Skip to main content Accessibility help
×
Hostname: page-component-68945f75b7-76l5x Total loading time: 0 Render date: 2024-08-05T12:27:37.036Z Has data issue: false hasContentIssue false

13 - Application of nuclear transfer technology to wildlife species

Published online by Cambridge University Press:  21 January 2010

J. K. Critser
Affiliation:
Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri–Columbia, 201 Connaway Hall, Columbia, MO 65211–5120, U.S.A.
L. K. Riley
Affiliation:
Research Animal Diagnostic & Investigative Laboratory, Department Pathobiology, University of Missouri, Columbia, MO 65211, U.S.A.
R. S. Prather
Affiliation:
Department of Animal Science, University of Missouri, Columbia, MO 65211, U.S.A.
William V. Holt
Affiliation:
Zoological Society of London
Amanda R. Pickard
Affiliation:
Zoological Society of London
John C. Rodger
Affiliation:
Marsupial CRC, New South Wales
David E. Wildt
Affiliation:
Smithsonian National Zoological Park, Washington DC
Get access

Summary

INTRODUCTION AND OBJECTIVES

Nuclear transfer (i.e. cloning) is the process whereby the nuclear DNA of a single donor cell is transferred to an enucleated oocyte that, in turn, is activated to produce an embryo which is genetically identical to the original donor cell. Advances in cell and reproductive biology have made the practical application of nuclear transfer theoretically feasible for propagating rare animal species (Campbell et al., 1996; Wilmut et al., 1997; Wakayama et al., 1998, 2000; Wakayama & Yanagimachi, 1999a, b; Colman, 2000; Lanza et al., 2000a). Following successful nuclear transfer in the sheep and the mouse to produce surviving young, a calf from a wild cattle species (Bos gaurus) has been produced using nuclear transfer and interspecies embryo transfer (Lanza et al., 2000c). Although it is premature to declare whether nuclear transfer has practical application to wildlife species management or conservation, general interest in this technology is intense, thereby warranting serious and thoughtful consideration. This chapter offers an evaluation of nuclear transfer, distinguishing between what is technically possible, realistic and ethical.

State of the art

Technological realities of using nuclear transfer

There is an array of factors limiting the technical feasibility of using nuclear transfer as a routine method of propagating animals, domestic or wild.

