Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-19T22:21:16.175Z Has data issue: false hasContentIssue false

15 - Regeneration: transdifferentiation and stem cells

Published online by Cambridge University Press:  22 August 2009

Jennie Leigh Close
Affiliation:
Neurobiology and Behavior Program, 357420 Health Sciences Center, University of Washington, School of Medicine, Seattle, WA 98195, USA
Thomas A. Reh
Affiliation:
Neurobiology and Behavior, 357420 Health Sciences Center, University of Washington, School of Medicine, Seattle, WA 98195, USA
Evelyne Sernagor
Affiliation:
University of Newcastle upon Tyne
Stephen Eglen
Affiliation:
University of Cambridge
Bill Harris
Affiliation:
University of Cambridge
Rachel Wong
Affiliation:
Washington University, St Louis
Get access

Summary

Introduction

The study of regeneration in the vertebrate began with the pioneering experiments of Claude Bonnet in 1781. He found that if part of the eye of an adult newt (Triturus cristatus) was removed, a smaller, but complete, eye was regenerated within a few months. All of the ocular tissues, including the cornea, lens and retina, were capable of regenerating. Subsequent work by biologists, working primarily in the 1800s and early 1900s, characterized many critical features of the regeneration process in the eye. The molecular basis for this remarkable process is still not understood. However, recent progress in eye development research has spurred new lines of investigation into this question. In this review, we briefly discuss highlights of historical work and then focus on recent experiments in a variety of species that illustrates the complexities of the questions being investigated today.

A brief history of retinal regeneration

One of the first questions that arose historically concerning retinal regeneration in newts was the nature of the cells that provided the regenerated tissue. Early studies argued that a ring of cells at the peripheral retinal margin, what is now most commonly called the ciliary margin zone (CMZ), was the primary source of regenerated retina (Colucci, 1891 (cited in Keefe, 1973d); Fujita, 1913). Later studies confirmed the CMZ as a source of regeneration, but also demonstrated that the retinal pigmented epithelium (RPE) could regenerate neural retina in the posterior eye (Wachs, 1914, 1920).

