CT: Ox Bow Press.Google Scholar
Heisenberg, W. (1984), Gesammelte Werke/Collected Works, Volume C2, Blum, W., Durr, H.-P., and Rechenberg, H. (eds.). Munchen: Piper.Google Scholar
Heller, E. J. (1984), Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits, Physical Review Letters, 53: 1515–18.CrossRefGoogle Scholar
Heller, E. J. (1986), Qualitative properties of eigenfunctions of classically chaotic Hamiltonian systems in Seligman, T. H. and Nishioka, H. (eds.) Quantum Chaos and Statistical Nuclear Physics, New York: Springer-Verlag, pp. 162–81.CrossRefGoogle Scholar
Heller, E. and Tomsovic, S. (1993), Postmodern quantum mechanics, Physics Today, 46 (July): 38–46.CrossRefGoogle Scholar
Hempel, C. (1965), Aspects of Scientific Explanation and Other Essays in the Philosophy of Science. New York: Free Press.Google Scholar
Hesse, M. B. (1966), Models and Analogies in Science. Notre Dame, IN: University of Notre Dame Press.Google Scholar
Hitchcock, C. and Woodward, J. (2003), Explanatory generalizations, part II: Plumbing explanatory depth, Noûs 37: 181–99.CrossRefGoogle Scholar
Holle, A., Main, J., Wiebusch, G., Rottke, H., and Welge, K. H. (1988), Quasi-Landau spectrum of the chaotic diamagnetic hydrogen atom, Physical Review Letters 61: 161–4.CrossRefGoogle ScholarPubMed
Hooker, C. (2004), Asymptotics, reduction and emergence, British Journal for the Philosophy of Science, 55: 435–79.CrossRefGoogle Scholar
Howard, D. (1990). “Nicht sein kann was nicht sein darf,” or the prehistory of EPR, 1909–1935: Einstein's early worries about the quantum mechanics of composite systems. In Miller, A. I. (ed.) Sixty-Two Years of Uncertainty: Historical, Philosophical and Physical Inquiries into to the Foundations of Quantum Mechanics. New York: Plenum, pp. 61–111.CrossRefGoogle Scholar
Howard, D. (1994), What makes a classical concept classical? Towards a reconstruction of Niels Bohr's philosophy of physics, in Faye, J. and Folse, H. (eds.) Niels Bohr and Contemporary Philosophy, Boston Studies in the Philosophy of Science, Vol. 153. Dordrecht: Kluwer Academic, pp. 201–29.CrossRefGoogle Scholar
Howard, D. (2004), Who invented the Copenhagen Interpretation? A study in mythology, Philosophy of Science 71: 669–82.CrossRefGoogle Scholar
Hughes, R. I. G. (1989), Bell's Theorem, ideology, and structural explanation, Philosophical Consequences of Quantum Theory: Reflections on Bell's Theorem. Notre Dame, IN: University of Notre Dame Press, 195–207.Google Scholar
Hughes, R. I. G. (1993), Theoretical explanation, Midwest Studies in Philosophy Vol. XVIII: 132–53.CrossRefGoogle Scholar
Hylleraas, E. (1963), Reminiscences from early quantum mechanics of two-electron atoms, Reviews of Modern Physics, 35 (3): 421–31.CrossRefGoogle Scholar
Jalabert, R. (2000), The semiclassical tool in mesoscopic physics, in Casati, G., Guarneri, I., and Smilansky, U. (eds.) New Directions in Quantum Chaos, Proceedings of the International School of Physics ‘Enrico Fermi’, Course CXLIII. Amsterdam: IOS Press, 145–222.Google Scholar
Jammer, M. (1966), The Conceptual Development of Quantum Mechanics. New York: McGraw Hill Book Co.Google Scholar
Jammer, M. (1974), The Philosophy of Quantum Mechanics. New York: Wiley.Google Scholar
Jensen, R. V. (1992), Quantum chaos, Nature, 355: 311–18.CrossRefGoogle Scholar
Kaplan, L. (1999), Scars in quantum chaotic wavefunctions, Nonlinearity 12: R1–R40.CrossRefGoogle Scholar
Keller, J. (1958), Corrected Bohr-Sommerfeld quantum conditions for nonseperable systems, Annals of Physics, 4: 180–8.CrossRefGoogle Scholar
Keller, J. (1985), Semiclassical mechanics, SIAM Review, 27 (4): 485–504.CrossRefGoogle Scholar