Reprogramming the nucleus

Most cells in an animal are genetically identical. Theoretically, each cell's nucleus contains the entire blueprint for that organism, and genes are expressed differentially to construct and maintain the various tissues.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baguisi, A., Behboodi, E., Melican, D. T., Pollock, J. S., Destrempes, M. M., Cammuso, C., Williams, J. L., Nims, S. D., Porter, C. A., Midura, P., Palacios, M. J., Ayres, S. L., Denniston, R. S., Hayes, M. L., Ziomek, C. A., Meade, H. M., Godke, R. A., Gavin, W. G., Overstrom, E. W. & Echelard, Y. (1999). Production of goats by somatic cell nuclear transfer. Nature Biotechnology 17, 456–461CrossRefGoogle ScholarPubMed
Blondin, P., Farin, P. W., Crosier, A. E., Alexander, J. E. & Farin, C. E. (2000). In vitro production of embryos alters levels of insulin-like growth factor-II messenger ribonucleic acid in bovine fetuses 63 days after transfer. Biology of Reproduction 62, 384–389CrossRefGoogle ScholarPubMed
Bonetta, L. (2001) US still lacks human cloning legislation. [News]Nature Medicine 7, 518CrossRefGoogle Scholar
Campbell, K. D., Reed, W. A. & White, K. L. (2000). Ability of integrins to mediate fertilization, intracellular calcium release and parthenogenetic development in bovine oocytes. Biology of Reproduction 62, 1702–1709CrossRefGoogle ScholarPubMed
Campbell, K. H. S., McWhir, J., Ritchie, W. A. & Wilmut, I. (1996). Sheep cloned by nuclear transfer from a cultured cell line. Nature 380, 64–66CrossRefGoogle ScholarPubMed
Cibelli, J. B., Stice, S. L., Golueke, P. J., Kane, J. J., Jerry, J., Blackwell, C., Ponce de Leon, F. A. & Robl, J. M. (1998). Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280, 1256–1258CrossRefGoogle ScholarPubMed
Chougule, G. (2001). Human cloning – not if, but when. Science 292, 639CrossRefGoogle ScholarPubMed
Colman, A. (2000). Somatic cell nuclear transfer in mammals: progress and applications. Cloning 1, 185–200CrossRefGoogle Scholar
Craft, I. (2001). Source of research embryos for cloning. Lancet 357, 1368CrossRefGoogle ScholarPubMed
Critser, J. K. & Russell, R. J. (2000). Genome resource banking of laboratory animal models. Institute for Laboratory Animal Research Journal 41, 183–186CrossRefGoogle ScholarPubMed
Daniels, R., Hall, V. & Trounson, A. O. (2000). Analysis of gene transcription in bovine nuclear transfer embryos reconstructed with granulosa cell nuclei. Biology of Reproduction 63, 1034–1040CrossRefGoogle ScholarPubMed
DeSousa, P. A., Winger, Q., Hill, J. R., Jones, K., Watson, A. J. & Westhusin, M. E. (1999). Reprogramming of fibroblast nuclei after transfer into bovine oocytes. Cloning 1, 63–69CrossRefGoogle Scholar
Dominko, T., Mitalipova, M., Haley, B., Beyhan, Z., Memili, M., McKusick, B. & First, N. L. (1999). Bovine oocyte cytoplasm supports development of embryos produced by nuclear transfer of somatic cell nuclei from various mammalian species. Biology of Reproduction 60, 1496–1502CrossRefGoogle ScholarPubMed
Farin, P. W. & Farin, C. E. (1995). Transfer of bovine embryos produced in vivo or in vitro: survival and fetal development. Biology of Reproduction 52, 676–682CrossRefGoogle ScholarPubMed
Hill, J. R., Roussel, A. J., Cibelli, J. B., Edwards, J. F., Hooper, N. L., Miller, M. W., Thompson, J. A., Looney, C. R., Westhusin, M. E., Robl, J. M. & Stice, S. L. (1999). Clinical and pathologic features of cloned transgenic calves and fetuses (13 case studies). Theriogenology 51, 1451–1465CrossRefGoogle Scholar
Jaenisch, R. & Wilmut, I. (2001). Developmental biology. Don't clone humans!Science 291, 2552CrossRefGoogle ScholarPubMed
Kato, Y., Tani, T., Sotomaru, Y., Kurokawa, K., Kato, J.-Y., Doguchi, H., Yasue, H. & Tsunoda, Y. (1998). Eight calves cloned from somatic cells of a single adult. Science 282, 2095–2098CrossRefGoogle ScholarPubMed
Lanza, R. P., Cibelli, J. B., Blackwell, C., Cristofalo, V. J., Francis, M. K., Baerlocher, G. M., Mak, J., Schertzer, M., Chavez, E. A., Sawyer, N., Lansdorp, P. M. & West, M. D. (2000a). Extension of cell life-span and telomere length in animals cloned from senescent somatic cells. Science 288, 665–669CrossRefGoogle Scholar
Lanza, R. P., Cibelli, J. B., Diaz, F., Morales, C. T., Farin, P. W., Farin, C. E., Hammer, C. J., West, M. D. & Damiani, P. (2000b). Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning 2, 79–90CrossRefGoogle Scholar
