Skip to main content Accessibility help
×
  • Cited by 35
  • Volume 1: Introduction and Cocycle Problem
  • Anatole Katok, Pennsylvania State University, Viorel Niţică, West Chester University, Pennsylvania
Publisher:
Cambridge University Press
Online publication date:
July 2011
Print publication year:
2011
Online ISBN:
9780511803550

Book description

This self-contained monograph presents rigidity theory for a large class of dynamical systems, differentiable higher rank hyperbolic and partially hyperbolic actions. This first volume describes the subject in detail and develops the principal methods presently used in various aspects of the rigidity theory. Part I serves as an exposition and preparation, including a large collection of examples that are difficult to find in the existing literature. Part II focuses on cocycle rigidity, which serves as a model for rigidity phenomena as well as a useful tool for studying them. The book is an ideal reference for applied mathematicians and scientists working in dynamical systems and a useful introduction for graduate students interested in entering the field. Its wealth of examples also makes it excellent supplementary reading for any introductory course in dynamical systems.

Reviews

"This very welcome addition to the literature is the first book-length introduction to the rigidity of higher rand abelian group actions."
David Michael Fisher for Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] R. L., Adler, B., Weiss. Entropy, a complete metric invariant for automorphisms of the torus. Proc. Nat. Acad. Sci. 57 (1967) 1575–1576.
[2] D. V., Anosov. Geodesic flows on closed Riemannian manifolds with negative curvature. Proc. Stek. Inst. 90 (1967) 1–235.
[3] N., Aoki. A simple proof of Bernoullicity of automorphisms of compact abelian groups. Isr. J. Math. 38 (1981) 189–198.
[4] L., Auslander, J., Scheuneman. On certain automorphisms of nilpotent Lie groups. Proc. Symp. Pure Math. 14 (1970) 9–15.
[5] H., Bercovici, V., Niţică. A Banach algebra version of the Livšic theorem. Discrete Contin. Dynam. Systems 4 (1998) 523–534.
[6] L., Barreira, Ya., Pesin. Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents. Cambridge: Cambridge University Press, 2007.
[7] D., Berend. Multi-invariant sets on tori. Trans. Amer. Math. Soc. 280 (1983) 509–532.
[8] Z. I., Borevich, I. R., Shafarevich. Number Theory. New York: Academic Press, 1966.
[9] R., Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Math. 470. New York: Springer, 1975.
[10] G. E., Bredon. Introduction to Compact Transformations Groups. New York: Academic Press, 1972.
[11] M. I., Brin. Topological transitivity of a class of dynamical systems and frame flow on manifolds of negative curvature. Func. Anal. and Appl. 9 (1975) 9–19.
[12] M. I., Brin, Y. A., Pesin. Partially hyperbolic dynamical systems. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974) 170–212.
[13] K. S., Brown. Cohomology of Groups. Graduate Texts in Math. 87. Berlin: Springer-Verlag, 1982.
[14] S., Campanato. Proprieta di una famiglia di spazi functionali. Ann. Scuola Norm. Sup. Pisa 18 (1964) 137–160.
[15] C., Chevalley. Deux théorèmes d'Arithmétique. J. Math. Soc. of Japan 3 (1951) 36–44.
[16] H., Cohen. A Course in Computational Algebraic Number Theory. Berlin-Heidelberg-New York: Springer, 1996.
[17] P., Collet, H., Epstein, G., Gallavotti. Perturbations of geodesic flows on surfaces of constant negative curvature and their mixing properties. Com. Math. Phys. 95 (1984) 61–112.
[18] M., Cowling. Sur les Coeficients des Representations Unitaires des Groupes de Lie Simple. Lecture Notes in Math. 739. Berlin: Springer-Verlag, 1979, pp. 132–178.
[19] D., Damjanovic. Central extensions of simple Lie groups and rigidity of some abelian partially hyperbolic algebraic actions. J. Mod. Dyn. 1 (2007) 665–688.
[20] D., Damjanovic, A., Katok. Local rigidity of actions of higher rank abelian groups and KAM method. Electronic Res. Announce. Amer. Math. Soc. 10 (2004) 142–154.