Kellert, S., Longino, H. and Waters, C. K. (eds.) (2006), Scientific Pluralism, Minnesota Studies in the Philosophy of Science, XIX. Minneapolis: University of Minnesota Press.Google Scholar
Kemeny, J. and Oppenheim, P.. (1956), On reduction, Philosophical Studies 7: 6–19.CrossRefGoogle Scholar
Kitcher, P. (1984), 1953 and all that. A tale of two sciences, The Philosophical Review, 93: 335–73.CrossRefGoogle ScholarPubMed
Klavetter, J. (1989a), Rotation of Hyperion. I–Observations, Astronomical Journal 97: 570–9.CrossRefGoogle Scholar
Klavetter, J. (1989b), Rotation of Hyperion. II–Dynamics, Astronomical Journal 98: 1855–74.CrossRefGoogle Scholar
Kleppner, D. (1991), Quantum chaos and the bow-stern enigma, Physics Today, August: 10–11.Google Scholar
Kleppner, D. and Delos, J. B. (2001), Beyond quantum mechanics: insights from the work of Martin Gutzwiller, Foundations of Physics 31: 593–612.CrossRefGoogle Scholar
Koopman, B. O. (1931), Hamiltonian systems and transformations in Hilbert space, Proceedings of the National Academy of Sciences 18: 315–18.CrossRefGoogle Scholar
Kragh, H. (1990). Dirac: A Scientific Biography. Cambridge: Cambridge University Press.Google Scholar
Kramers, H. (1926), Wellenmechanik und halbzahlige Quantisierung, Zeitschrift fur Physik, 39: 828–40.CrossRefGoogle Scholar
Kuhn, T. ([1962] 1996), The Structure of Scientific Revolutions, 3rd edn. Chicago: University of Chicago Press.Google Scholar
Kuhn, T. (1963, February 27th), Oral history interview of Werner Heisenberg by Thomas Kuhn. Archive for the History of Quantum Physics, deposit at Harvard University, Cambridge, MA.
Kuhn, T. (1963, February 28th), Oral history interview of Werner Heisenberg by Thomas Kuhn. Archive for the History of Quantum Physics, deposit at Harvard University, Cambridge, MA.
Ladyman, J. (1998), What is structural realism?, Studies in History and Philosophy of Science 29: 409–24.CrossRefGoogle Scholar
Lakatos, I. (1970), Falsification and the Methodology of scientific Research Programmes, in Lakatos, I. and Musgrave, A. (eds.) Criticism and the Growth of Knowledge. Cambridge: Cambridge University Press, 91–196.CrossRefGoogle Scholar
Landau, L. D. and Lifshitz, E. M. (1981), Mechanics, 3rd edn. Oxford: Butterworth-Heinemann.Google Scholar
Landsman, N. P. (2007), Between classical and quantum, in Butterfield, J. and Earman, J. (eds.) Philosophy of Physics. Amsterdam: Elsevier/North-Holland, 417–554.CrossRefGoogle Scholar
Laudan, L. (1981), A confutation of convergent realism, Philosophy of Science 48: 19–49.CrossRefGoogle Scholar
Leopold, J. and Percival, I. (1980), The semiclassical two-electron atom and the old quantum theory, Journal of Physics B: Atomic and Molecular Physics, 13: 1037–47.CrossRefGoogle Scholar
Liboff, R. (1984), The correspondence principle revisited, Physics Today 37: 50–5.CrossRefGoogle Scholar
Lu, K. T., Tomkins, F. S., and Garton, W. R. S. (1978), Configuration interaction effect on diamagnetic phenomena in atoms: strong mixing and Landau regions, Proceedings of the Royal Society of London A, 362: 421–4.CrossRefGoogle Scholar
Main, J., Weibusch, G., Holle, A., and Welge, K. H. (1986), New quasi-Landau structure of highly excited atoms: the hydrogen atom, Physical Review Letters, 57: 2789–92.CrossRefGoogle ScholarPubMed
Massimi, M. (2005), Pauli's Exclusion Principle: The Origin and Validation of a Scientific Principle. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Matzkin, A. (2006), Can Bohmian trajectories account for quantum recurrences having classical periodicities?, arXiv.org, preprint quant-ph/0607095.