Lanza, R. P., Dresser, B. L. & Damiani, P. (2000c). Cloning Noah's Ark. Scientific American 283 (5), 84–89CrossRefGoogle Scholar
Macháty, Z., Bonk, A., Kühholzer, B. & Prather, R. S. (2000). Porcine oocyte activation induced by a cytosolic sperm factor. Molecular Reproduction and Development 57, 290–2953.0.CO;2-#>CrossRefGoogle ScholarPubMed
Macháty, Z., Rickords, L. F. & Prather, R. S. (1999). Parthenogenetic activation of porcine oocytes following nuclear transfer. Cloning 1, 101–109CrossRefGoogle Scholar
MacPhee, R. D. E. & Marx, P. A. (1997). The 40,000-year plague: humans, hyperdisease and first-contact extinctions. In Natural Change and Human Impact in Madagascar (Eds. S. Goodman & B. Patterson), pp. 169–217. Smithsonian Institution Press, Washington, DC
Meslin, E. M. (2000). Of clones, stem cells, and children: issues and challenges in human research ethics. Journal of Women's Health & Gender-Based Medicine 9, 831–841CrossRefGoogle ScholarPubMed
Murtaugh, C. (2001). Human cloning – not if, but when. Science 292, 639Google ScholarPubMed
Obata, Y., Kaneko-Ishino, T., Koide, T., Takai, Y., Ueda, T., Domeki, I., Shiroishi, T., Ishino, F. & Kono, T. (1998). Disruption of primary imprint during oocyte growth leads to the modified expression of imprinted genes during embryogenesis. Development 125, 1553–1560Google Scholar
Ogura, A., Inoue, K., Ogonuki, N., Noguchi, A., Takano, K., Nagano, R., Suzuki, O., Lee, J., Ishino, F. & Matsuda, J. (2000). Production of male cloned mice from fresh, cultured and cryopreserved immature sertoli cells. Biology of Reproduction 62, 1579–1584CrossRefGoogle ScholarPubMed
Onishi, A., Iwamoto, M., Akita, T., Mikawa, S., Takeda, K., Awata, T., Hanada, H. & Perry, A. C. (2000). Pig cloning by microinjection of fetal fibroblast nuclei. Science 289, 1188–1190CrossRefGoogle ScholarPubMed
Polzin, V. J., Anderson, D. L., Anderson, G. B., BonDurant, R. H., Butler, J. E., Pashen, R. L., Penedo, M. C. T. & Rowe, J. D. (1987). Production of sheep– goat chimeras by inner cell mass transplantation. Journal of Animal Science 65, 325–330CrossRefGoogle ScholarPubMed
Prather, R. S. (2000). Pigs is pigs. Science 289, 1886–1887CrossRefGoogle ScholarPubMed
Shiels, P. G., Kind, A. J., Campbell, K. H. S., Waddington, D., Wilmut, I., Colman, A. & Schnieke, A. E. (1999). Analysis of telomere lengths in cloned sheep. Nature 399, 316–317CrossRefGoogle ScholarPubMed
Smaglik, P. (2001). Fears of cults and kooks push Congress towards cloning ban. Nature 410, 617CrossRefGoogle ScholarPubMed
Solter, D. (2000). Mammalian cloning: advances and limitations. Nature Reviews Genetics 1, 199–207CrossRefGoogle ScholarPubMed
Stice, S. L., Cibelli, J., Robl, J., Golueke, P., Ponce de Leon, A. F. & Jetty, D. J. (1999). Cloning using donor nuclei from proliferation somatic cells. United States Patent 5, 945, 577Google Scholar
Stringfellow, D. A. & Givens, M. D. (1999). Infectious agents in bovine embryo production: hazards and solutions. Theriogenology 53, 85–94CrossRefGoogle Scholar
Stringfellow, D. A. & Seidel, S. M. (1998). Manual of the International Embryo Transfer Society. International Embryo Transfer Society, Savoy, IL
Stone, R. (1997). Paleontology. Siberian mammoth find raises hopes, questions. Science 286, 876–877CrossRefGoogle Scholar
Varmus, H. E. (2000). The challenge of making laws on the shifting terrain of science. Journal of Law, Medicine & Ethics 28 (Suppl. 4), 46–53Google Scholar
Vogel, G. (2001). Reproductive science. Human cloning plans spark talk of U.S. ban. Science 292, 31CrossRefGoogle ScholarPubMed
Wakayama, T. & Yanagimachi, R. (1999a). Cloning of male mice from adult tail-tip cells. Nature Genetics 22, 127–128CrossRefGoogle Scholar
Wakayama, T. & Yanagimachi, R. (1999b). Cloning the laboratory mouse. Seminars in Cell & Developmental Biology 10, 253–258CrossRefGoogle Scholar
Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R., & Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374CrossRefGoogle ScholarPubMed
Wakayama, T., Tateno, H., Mombaerts, P. & Yanagimachi, R. (2000). Nuclear transfer into mouse zygotes. Nature Genetics 24, 108–109CrossRefGoogle ScholarPubMed