[21] D., Damjanovic, A., Katok. Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic actions. Discrete Contin. Dynam. Systems 13 (2005) 985–1005.
[22] D., Damjanovic, A., Katok. Local rigidity of partially hyperbolic actions I. KAM method and ℤk actions on the torus. Annals Math. (2010), to appear.
[23] D., Damjanovic, A., Katok. Local rigidity of partially hyperbolic actions. II. The geometric method and restrictions of Weyl chamber flows on SL(n, ℝ)/ Г, available online at http://www.math.psu.edu/katok a.
[24] D., Damjanovic, A., Katok. Local rigidity of homogeneous parabolic actions: I. A model case, preprint, 2010.
[25] S. G., Dani, M. G., Mainkar. Anosov automorphisms on compact nilmanifolds associated with graphs. Trans Amer. Math. Soc. 357 (2005) 2235–2251.
[26] P., Didier. Stability of accessibility. Ergodic Theory Dynam. Systems 23 (2003) 1717–1731.
[27] D., Dolgopyat, A., Wilkinson. Stable accessibility is C1 dense. Geometric methods in dynamics. II. Astérisque 287 (2003) 33–60.
[28] M., Einsiedler, A., Katok. Invariant measures on G/Г for split simple Lie Groups G. Comm. Pure. Appl. Math. (Moser memorial issue) 56 (2003) 1184–1221.
[29] M., Einsiedler, A., Katok. Rigidity of measures – the high entropy case and non-commuting foliations. Israel Math. J. 148 (2005) 169–238.
[30] M., Einsiedler, A., Katok, E., Lindenstrauss. Invariant measures and the set of exceptions to Littlewood's conjecture. Annals of Math. 164 (2006) 513–560.
[31] M., Einsiedler, E., Lindenstrauss. Rigidity properties of ℤd -actions on tori and solenoids. Electronic Res. Announce. Math. Soc. 9 (2004) 99–110.
[32] R., Feres, A., Katok. Ergodic theory and dynamics of G-spaces, in Handbook of Dynamical Systems, vol. 1A. Amsterdam: Elsevier, 2002, pp. 665–763.
[33] S., Ferleger, A., Katok. Non-commutative first cohomology rigidity of the Weyl chamber flows, preprint, 1997.
[34] D., Fisher. Local rigidity of group actions: past, present, future, in Dynamics, Ergodic Theory and Geometry. Cambridge: Cambridge University Press, 2007.
[35] D., Fisher, G., Margulis. Almost isometric actions, property T, and local rigidity. Inventiones Math. 162 (2005) 19–80.
[36] D., Fisher, G., Margulis. Local rigidity of affine actions of higher rank Lie groups and their lattices. Annals Math. 170 (2009) 67–122.
[37] L., Flaminio, G., Forni. Invariant distributions and time averages for horocycle flows. Duke Math. J. 119 (2003) 465–526.
[38] G., Forni. Solutions of the cohomological equation for area-preserving flows on compact surfaces of higher genus. Ann. Math. 146 (1997) 295–344.
[39] J., Franks. Anosov diffeomorphisms on tori. Trans. Amer. Math. Soc. 145 (1969) 117–124.
[40] H., Furstenberg. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Systems Theory 1 (1967) 1–49.
[41] E., Goetze, R. J., Spatzier. Smooth classification of Cartan actions of higher rank semisimple Lie groups and their lattices. Ann. Math. 150 (1999) 743–773.
[42] E., Goetze, R. J., Spatzier. On Livsic's theorem, superrigidity, and Anosov actions of semisimple Lie groups. Duke Math. J. 88 (1997) 1–27.
[43] V., Guillemin, D., Kazhdan. Some inverse spectral results for negatively curved 2-manifolds. Topology 19 (1980) 301–313.
[44] R., Hamilton. The inverse limit theorem of Nash and Moser. Bull. Amer. Math. Soc. 7 (1982) 65–222.
[45] P., de la Harpe, A., Valette. La propriété (T) de Kazhdan pour les groupes localement compacts. Astérisque 175 (1989).
[46] B., Hasselblatt. Hyperbolic dynamical systems, in Handbook of Dynamical Systems, vol. 1A. Amsterdam: Elsevier, 2002, pp. 239–319.