McAllister, J. (1996), Beauty and Revolution in Science. Ithaca, NY: Cornell University Press.Google Scholar
McMullin, E. (1978), Structural explanation, American Philosophical Quarterly 15: 139–47.Google Scholar
McMullin, E. (1984), A case for scientific realism, in Leplin, Jarrett (ed.) Scientific Realism. Berkeley, CA: University of California Press, pp. 8–40.Google Scholar
McMullin, E. (1985), Galilean idealization, Studies in History and Philosophy of Science 16: 247–73.CrossRefGoogle Scholar
Mehra, J. and Rechenberg, H. (1982), The Historical Development of Quantum Theory: Volume I: The Quantum Theory of Planck, Einstein, Bohr and Sommerfeld: Its Foundation and the Rise of Its Difficulties 1900–1925, & Volume II: The Discovery of Quantum Mechanics 1925. New York: Springer-Verlag.Google Scholar
Meredith, D. (1992), Semiclassical wavefunctions of nonintegrable systems and localization on periodic orbits, Journal of Statistical Physics 68 (1/2): 97–130.CrossRefGoogle Scholar
Messiah, A. (1965), Quantum Mechanics, vols. I and II. Temmer, G. M. (trans.). Amsterdam: North-Holland Publishing.Google Scholar
Mitchell, S. (2003), Biological Complexity and Integrative Pluralism. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Morrison, M. (1999), Models as autonomous agents, in Morgan, M. and Morrison, M. (eds.), Models as Mediators: Perspectives on Natural and Social Science. Cambridge: Cambridge University Press: 38–65.CrossRefGoogle Scholar
Nagel, E. ([1961] 1979), The Structure of Science: Problems in the Logic of Scientific Explanation. Indianapolis: Hackett Publishing.Google Scholar
Narimanov, E. E., Cerruti, N. R., Baranger, H. U., and Tomsovic, S. (1999), Chaos in quantum dots: Dynamical modulation of Coulomb blockade peak heights, Physical Review Letters, 83: 2540–643.CrossRefGoogle Scholar
Narimanov, E. E., Baranger, H. U., Cerruti, N. R., and Tomsovic, S. (2001), Semiclassical theory of Coulomb blockade peak heights in chaotic quantum dots, Physical Review B, 64: 235329–1 to 235329–13.CrossRefGoogle Scholar
Nielsen, J. R. (1976), Introduction to Niels Bohr Collected Works, Vol. 3, in Bohr (1976), pp. 3–46.
Nickles, T. (1973), Two concepts of intertheoretic reduction, The Journal of Philosophy 70: 181–201.CrossRefGoogle Scholar
O'Connor, P., Gehlen, J., and Heller, E. (1987), Properties of random superpositions of plane waves, Physical Review Letters, 58: 1296–9.CrossRefGoogle ScholarPubMed
Oppenheim, P. and Putnam, H. (1958), Unity of science as a working hypothesis, in Feigl, H., Maxwell, G., and Scriven, M. (eds.) Minnesota Studies in the Philosophy of Science, Vol 2. Minneapolis: University of Minnesota Press.Google Scholar
Park, H-K., and Kim, S. W. (2003), Decoherence from chaotic internal dynamics in two coupled δ-function-kicked rotors, Physical Review A 67: 060102–1 to 060102–4.CrossRefGoogle Scholar
Parker, W. S. (forthcoming), Does matter really matter? Computer simulations, experiments, and materiality, Synthese.