Type
Chapter
Information
Retinal Development , pp. 307 - 324
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, I., Tang, L. and Pham, H. (2000). Identification of neural progenitors in the adult mammalian eye. Biochem. Biophys. Res. Commun., 270, 517–21CrossRefGoogle ScholarPubMed
Akagi, T., Mandai, M., Ooto, S.et al. (2004). Otx2 homeobox gene induces photoreceptor-specific phenotypes in cells derived from adult iris and ciliary tissue. Invest. Ophthalmol. Vis. Sci., 45, 4570–5CrossRefGoogle ScholarPubMed
Alvarez-Buylla, A., Herrera, D. G. and Wichterle, H. (2000). The subventricular zone: source of neuronal precursors for brain repair. Prog. Brain Res., 127, 1–11CrossRefGoogle ScholarPubMed
Alvarez-Buylla, A., Garcia-Verdugo, J. M. and Tramontin, A. D. (2001). A unified hypothesis on the lineage of neural stem cells. Nat. Rev. Neurosci., 2, 287–93CrossRefGoogle ScholarPubMed
Anthony, T. E., Klein, C., Fishell, G. and Heintz, N. (2004). Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron, 41, 881–90CrossRefGoogle ScholarPubMed
Blackshaw, S., Kuo, W. P., Park, P. J.et al. (2003). MicroSAGE is highly representative and reproducible but reveals major differences in gene expression among samples obtained from similar tissues. Genome Biol., 4, R17CrossRefGoogle ScholarPubMed
Braisted, J. E., Essman, T. F. and Raymond, P. A. (1994). Selective regeneration of photoreceptors in goldfish retina. Development, 120, 2409–19Google ScholarPubMed
Cattaneo, E. and McKay, R. (1990). Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature, 347, 762–5CrossRefGoogle ScholarPubMed
Close, J., Fischer, A. J., Roberts, M. and Reh, T. A. (2000). Damage induced expression of progenitor and neural cell markers in adult rodent retinal Muller glia. Society for Neuroscience Poster, 601. 16Google Scholar
Close, J. L., Gumuscu, B. and Reh, T. A. (2005). Retinal neurons regulate proliferation of postnatal progenitors and Müller glia in the rat retina via TGFβ signaling. Development, 132(13), 3015–2CrossRefGoogle Scholar
Coles, B. L., Angenieux, B., Inoue, T.et al. (2004). Facile isolation and the characterization of human retinal stem cells. Proc. Natl. Acad. Sci. U. S. A., 101, 15772–7CrossRefGoogle ScholarPubMed
Colucci, V. S. (1891). Sulla rigenerazione parziale dell'occhio nei Tritoni. Istogenesi e siluppo. Mem. della Roy. Acad. della Science dell'Inst. di Bologna, Ser V 1, 593–629. (cited in Keefe, 1973a)Google Scholar
Coulombre, J. L. and Coulombre, A. J. (1965). Regeneration of neural retina from the pigmented epithelium in the chick embryo. Dev. Biol., 12, 79–92CrossRefGoogle ScholarPubMed
Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. and Alvarez-Buylla, A. (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 97, 703–16CrossRefGoogle ScholarPubMed
Dorsky, R. I., Chang, W. S., Rapaport, D. H. and Harris, W. A. (1997). Regulation of neuronal diversity in the Xenopus retina by Delta signaling. Nature, 385, 67–70CrossRefGoogle Scholar
Dyer, M. A. and Cepko, C. L. (2000). Control of Müller glial cell proliferation and activation following retinal injury. Nat. Neurosci., 3, 873–80CrossRefGoogle ScholarPubMed
Fariss, R. N., Li, Z. Y. and Milam, A. H. (2000). Abnormalities in rod photoreceptors, amacrine cells, and horizontal cells in human retinae with retinitis pigmentosa. Am. J. Ophthalmol., 129, 215–23CrossRefGoogle Scholar
Fischer, A. J. and Reh, T. A. (2000). Identification of a proliferating marginal zone of retinal progenitors in postnatal chickens. Dev. Biol., 220, 197–210CrossRefGoogle ScholarPubMed
Fischer, A. J. and Reh, T. A. (2001). Müller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat. Neurosci., 4, 247–52CrossRefGoogle ScholarPubMed
Fischer, A. J. and Reh, T. A. (2002). Exogenous growth factors stimulate the regeneration of ganglion cells in the chicken retina. Dev. Biol., 251, 367–79CrossRefGoogle ScholarPubMed