[47] B., Hasselblatt, A., Katok. Principal structures, in Handbook of Dynamical Systems, vol. 1A. Amsterdam: Elsevier, 2002, pp. 1–203.
[48] S., Helgason. Differential Geometry, Lie Groups and Symmetric Spaces. New York: Academic Press, 1978.
[49] F. R., Hertz, M. A. R., Hertz, R., Ures. Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1d-center bundle. Inventiones Math. 172 (2008) 353–381.
[50] M., Hirsch. Differential Topology. Graduate Texts in Math. 33. New York: Springer-Verlag 1976.
[51] M., Hirsch, C., Pugh, M., Shub. Invariant Manifolds. Lecture Notes in Math. 583. Berlin: Springer Verlag, 1977.
[52] L., Hörmander. Hypoelliptic second order differential equations. Acta Mathematica 119 (1967) 147–171.
[53] R., Howe. A notion of rank for unitary representations of the classical groups, in A., Figa Talamanca (ed.), Harmonic Analysis and Group Representations. Firenze, Italy: CIME, 1980.
[54] S., Hurder. Affine Anosov actions. Michigan Math. J. 40 (1993) 561–575.
[55] S., Hurder. Rigidity of Anosov actions of higher rank lattices. Annals Math. 135 (1992) 361–410.
[56] S., Hurder, A., Katok. Differentiability, rigidity and Godbillon–Vey classes for Anosov flows. Publ. Math. IHES 72 (1990) 5–61.
[57] H. C., Im Hof. An Anosov action on the bundle of Weyl chambers. Ergodic Theory Dynam. Systems 5 (1985) 587–593.
[58] J.-L., Journé. A regularity lemma for functions of several variables. Revista Matematica Iberoamericana 4 (1988) 187–193.
[59] B., Kalinin. Livšic theorem for matrix cocycles. Annals of Math, to appear.
[60] B., Kalinin, A., Katok. Invariant measures for actions of higher rank abelian groups, in Smooth Ergodic Theory and its Applications. Proc. Symp. Pure Math 69. Providence, RI: Amer. Math. Soc., 2001, pp. 593–637.
[61] B., Kalinin, A., Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for Cartan actions on tori. J. Mod. Dyn. 1 (2007) 123–146.
[62] B., Kalinin, A., Katok, F., Rodriguez Hertz. Nonuniform measure rigidity. Annals of Math., to appear.
[63] B., Kalinin, V., Sadovskaya. On local and global rigidity of quasi-conformal Anosov diffeomorphisms. J. Inst. Math. Jussieu 2–4 (2003) 567–582.
[64] B., Kalinin, R., Spatzier. On the classification of Cartan actions. Geom. Func. Anal. 17 (2007) 468–490.
[65] M., Kanai. Rigidity of Weil chamber flow, and vanishing theorems of Matsushima and Weil. Ergod. Theory Dynam. Systems 29 (2009) 1273–1288.
[66] A., Katok. Combinatorial Constructions in Ergodic Theory and Dynamics. University Lecture Series 30. Providence, RI: Agmerican Mathematical Society, 2003.
[67] A., Katok, B., Hasselblatt. Introduction to the Modern Theory of Dynamical Systems. Cambridge: Cambridge University Press, 1995.
[68] A., Katok, S., Katok. Higher cohomology for abelian groups of toral automorphisms. Ergodic Theory Dynam. Systems 15 (1995) 569–592.
[69] A., Katok, S., Katok. Higher cohomology for abelian groups of toral automorphisms. II. The partially hyperbolic case, and corrigendum. Ergodic Theory Dynam. Systems 25 (2005) 1909–1917.
[70] A., Katok, S., Katok, K., Schmidt. Rigidity of measurable structure for ℤd -actions by automorphisms of a torus. Comm. Math. Helvetici 77 (2002) 718–745.
[71] A., Katok, A., Kononenko. Cocycles' stability for partially hyperbolic systems. Math. Res. Lett. 3 (1996) 191–210.
[72] A., Katok, V., Niţică. Rigidity of higher rank abelian cocycles with values in diffeomorphism groups. Geometriae Dedicata. 124 (2007) 109–131.