Watson, P. F. & Holt, W. V. (Eds.) (2001). Cryobanking the Genetic Resource: Wildlife Conservation for the Future? Taylor & Francis, London
Wells, D. N., Misica, P. M., Day, A. M. & Tervit, H. R. (1997). Production of cloned lambs from an established embryonic cell line: a comparison between in vivo and in vitro matured cytoplasts. Biology of Reproduction 57, 385–393CrossRefGoogle ScholarPubMed
Wells, D. N., Misica, P. M. & Tervit, H. R. (1999). Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biology of Reproduction 60, 996–1005CrossRefGoogle ScholarPubMed
Wildt, D. E. (1997). Genome resources banking: impact on biotic conservation and society. In Reproductive Tissue Banking: Scientific Principles (Eds. A. M. Karow & J. K. Critser), pp. 399–439. Academic Press, San Diego, CACrossRef
Wildt, D. E. (2000). Genome resource banking for wildlife research, management and conservation. Institute for Laboratory Animal Research Journal 41, 228–234CrossRefGoogle Scholar
Wildt, D. E. & Wemmer, C. (1999). Sex and wildlife: the role of reproductive biology in conservation. Biodiversity and Conservation 8, 965–976CrossRefGoogle Scholar
Wildt, D. E., Rall, W. F., Critser, J. K., Monfort, S. L. & Seal, U. S. (1997). Genome resource banks: ‘living collections’ for biodiversity conservation. BioScience 47, 689–698CrossRefGoogle Scholar
Wilmut, I.Schnieke, A. E., McWhir, J., Kind, A. J. & Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813CrossRefGoogle ScholarPubMed
Wilson E. O. (1988). The current status of biological diversity. In Biodiversity (Ed. E. O. Wilson), pp. 3–18. National Academy Press, Washington, DC
Wolf, B. A., Westhusin, M. E., Levanduski, M. J., Bondioli, K. R. & Kraemer, D. C. (1990). Preimplantation development of embryos produced by intergeneric nuclear transplantation. Theriogenology 33, 350CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Application of nuclear transfer technology to wildlife species
    • By J. K. Critser, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri–Columbia, 201 Connaway Hall, Columbia, MO 65211–5120, U.S.A., L. K. Riley, Research Animal Diagnostic & Investigative Laboratory, Department Pathobiology, University of Missouri, Columbia, MO 65211, U.S.A., R. S. Prather, Department of Animal Science, University of Missouri, Columbia, MO 65211, U.S.A.
  • Edited by William V. Holt, Zoological Society of London, Amanda R. Pickard, Zoological Society of London, John C. Rodger, David E. Wildt, Smithsonian National Zoological Park, Washington DC
  • Book: Reproductive Science and Integrated Conservation
  • Online publication: 21 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511615016.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Application of nuclear transfer technology to wildlife species
    • By J. K. Critser, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri–Columbia, 201 Connaway Hall, Columbia, MO 65211–5120, U.S.A., L. K. Riley, Research Animal Diagnostic & Investigative Laboratory, Department Pathobiology, University of Missouri, Columbia, MO 65211, U.S.A., R. S. Prather, Department of Animal Science, University of Missouri, Columbia, MO 65211, U.S.A.
  • Edited by William V. Holt, Zoological Society of London, Amanda R. Pickard, Zoological Society of London, John C. Rodger, David E. Wildt, Smithsonian National Zoological Park, Washington DC
  • Book: Reproductive Science and Integrated Conservation
  • Online publication: 21 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511615016.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Application of nuclear transfer technology to wildlife species
    • By J. K. Critser, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri–Columbia, 201 Connaway Hall, Columbia, MO 65211–5120, U.S.A., L. K. Riley, Research Animal Diagnostic & Investigative Laboratory, Department Pathobiology, University of Missouri, Columbia, MO 65211, U.S.A., R. S. Prather, Department of Animal Science, University of Missouri, Columbia, MO 65211, U.S.A.
  • Edited by William V. Holt, Zoological Society of London, Amanda R. Pickard, Zoological Society of London, John C. Rodger, David E. Wildt, Smithsonian National Zoological Park, Washington DC
  • Book: Reproductive Science and Integrated Conservation
  • Online publication: 21 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511615016.016
Available formats
×