Fischer, A. J. and Reh, T. A. (2003). Growth factors induce neurogenesis in the ciliary body. Dev. Biol., 259, 225–40CrossRefGoogle ScholarPubMed
Fischer, A. J., Hendrickson, A. and Reh, T. A. (2001). Immunocytochemical characterization of cysts in the peripheral retina and pars plana of the adult primate. Invest. Ophthalmol. Vis. Sci., 42, 3256–63Google ScholarPubMed
Fischer, A. J., Dierks, B. D. and Reh, T. A. (2002). Exogenous growth factors induce the production of ganglion cells at the retinal margin. Development, 129, 2283–91Google ScholarPubMed
Fischer, A. J., Wang, S. Z. and Reh, T. A. (2004). NeuroD induces the expression of visinin and calretinin by proliferating cells derived from toxin-damaged chicken retina. Dev. Dyn., 229, 555–63CrossRefGoogle ScholarPubMed
Fujita, H. (1913). Regenerations prozess der Netzhaut des Tritons und des Frosches. Arch. vergl. Ophthalmol., 3, 356–68Google Scholar
Furukawa, T., Mukherjee, S., Bao, Z. Z., Morrow, E. M. and Cepko, C. L. (2000). rax, Hes1, and notch1 promote the formation of Müller glia by postnatal retinal progenitor cells. Neuron, 26, 383–94CrossRefGoogle ScholarPubMed
Gaze, R. and Watson, W. E. (1968). Growth of the Nervous System. London: Ciba Foundation SymposiumGoogle Scholar
Haruta, M., Kosaka, M., Kanegae, Y.et al. (2001). Induction of photoreceptor-specific phenotypes in adult mammalian iris tissue. Nat. Neurosci., 4, 1163–4CrossRefGoogle ScholarPubMed
Heins, N., Malatesta, P., Cecconi, F.et al. (2002). Glial cells generate neurons: the role of the transcription factor Pax6. Nat. Neurosci., 5, 308–15CrossRefGoogle ScholarPubMed
Henrique, D., Hirsinger, E., Adam, J.et al. (1997). Maintenance of neuroepithelial progenitor cells by Delta-Notch signaling in the embryonic chick retina. Curr. Biol., 7, 661–70CrossRefGoogle ScholarPubMed
Hendrickson, A. E. (1964). Regeneration of the retina of the newt: an electron microscopic study. Unpublished Ph.D. thesis, University of Washington, SeattleGoogle Scholar
Hitchcock, P., Ochocinska, M., Sieh, A. and Otteson, D. (2004). Persistent and injury-induced neurogenesis in the vertebrate retina. Prog. Retin. Eye Res., 23, 183–94CrossRefGoogle ScholarPubMed
Hojo, M., Ohtsuka, T., Hashimoto, N.et al. (2000). Glial cell fate specification modulated by the bHLH gene Hes5 in mouse retina. Development, 127, 2515–22Google ScholarPubMed
Hollyfield, J. G. (1968). Differential addition of cells to the retina in Rana pipiens tadpoles. Dev. Biol., 18, 163–79CrossRefGoogle ScholarPubMed
Johns, P. R. and Fernald, R. D. (1981). Genesis of rods in teleost fish retina. Nature, 293, 141–2CrossRefGoogle ScholarPubMed
Julian, D., Ennis, K. and Korenbrot, J. I. (1998). Birth and fate of proliferative cells in the inner nuclear layer of the mature fish retina. J. Comp. Neurol., 394, 271–823.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Keefe, J. R. (1973a). An analysis of urodelian retinal regeneration. I. Studies of the cellular source of retinal regeneration in Notophthalmus viridescens utilizing 3H-thymidine and colchicine. J. Exp. Zool., 184, 185–206CrossRefGoogle Scholar
Keefe, J. R. (1973b). An analysis of urodelian retinal regeneration. II. Ultrastructural features of retinal regeneration in Notophthalmus viridescens. J. Exp. Zool., 184, 207–32CrossRefGoogle Scholar
Keefe, J. R. (1973c). An analysis of urodelian retinal regeneration. 3. Degradation of extruded malanin granules in Notophthalmus viridescens. J. Exp. Zool., 184, 233–8CrossRefGoogle Scholar
Keefe, J. R. (1973d). An analysis of urodelian retinal regeneration. IV. Studies of the cellular source of retinal regeneration in Triturus cristatus carnifex using 3H-thymidine. J. Exp. Zool., 184, 239–58CrossRefGoogle Scholar