[73] A., Katok, V., Niţică, A., Török. Non-abelian cohomology of abelian Anosov actions. Ergodic Theory Dynam. Systems 2 (2000) 259–288.
[74] A., Katok, F., Rodriguez Hertz. Uniqueness of large invariant measures for ℤk actions with Cartan homotopy data. J. Mod. Dyn. 1 (2007) 287–300.
[75] A., Katok, F., Rodriguez Hertz. Measure and cocycle rigidity for certain non-uniformly hyperbolic actions of higher rank abelian groups. J. Mod. Dyn. 4 (2010), to appear.
[76] A., Katok, F., Rodriguez Hertz. Rigidity of real-analytic actions of SL(n, ℤ) on Tn: A case of realization of Zimmer program. Discrete Contin. Dynam. Systems 27 (2010) 609–615.
[77] A., Katok, K., Schmidt. The cohomology of expansive ℤd -actions by automorphisms of compact, abelian groups. Pacific J. Math 170 (1995) 105–142.
[78] A., Katok, R., Spatzier. First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity. Inst. Hautes Études Sci. Publ. Math. 79 (1994) 131–156.
[79] A., Katok, R., Spatzier. Subelliptic estimates of polynomial differential operators and applications to rigidity of abelian actions. Math. Res. Letters 1 (1994) 193–202.
[80] A., Katok, R., Spatzier. Invariant measures for higher rank hyperbolic Abelian actions. Ergodic Theory Dynam. Systems 16 (1996) 751–778.
[81] A., Katok, R., Spatzier. Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions. Tr. Mat. Inst. Steklova 216 (1997) 292–319.
[82] S., Katok. Finite spanning sets for cusp forms and a related geometric result. J. Reine Angew. Math. 395 (1989) 186–195.
[83] Y., Katznelson. Ergodic automorphisms on Tn are Bernoulli shifts. Israel J. Math. 10 (1971) 186–195.
[84] D., Kleinbock, N., Shah, A., Starkov. Dynamics of subgroup actions on homogeneous spaces of Lie groups and applications to number theory in: Handbook of Dynamical Systems, vol. 1A. Amsterdam: Elsevier, 2002, pp. 813–930.
[85] A. W., Knapp. Representation Theory of Semisimple Groups: an Overview Based on Examples. Princeton, NJ: Princeton University Press, 2001.
[86] A., Kononenko. Twisted cocycles and rigidity problems. Electron. Res. Announc. Amer. Math. Soc. 1 (1995) 26–34.
[87] N., Kopell. Commuting diffeomorphisms. Proc. Symp. Pure Math. 14 (1970) 165–184.
[88] S., Krantz. Lipschitz spaces, smoothness of functions and approximation theory. Expo. Math. 3 (1983) 193–260.
[89] R., Krikorian. Reducibility, differentiable rigidity and Lyapunov exponents for quasi-periodic cocycles on T × SL(2, ℝ), preprint.
[90] S., Lang. Algebra. Reading, MA: Addison-Wesley, 1984.
[91] S., Lang. Introduction to Differentiable Manifolds. New York: Interscience, 1962.
[92] J., Lauret. Examples of Anosov diffeomorphisms. J. Algebra 262 (2003) 201–209.
[93] F., Ledrappier. Un champ markovien peut être d'entropie nulle et mélangeant. C. R. Acad. Sci. Paris Sér. A-B 287 (1978) A561–A563.
[94] K. B., Lee, F., Raymond. Geometric realization of group extensions by the Seifert construction. Contemporary Math. AMS 33 (1984) 353–411.
[95] E., Lindenstrauss. Rigidity of multiparameter actions. Israel Math. J. 149 (2005) 199–226.
[96] A., Livšic. Homology properties of U-systems. Math. Zametki 10 (1971) 758–763.
[97] A., Livšic. Cohomology of dynamical systems. Math. USSR Izvestija 6 (1972) 1278–1301.
[98] R., de la Llave. Invariants for smooth conjugacy of hyperbolic dynamical systems. I. Comm. Math. Phys. 109 (1987) 369–378.
[99] R., de la Llave. Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic dynamical systems. Commun. Math. Phys. 150 (1992) 289–320.