Pauli, W. (1926), Quantentheorie, in Geiger, H. and Scheel, K. (eds.), Handbuch der Physik, 23: 1–278.Google Scholar
Peres, A. (1995), Quantum Theory: Concepts and Methods. Dordrecht: Kluwer Academic.Google Scholar
Planck, M. (1906), Vorlesungen uber die Theorie der Warmestrahlung. Leipzig: Johann Ambrosious Barth.Google Scholar
Planck, M. (1913), Vorlesungen uber die Theorie der Warmestrahlung, 2nd edition. Leipzig: Johann Ambrosious Barth.Google Scholar
Planck, M. (1959), Theory of Heat Radiation. Translation of Planck (1913). New York: Dover.Google Scholar
Popper, K. ([1963] 1989), Conjectures and Refutations: The Growth of Scientific Knowledge. London: Routledge.Google Scholar
Post, H. R. (1971), Correspondence, invariance and heuristics: In praise of conservative induction, Studies in the History and Philosophy of Science 2: 213–55.CrossRefGoogle Scholar
Putnam, H. (1975), Mathematics, Matter and Method. Philosophical Papers, vol. 1. Cambridge: Cambridge University Press.Google Scholar
Radder, H. (1991), Heuristics and the generalized correspondence principle, British Journal for the Philosophy of Science 42: 195–226.CrossRefGoogle Scholar
Railton, P. (1980), Explaining Explanation: A Realist Account of Scientific Explanation and Understanding. Ph.D. Dissertation, Princeton University.
Redhead, M. (2001a), The intelligibility of the universe, in O'Hear, A. (ed.) Philosophy at the New Millennium. Cambridge: Cambridge University Press, pp. 73–90.Google Scholar
Redhead, M. (2001b), Quests of a realist: Review of Stathis Psillos, Scientific Realism, Metascience 10: 341–7.CrossRefGoogle Scholar
Redhead, M. (2004), Discussion note: Asymptotic reasoning, Studies in History and Philosophy of Modern Physics 35: 527–30.CrossRefGoogle Scholar
Richter, K. (2000), Semiclassical Theory of Mesoscopic Quantum Systems. New York: Springer-Verlag.Google Scholar
Robnik, M. (1981), Hydrogen atom in a strong magnetic field: On the existence of the third integral of motion, Journal of Physics A 14: 3195–216.CrossRefGoogle Scholar
Rosenfeld, L. ([1973] 1979), The wave-particle dilemma, in Cohen, R. and Stachel, J. (eds.) Selected Papers of Léon Rosenfeld. Boston Studies in the Philosophy of Science 21. Dordrecht: D. Reidel Publishing Co., 688–703. Originally published in J. Mehra (ed.) The Physicist's Conception of Nature. Dordrecht: D. Reidel Publishing Co., 251–63.Google Scholar
Salmon, W. (1984), Scientific Explanation and the Causal Structure of the World. Princeton: Princeton University Press.Google Scholar
Salmon, W. (1989), Four decades of scientific explanation, in Kitcher, P. and Salmon, W. (eds.) Scientific Explanation: Minnesota Studies in the Philosophy of Science13.Google Scholar
Sánchez-Ron, J. (1983). Quantum vs. classical physics: Some historical considerations on the role played by the “principle of correspondence” in the development of classical physics, Fundamenta Scientia 4: 77–86.Google Scholar
Sarkar, S. (1992), Models of reduction and categories of reductionism, Synthese 91: 167–94.CrossRefGoogle Scholar
Saunders, S. (1993), To what physics corresponds, in French, S. and Kaminga, H., (eds.) Correspondence, Invariance, and Heuristics; Essays in Honour of Heinz Post. Dordrecht: Kluwer Academic, pp. 295–326.Google Scholar
Scerri, E. (1994), Has chemistry at least approximately been reduced to quantum mechanics?, PSA Proceedings of the Biennial Meeting of the Philosophy of Science Association 1994, Vol. 1: Contributed Papers, 160–70.CrossRefGoogle Scholar
Schaffner, K. (1967), Approaches to reduction, Philosophy of Science 34: 137–47.CrossRefGoogle Scholar
Scheibe, E. (1988), The physicists' conception of progress, Studies in History and Philosophy of Science 19: 141–59. Reprinted in Scheibe (2001), 90–107.CrossRefGoogle Scholar
Scheibe, E. (1993), Heisenberg's concept of a closed theory. In Scheibe (2001), 136–41.