Knight, J. K. and Raymond, P. A. (1995). Retinal pigmented epithelium does not transdifferentiate in adult goldfish. J. Neurobiol., 27, 447–56CrossRefGoogle Scholar
Kubota, R., Hokoc, J. N., Moshiri, A., McGuire, C. and Reh, T. A. (2002). A comparative study of neurogenesis in the retinal ciliary marginal zone of homeothermic vertebrates. Brain Res. Dev. Brain Res., 134, 31–41CrossRefGoogle ScholarPubMed
Laywell, E. D., Rakic, P., Kukekov, V. G., Holland, E. C. and Steindler, D. A. (2000). Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc. Natl. Acad. Sci. U. S. A., 97, 13883–8CrossRefGoogle ScholarPubMed
Malatesta, P., Hartfuss, E. and Gotz, M. (2000). Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development, 127, 5253–63Google ScholarPubMed
Merkle, F. T., Tramontin, A. D., Garcia-Verdugo, J. M. and Alvarez-Buylla, A. (2004). Radial glia give rise to adult neural stem cells in the subventricular zone. Proc. Natl. Acad. Sci. U. S. A., 101, 17528–32CrossRefGoogle ScholarPubMed
Moshiri, A. and Reh, T. A. (2004). Persistent progenitors at the retinal margin of ptc+/− mice. J. Neurosci., 24, 229–37CrossRefGoogle ScholarPubMed
Moshiri, A., Close, J. and Reh, T. A. (2004). Retinal stem cells and regeneration. Int. J. Dev. Biol., 48, 1003–14CrossRefGoogle ScholarPubMed
Nakatomi, H., Kuriu, T., Okabe, S. (2002). Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell, 110, 429–41CrossRefGoogle ScholarPubMed
Negishi, K., Teranishi, T., Kato, S. and Nakamura, Y. (1988). Immunohistochemical and autoradiographic studies on retinal regeneration in teleost fish. Neurosci. Res., Suppl. 8, S43–57Google Scholar
Newman, E. and Reichenbach, A. (1996). The Müller cell: a functional element of the retina. Trends Neurosci., 19, 307–12CrossRefGoogle ScholarPubMed
Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. and Kriegstein, A. R. (2001). Neurons derived from radial glial cells establish radial units in neocortex. Nature, 409, 714–20CrossRefGoogle ScholarPubMed
Noctor, S. C., Flint, A. C., Weissman, T. A.et al. (2002). Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J. Neurosci., 22, 3161–73CrossRefGoogle ScholarPubMed
Nork, T. M., Ghobrial, M. W., Peyman, G. A. and Tso, M. O. (1986). Massive retinal gliosis. A reactive proliferation of Müller cells. Arch. Ophthalmol., 104, 1383–9CrossRefGoogle ScholarPubMed
Nork, T. M., Wallow, I. H., Sramek, S. J. and Anderson, G. (1987). Müller's cell involvement in proliferative diabetic retinopathy. Arch. Ophthalmol., 105, 1424–9CrossRefGoogle ScholarPubMed
Okada, T. S. (1981). Phenotypic expression of embryonic neural retinal cells in cell culture. Vis. Res., 21, 83–6CrossRefGoogle ScholarPubMed
Otteson, D. C. and Hitchcock, P. F. (2003). Stem cells in the teleost retina: persistent neurogenesis and injury-induced regeneration. Vis. Res., 43, 927–36CrossRefGoogle ScholarPubMed
Park, C. M. and Hollenberg, M. J. (1989). Basic fibroblast growth factor induces retinal regeneration in vivo. Dev. Biol., 134, 201–5CrossRefGoogle ScholarPubMed
Pittack, C., Jones, M. and Reh, T. A. (1991). Basic fibroblast growth factor induces retinal pigment epithelium to generate neural retina in vitro. Development, 113, 577–88Google ScholarPubMed
Raymond, P. A. and Hitchcock, P. F. (1997). Retinal regeneration: common principles but a diversity of mechanisms. Adv. Neurol., 72, 171–84Google Scholar
Reh, T. A. (1987). Cell-specific regulation of neuronal production in the larval frog retina. J. Neurosci., 7, 3317–24CrossRefGoogle ScholarPubMed
Reh, T. A. and Nagy, T. (1987). A possible role for the vascular membrane in retinal regeneration in Rana catesbienna tadpoles. Dev. Biol., 122, 471–82CrossRefGoogle ScholarPubMed
Reh, T. A. and Nagy, T. (1989). Characterization of Rana germinal neuroepithelial cells in normal and regenerating retina. Neurosci. Res., Suppl 10, S151–61Google Scholar