[100] R., de la Llave. Analytic regularity of solutions of Livšic's cohomology equation and some applications to analytic conjugacy of hyperbolic dynamical systems. Ergodic Theory Dynam. Systems 17 (1997) 649–662.
[101] R., de la Llave. Remarks on Sobolev regularity in Anosov systems. Ergodic Theory Dynam. Systems 21 (2001) 1139–1180.
[102] R., de la Llave. Tutorial on KAM theory, in Smooth Ergodic Theory and its Applications Proc. Symp. Pure Math 69. RI: American Mathematical Society, Providence, 2001, pp. –.
[103] R., de la Llave. Bootstrap of regularity for integrable solutions of cohomology equations, in Modern Dynamical Systems and Applications, M., Brin, B., Hasselblatt, Ya. B., Pesin (eds). Cambridge: Cambridge University Press, 2004, pp. 405–418.
[104] R., de la Llave, J., Marco, R., Moriyon. Canonical perturbation theory of Anosov systems and regularity results for the Livšic cohomology equation. Ann. of Math. 123 (1986) 537–611.
[105] R., de la Llave, R., Moriyon. Invariants for smooth conjugacy of hyperbolic dynamical systems IV. Comm. Math. Phys. 116 (1988) 185–192.
[106] C., Lobry. Controllability of nonlinear systems on compact manifolds. SIAM J. Control 12 (1974) 1–4.
[107] A., Malćev. On a class of homogenous spaces. Transl. Amer. Math. Soc. 1 (1962) 276–307.
[108] W., Malfait. An obstruction to the existence of Anosov diffeomorphisms on infra-nilmanifolds. Contemporary Math. 262 (2000) 233–251.
[109] A., Manning. There are no new Anosov diffeomorphisms on tori. Amer. J. Math. 96 (1974) 422–429.
[110] G. A., Margulis. Discrete Subgroups of Semisimple Lie Groups.Berlin: Springer Verlag, 1991.
[111] G. A., Margulis, N., Qian. Local rigidity of weakly hyperbolic actions of higher rank real Lie groups and their lattices, Ergodic Theory Dynam. Systems 21 (2001), 121–164.
[112] H., Matsumoto. Sur les sous-groupes arithmétiques des groupes semi-simples dÉployÉs. Ann. Sci. Éc. Norm. Sup. 4, serie 2 (1969) 1–62.
[113] D., Mieczkowski. The first cohomology of parabolic actions for some higher-rank abelian groups and representation theory. J. Modern Dynam. 1 (2007) 61–92.
[114] G., Metivier. Function spectrale et valeur propres d'une classe d'operateurs non elliptiques. Communi. PDE 1 (1976), 467–519.
[115] J., Milnor. Introduction to Algebraic K-theory. Princeton, NJ: Princeton University Press, 1971.
[116] D., Montgomery, L., Zippin. A theorem on Lie groups. Bull. Amer. Math. Soc. 48 (1942) 448–452.
[117] C. C., Moore. Exponential decay of correlation coefficients for geodesic flows, in C. C., Moore (ed.), Group Representations, Ergodic Theory, Operator Algebras, and Mathematical Physics. Proceedings of a Conference in Honor of George Mackey. MSRI publications, Springer Verlag, New York: 1987.
[118] C. C., Moore. Decomposition of unitary representations defined by discrete subgroups of nilpotent groups. Annals of Math. 82 (1965), 146–182.
[119] N., Mok, Y. T., Siu, S. K., Yeung. Geometric superrigidity. Invent. Math. 113 (1993), 57–83.
[120] D., Montgomery, L., Zippin, Topological Transformation Groups. New York: Interscience Publishers, 1955.
[121] M. H. A., Newman. A theorem on periodic transformations of spaces. Quart. J. Math. Oxford Ser. 2 (1931), 1–9.
[122] M., Nicol, M., Pollicott. Measurable cocycle rigidity for some non-compact groups. Bull. London Math. Soc. 311 (1999) 529–600.
[123] M., Nicol, M., Pollicott. Livšic's theorem for semisimple Lie groups. Ergodic Theory Dynam. Systems 21 (2001) 1501–1509.