Scheibe, E. (2001). Between Rationalism and Empiricism: Selected Papers in the Philosophy of Physics. Edited by Falkenburg, B.. New York: Springer Verlag.CrossRefGoogle Scholar
Schlosshauer, M. (2006), Comment on “Quantum mechanics of Hyperion”, Preprint quant-ph/0605249.
Schulman, L. S. (2005), Techniques and Applications of Path Integration. New York: Dover.Google Scholar
Schwarzschild, K. (1916), Zur Quantenhypothese, Berliner Berichte 1916: 548–68.Google Scholar
Schweber, S. S. (1994), QED and the Men Who Made It. Princeton: Princeton University Press.Google Scholar
Sklar, L. (1999), The reduction(?) of thermodynamics to statistical mechanics, Philosophical Studies: 95: 187–202.CrossRefGoogle Scholar
Sommerfeld, A. (1916), Zur Quantentheorie der Spektrallinien, Annalen der Physik, 51: 1–94; 125–67.CrossRefGoogle Scholar
Sommerfeld, A. ([1919] 1923), Atomic Structure and Spectral Lines. Translated by Brose, H.. London: Methuen.Google Scholar
Sommerfeld, A. (1920), Letter to Niels Bohr, November 1920. In Bohr (1976) p. 690.
Suppe, F. (1989), The Semantic Conception of Theories and Scientific Realism. Urbana: University of Illinois Press.Google Scholar
Sridhar, S. (1991), Experimental observation of scarred eigenfunctions of chaotic microwave cavities, Physical Review Letters 67: 785–8.CrossRefGoogle ScholarPubMed
Stone, A. D. (2005), Einstein's unknown insight and the problem of quantizing chaos, Physics Today, August: 1–7.Google Scholar
Stoppard, T. (1988), Hapgood. Boston: Faber and Faber.Google Scholar
Styer, D., Balkin, M., Becker, K., et al. (2002), Nine formulations of quantum mechanics, American Journal of Physics 70(3): 289–97.CrossRefGoogle Scholar
Tabor, M. (1989), Chaos and Integrability in Nonlinear Dynamics: An Introduction. New York: Wiley Interscience.Google Scholar
Tanner, G., Richter, K., and Rost, J.-M. (2000), The theory of two-electron atoms: Between ground state and complete fragmentation, Reviews of Modern Physics 72: 497–544.CrossRefGoogle Scholar
Tanona, S. (2002), From correspondence to complementarity: The emergence of Bohr's Copenhagen interpretation of quantum mechanics, Ph.D. Dissertation, Indiana University.
Tanona, S. (2004), Uncertainty in Bohr's response to the Heisenberg microscope, Studies in History and Philosophy of Modern Physics 35: 483–507.CrossRefGoogle Scholar
Thomson-Jones, M. (2006), Models and the semantic view, Philosophy of Science 73: 524–35.CrossRefGoogle Scholar
Trout, J. D. (2002), Scientific explanation and the sense of understanding, Philosophy of Science 69: 212–33.CrossRefGoogle Scholar
Uzer, T., Farrelly, D., Milligan, J. A., Raines, P. E., and Skelton, J. P. (1991), “Celestial mechanics on a microscopic scale”, Science, 253: 42–8.CrossRefGoogle ScholarPubMed
Waerden, B. (ed.) (1967), Sources of Quantum Mechanics. New York: Dover Publications.Google Scholar
Fraassen, B. (1980), The Scientific Image. Oxford: Oxford University Press.CrossRefGoogle Scholar
Fraassen, B. (1997), Structure and perspective: Philosophical perplexity and paradox, in dalla Chiara, M. L., Doets, K., Mundici, D., and Benthem, J. (eds.) Logic and Scientific Methods, Volume One of the Tenth International Congress of Logic, Methodology and Philosophy of Science, Florence, August 1995. Dordrecht: Kluwer Academic.Google Scholar
Fraassen, B. (2006), Structure: Its shadow and substance, British Journal for the Philosophy of Science 57: 275–307.CrossRefGoogle Scholar
Vleck, J. (1922), The dilemma of the helium atom, Physical Review 19: 419–20.CrossRefGoogle Scholar
Baeyer, H. C. (1995), The philosopher's atom, Discover 16 (11).Google Scholar