Reh, T. A., Nagy, T. and Gretton, H. (1987). Retinal pigmented epithetial cells induced to transdifferentiate to neurons by laminin. Nature, 330, 68–71CrossRefGoogle Scholar
Robison, W. G. Jr, Tillis, T. N., Laver, N. and Kinoshita, J. H. (1990). Diabetes-related histopathologies of the rat retina prevented with an aldose reductase inhibitor. Exp. Eye Res., 50, 355–66CrossRefGoogle ScholarPubMed
Sakaquchi, D. S., Janick, L. M. and Reh, T. A. (1997). Basic fibroblast growth factor (FGF2) induced transdifferentiation of retinal pigment epitheliums: generation of retinal neurons and glial. Dev. Dyn., 209, 387–983.0.CO;2-E>CrossRefGoogle Scholar
Sarthy, P. V. (1985). Establishment of Müller cell cultures from adult rat retina. Brain Res., 337, 138–41CrossRefGoogle ScholarPubMed
Satow, T., Bae, S. K., Inoue, T.et al. (2001). The basic helix-loop-helix gene hesr2 promotes gliogenesis in mouse retina. J. Neurosci., 21, 1265–73CrossRefGoogle ScholarPubMed
Scharff, C., Kirn, J. R., Grossman, M., Macklis, J. D. and Nottebohm, F. (2000). Targeted neuronal death affects neuronal replacement and vocal behavior in adult songbirds. Neuron, 25, 481–92CrossRefGoogle ScholarPubMed
Sidman, R. L. (1960). The structure of the eye. In Seventh International Congress of Anatomists, ed. Smelser, G. K.. New York, NY: Academic Press, pp. 487–505Google Scholar
Spence, J. R., Madhavan, M., Ewing, J. D.et al. (2004). The hedgehog pathway is a modulator of retina regeneration. Development, 131, 4607–21CrossRefGoogle ScholarPubMed
Stenkamp, D. L., Powers, M. K., Carney, L. H. and Cameron, D. A. (2001). Evidence for two distinct mechanisms of neurogenesis and cellular pattern formation in regenerated goldfish retinae. J. Comp. Neurol., 431, 363–813.0.CO;2-7>CrossRefGoogle Scholar
Stone, L. S. (1950). Neural retina degeneration followed by regeneration from surviving retinal pigment cells in grafted adult salamander eyes. Anat. Rec., 106, 89–109CrossRefGoogle ScholarPubMed
Stone, L. S. and Steinitz, H. (1957). Regeneration of neural retina and lens from retina pigment cell grafts in adult newtsJ. Exp. Zool., 135, 301–17CrossRefGoogle ScholarPubMed
Stone, L. S. and Farthing, T. E. (1942). Return of vision four times in the same adult salamander eye (Triturus viridescens) repeatedly transplanted. J. Exp. Zool., 91, 265–85CrossRefGoogle Scholar
Sueishi, K., Hata, Y., Murata, T.et al. (1996). Endothelial and glial cell interaction in diabetic retinopathy via the function of vascular endothelial growth factor (VEGF). Pol. J. Pharmacol., 48, 307–16Google Scholar
Tropepe, V., Coles, B. L., Chiasson, B. J.et al. (2000). Retinal stem cells in the adult mammalian eye. Science, 287, 2032–6CrossRefGoogle ScholarPubMed
Turner, D. L. and Cepko, C. L. (1987). A common progenitor for neurons and glia persists in rat retina late in development. Nature, 328, 131–6CrossRefGoogle ScholarPubMed
Vogel-Hopker, A., Momose, T., Rohrer, H.et al. (2000). Multiple functions of fibroblast growth factor-8 (FGF-8) in chick eye development. Mech. Dev., 94, 25–36CrossRefGoogle Scholar
Wachs, H. (1914). Neue Versuche zue Wolffschen Lensenregeneration. Arch. f. Entw. Mech. d. Org., 39, 384–451Google Scholar
Wachs, H. (1920). Restitution des Auges nach Extirpation von Retina und Linse bein Tritonen. Arch. f. Entw. Mech. d. Org., 46, 328–90Google Scholar
Walcott, J. C. and Provis, J. M. (2003). Müller cells express the neuronal progenitor cell marker nestin in both differentiated and undifferentiated human foetal retina. Clin. Exp. Ophthalmol., 31, 246–9CrossRefGoogle ScholarPubMed
Young, R. W. (1985). Cell proliferation during postnatal development of the retina in the mouse. Brain Res., 353, 229–39CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×