[124] M., Nicol, A., Török. Whitney regularity for the solutions of the coboundary equations on Cantor sets. Math. Phys. Electronic J. 13 (2007) paper 6.
[125] V., Niţică, A., Török. Cohomology of dynamical systems and rigidity of partially hyperbolic actions of higher rank lattices. Duke Math. J. 79 (1995) 751–810.
[126] V., Niţică, A., Török. Regularity results for the solutions of the Livshits cohomology equation with values in diffeomorphism groups. Ergodic Theory Dynam. Systems 16 (1996) 325–333.
[127] V., Niţică, A., Török. Regularity of the transfer map for cohomologous cocycles. Ergodic Theory Dynam. Systems 18 (1998) 1187–1209.
[128] V., Niţică, A., Török. On the cohomology of Anosov actions, in Rigidity in Dynamics and Geometry. Berlin: Springer, 2000, pp. 345–361.
[129] V., Niţică, A., Török. An open dense set of stably ergodic diffeomorphisms in a neighborhood of a non-ergodic one. Topology 40 (2001) 259–278.
[130] V., Niţică, A., Török. Cocycles over abelian TNS actions. Geometriae Dedicata 102 (2003) 65–90.
[131] V., Niţică. Journé's theorem for Cn,ω regularity. Discrete Contin. Dynam. Systems 22 (2008) 413–425.
[132] A. L., Onishchik, E. B., Vinberg. Lie Groups and Lie Algebras.Berlin: Springer-Verlag, 1994.
[133] D., Ornstein. Bernoulli shifts with the same entropy are isomorphic. Adv. Math. 4 (1970) 337–352.
[134] http://pari.math.u-bordeaux.fr/
[135] W., Parry. The Livšic periodic point theorem for non-abelian cocycles. Ergodic Theory Dynam. Systems 19 (1999) 687–701.
[136] W., Parry, M., Pollicott. The Livšic cocycle equation for compact Lie group extensions of hyperbolic systems. J. London Math. Soc. 56 (1997) 405–416.
[137] W., Parry, M., Pollicott. Skew-products and Livsic theory, in Representation Theory, Dynamical Systems, and Asymptotic Combinatorics, V. A., Kaimanovich, A., Lodkin (eds). Adv. Math. Sci. Series 2, 217. Providence, RI: American Mathematical Society, 2006.
[138] M., Pollicott, C. P., Walkden. Livšic theorems for connected Lie groups. Trans. Amer. Math. Soc. 353 (2001) 2879–2895.
[139] M., Pollicott, M., Yuri. Regularity of solutions to the measurable Livshits equation. Trans. Amer. Math. Soc. 351 (1999) 559–568.
[140] H. L., Porteous. Anosov difeomorphisms of flat manifolds. Topology 11 (1972) 307–315.
[141] M., Postnikov. Lie Groups and Lie Algebras. Moskow: Mir Publishers, 1986.
[142] G., Prasad, M. S., Raghunathan. Cartan subgroups and lattices in semi-simple groups. Ann. Math. 96 (1972) 296–317.
[143] C., Pugh, M., Shub. Ergodicity of Anosov actions. Invent. Math. 15 (1972) 1–23.
[144] C., Pugh, M., Shub. Stable ergodicity and julienne quasi-conformality. J. Eur. Math. Soc. (JEMS) 2 (2000) 1–52.
[145] N., Qian. Rigidity Phenomena of group actions on a class of nilmanifolds and Anosov ℝn actions. Unpublished Ph.D. thesis, California Insitute of Technology, 1992.
[146] M. S., Raghunathan. Discrete Subgroups of Lie Groups. Berlin: Springer-Verlag, 1972.
[147] M., Ratner. The rate of mixing for geodesic and horocycle flows. Ergodic Theory Dynam. Systems 7 (1987) 267–288.
[148] M., Ratner. On Raghunathan's measure conjecture. Ann. of Math. 134 (1991) 545–607.
[149] B. L., ReinhartDifferential Geometry of Foliations. Berlin: Springer-Verlag, 1983.
[150] C., Rockland. Hypoellipticity on the Heisenberg group: representation theoretic criteria. Trans. Amer. Math. Soc. 240 (1978) 1–52.