Weinberg, S. (1992), Dreams of a Final Theory: The Scientist's Search for the Ultimate Laws of Nature. London: Trafalgar Square Publishing.Google Scholar
Weinert, F. (1994), The correspondence principle and the closure of theories, Erkenntnis 40: 303–23.CrossRefGoogle Scholar
Welch, G. R., Kash, M. M., Iu, C., Hsu, L., and Kleppner, D. (1989), Positive-energy structure of the diamagnetic Rydberg spectrum, Physical Review Letters 62: 1975–8.CrossRefGoogle ScholarPubMed
Wentzel, G. (1926). Eine Verallgemeinerung der Quantenbedingung fur die Zwecke der Wellenmechanik, Zeitschrift fur Physik 38: 518–29.CrossRefGoogle Scholar
Wiebe, N. and Ballentine, L. E. (2005), Quantum mechanics of Hyperion, Physical Review A 72: 022109–1 to 022109–15.CrossRefGoogle Scholar
Wigner, E. P. (1932), On the quantum correction for thermodynamic equilibrium, Physical Review 40: 749–59.CrossRefGoogle Scholar
Wigner, E. P. (1960), The unreasonable effectiveness of mathematics in the natural sciences, Communications in Pure and Applied Mathematics 13: 1–14.CrossRefGoogle Scholar
Wimsatt, W. W. (1987), False models as means to truer theories, in Nitecki, M. and Hoffman, A. (eds.) Neutral Models in Biology. Oxford: Oxford University Press.Google Scholar
Wintgen, D., Richter, K., and Tanner, G. (1992), The semiclassical helium atom, Chaos, 2: 19–33.CrossRefGoogle ScholarPubMed
Wise, M. N. and Brock, D. C. (1998), The culture of quantum chaos, Studies in History and Philosophy of Modern Physics 29: 369–89.CrossRefGoogle Scholar
Wisdom, J., Peale, S., Mignard, F. (1984), The chaotic rotation of Hyperion, Icarus 58: 137–52.CrossRefGoogle Scholar
Woodward, J. (2003), Making Things Happen: A Theory of Causal Explanation. Oxford: Oxford University Press.Google Scholar
Woodward, J. and Hitchcock, C. (2003), Explanatory generalizations, part I: A counterfactual account, Noûs 37: 1–24.CrossRefGoogle Scholar
Worrall, J. (1989), Structural realism: The best of both worlds?, Dialectica 43: 99–124.CrossRefGoogle Scholar
Young, L. and Uhlenbeck, G. (1930), On the Wentzel-Brillouin-Kramers approximate solution of the wave equation, Physical Review 36: 1154–67.CrossRefGoogle Scholar
Zurek, W. (1991), Decoherence and the transition from quantum to classical, Physics Today 44: 36–44.CrossRefGoogle Scholar
Zurek, W. (1998), Decoherence, chaos, quantum-classical correspondence, and the algorithmic arrow of time, Physica Scripta T76: 186–98.CrossRefGoogle Scholar
Zurek, W. (2003), Decoherence, einselection, and the quantum origins of the classical, Reviews of Modern Physics 75: 715–75.CrossRefGoogle Scholar
Zurek, W. and Paz, J. P. (1997), Why we don't need quantum planetary dynamics: Decoherence and the correspondence principle for chaotic systems, in Hu, B. L. and Feng, D. H. (eds.) Quantum Classical Correspondence: Proceedings of the 4th Drexel Symposium on Quantum Nonintegrability, Drexel University, September 8–11, 1994. Cambridge, MA: International Press, pp. 367–79.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Alisa Bokulich, Boston University
  • Book: Reexamining the Quantum-Classical Relation
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511751813.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Alisa Bokulich, Boston University
  • Book: Reexamining the Quantum-Classical Relation
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511751813.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Alisa Bokulich, Boston University
  • Book: Reexamining the Quantum-Classical Relation
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511751813.009
Available formats
×