[151] F., Rodriguez Hertz. Global rigidity of certain abelian actions by toral automorphisms. J. Modern Dynam., to appear.
[152] L. P., Rothschild. A criterion for hypoellipticity of operators constructed from vector fields. Commun. PDE 4 (1979) 645–699.
[153] L. P., Rothschild, E., Stein. Hypoelliptic differential operators and nilpotent groups. Acta Math. 1976 247–320.
[154] D., Rudolph. ×2 and ×3 invariant measures and entropy. Ergodic Theory Dynam. Systems 10 (1990) 395–406.
[155] K., Schmidt. The cohomology of higher-dimensional shifts of finite type. Pacific J. Math. 170 (1995) 237–269.
[156] K., Schmidt. Cohomological rigidity of algebraic ℤd -actions. Ergodic Theory Dynam. Systems 15 (1995) 759–805.
[157] K., Schmidt. Dynamical Systems of Algebraic Origin. Basel-Berlin-Boston: Birkhäuser Verlag, 1995.
[158] K., Schmidt. Remarks on Livšic' theory for non-abelian cocycles. Ergodic Theory Dynam. Systems 19 (1999) 703–721.
[159] K., Schmidt, T., Ward. Mixing automorphisms of compact groups and a theorem of Schlickewei. Inventiones Math. 111 (1993) 69–76.
[160] M., Shub. Endomorphisms of compact differentiable manifolds. Amer. J. Math. 96 (1974) 422–429.
[161] Y. G., Sinai. Gibbs measures in ergodic theory. Russ. Math. Surv. 27 (1972) 21–70.
[162] S., Smale. Differentiable dynamical systems. Bull. Amer. Math. Soc. 73 (1967) 747–817.
[163] R., Spatzier. Harmonic Analysis in Rigidity Theory. Ergodic theory and its connections with harmonic analysis. London Math. Soc. Lecture Notes Ser. 205. Cambridge: Cambridge University Press, 1995.
[164] A., Starkov. First cohomology group, mixing and minimal sets of commutative group of algebraic action on torus. J. Math. Sci (New York) 95 (1999) 2576–2582.
[165] N., Steenrod. The Topology of Fiber Bundles.Princeton, NJ: Princeton University Press, 1951.
[166] R., Steinberg. Générateurs, relations et revêtements de groupes algébraiques. Colloq. Theorie des groupes algebraiques, Bruxelles (1962) 113–127.
[167] E. M., Stein, G., Weiss. Introduction to Fourier Analysis on Fourier Spaces.Princeton, NJ: Princeton University Press, 1971.
[168] A., Unterberger, J., Unterberger. Hölder estimates and hypoellipticity. Ann. Inst. Fourier 26 (1976) 35–54.
[169] W. A., Veech. Periodic points and invariant pseudomeasures for toral endomorphisms. Ergodic Theory Dynam. Systems 6 (1986) 449–473.
[170] C. P., Walkden. Solutions to the twisted cocycle equation over hyperbolic systems. Discrete Contin. Dynam. Systems 6 2000, 935–946.
[171] Z. J., Wang. Local rigidity of partially hyperbolic actions. J. Mod. Dyn. 4 (2010) 271–327.
[172] Z. J., Wang. New cases of differentiable rigidity for partially hyperbolic actions: symplectic groups and resonance directions. J. Mod. Dyn., to appear.
[173] G., Warner. Harmonic Analysis on Semisimple Lie Groups I. Berlin: Springer Verlag, 1972.
[174] A., Weil. On discrete subgroups of Lie groups I. Annals of Math. 72 (1960) 369–384.
[175] A., Weil. On discrete subgroups of Lie groups II. Annals of Math. 75 (1962) 578–602.
[176] A., Weil. Adels and Algebraic Groups. Progress in Mathematics 23. Boston, MA: Birkhäuser,
[177] E., Weiss. Algebraic Number Theory. New York: Chelsea Publishing Company, 1963.
[178] M. D., Witte. Ratner's Theorems on Unipotent flows. Chicago Lectures in Mathematics, 2005.
[179] R., Zimmer. Ergodic Theory and Semisimple Groups. Boston, MA: Birkhäuser, 1984.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.