Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-24T23:58:12.641Z Has data issue: false hasContentIssue false

24 - RNAi and the drug discovery process

Published online by Cambridge University Press:  31 July 2009

Steven A. Haney
Affiliation:
Wyeth Research
Peter Lapan
Affiliation:
Wyeth Research
Jeff Aalfs
Affiliation:
Wyeth Research
Chris Miller
Affiliation:
Wyeth Research
Paul Yaworsky
Affiliation:
Wyeth Research
Chris Childs
Affiliation:
Wyeth Research
Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Andrew Fire
Affiliation:
Stanford University, California
Get access

Summary

Introduction

Drug discovery is a complex process that seeks to identify therapeutics for treating human disease. It has very high failure rate, and by one estimate, the total cost for a therapeutic successfully brought to market is 803 million dollars (DiMasi et al., 2003). Failure occurs at all points in the process, with failures at the pre-development stages being the most common, and failures at the clinical stages being the most costly. Scientists working in drug discovery are continually challenged to identify ways to improve the process. Current efforts are largely “target-based” approaches. Once chosen, the target may be studied in vitro for more than a year, and in model systems of the disease for up to four years. Errors in determining whether a given target is truly effective in treating a disease may not be detected until Phase II or Phase III clinical studies, which follow many years of study and a financial investment of tens or hundreds of millions of dollars. As such, target validation is a critical aspect of the drug discovery process.

The pharmaceutical industry has invested heavily in genomics because of its promise to provide a continuing supply of drug targets (Wiley, 1998; Ohlstein et al., 2000; Baba, 2001). Implicit in this investment has been the expectation that the targets provided by genomics are highly validated (Debouck and Metcalf, 2000). Thus, genomics has grown broadly across the drug discovery process, from target identification to phamacogenomics.

Type
Chapter
Information
RNA Interference Technology
From Basic Science to Drug Development
, pp. 331 - 346
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410CrossRefGoogle ScholarPubMed
Appasani, K. (2003). RNA interference: A technology platform for target validation, drug discovery and therapeutic development. Drug Discovery World, Summer Issue, 61–68Google Scholar
Baba, Y. (2001). Development of novel biomedicine based on genome science. European Journal of Pharmaceutical Sciences, 13, 3–4CrossRefGoogle ScholarPubMed
Balakin, K. V., Tkachenko, S. E., Lang, S. A., Okun, I., Ivashchenko, A. A. and Savchuk, N. P. (2002). Property-based design of GPCR-targeted library. Journal of Chemical Informatics and Computer Sciences, 42, 1332–1342CrossRefGoogle ScholarPubMed
Bishop, A. C., Ubersax, J. A., Petsch, D. T., Matheos, D. P., Gray, N. S., Blethrow, J., Shimizu, E., Tsien, J. Z., Schultz, P. Z., Rose, M. D., Wood, J. L., Morgan, D. O. and Shokat, K. M. (2000). A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature, 407, 395–401Google ScholarPubMed
Brummelkamp, T. R., Bernards, R. and Agami, R. (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science, 296, 550–553CrossRefGoogle ScholarPubMed
Cadigan, K. M. and Nusse, R. (1997). Wnt signaling: A common theme in animal development. Genes & Development, 11, 3286–3305CrossRefGoogle ScholarPubMed
Chalmers, D. T. and Behan, D. P. (2002). The use of constitutively active GPCRse in drug discovery and functional genomics. Nature Reviews Drug Discovery, 1, 599–608CrossRefGoogle ScholarPubMed
Coghlan, M. P., Culbert, A. A., Cross, D. A., Corcoran, S. L., Yates, J. W., Pearce, N. J., Rausch, O. L., Murphy, G. J., Carter, P. S., Cox, L. R., Mills, D., Brown, M. J., Haigh, D., Ward, R. W., Smith, D. G., Murray, K. J., Reith, A. D. and Holder, J. C. (2000). Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chemical Biology, 7, 793–803CrossRefGoogle ScholarPubMed
Colas, P., Cohen, B., Jessen, T., Grishina, I., McCoy, J. and Brent, R. (1996). Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature, 380, 548–550CrossRefGoogle ScholarPubMed
Dean, N. M. (2001). Functional genomics and target validation approaches using antisense oligonucleotide technology. Current Opinion in Biotechnology, 12, 622–625CrossRefGoogle ScholarPubMed
Debouck, C. and Metcalf, B. (2000). The impact of genomics on drug discovery. Annual Reviews of Pharmacology and Toxicology, 40, 193–207CrossRefGoogle ScholarPubMed
DiMasi, J. A., Hansen, R. W. and Grabowski, H. G. (2003). The price of innovation: new estimates of drug development costs. Journal of Health Economics, 22, 151–185CrossRefGoogle Scholar
Drolet, D. W., Jenison, R. D., Smith, D. E., Pratt, D. and Hicke, B. J. (1999). A high throughput platform for systematic evolution of ligands by exponential enrichment (SELEX). Combinatorial Chemistry and High Throughput Screening, 2, 271–278Google Scholar
Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494–498CrossRefGoogle ScholarPubMed
Elbashir, S. M., Harborth, J., Weber, K. and Tuschl, T. (2002). Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods, 26, 199–213CrossRefGoogle ScholarPubMed
Fahraeus, R., Paramio, J. M., Ball, K. L., Lain, S. and Lane, D. P. (1996). Inhibition of pRb phosphorylation and cell-cycle progression by a 20-residue peptide derived from p16CDKN2/INK4A. Current Biology, 6, 84–91CrossRefGoogle ScholarPubMed
Fawell, S., Seery, J., Daikh, Y., Moore, C., Chen, L. L., Pepinsky, B. and Barsoum, J. (1994). Tat-mediated delivery of heterologous proteins into cells. Proceedings of the National Academy of Sciences USA, 91, 664–668CrossRefGoogle ScholarPubMed
Fisch, I. (2001). Peptide display in functional genomics. Combinatorial Chemistry and High Throughput Screening, 4, 157–169CrossRefGoogle ScholarPubMed
Geyer, C. R., Colman-Lerner, A. and Brent, R. (1999). “Mutagenesis” by peptide aptamers identifies genetic network members and pathway connections. Proceedings of the National Academy of Sciences USA, 96, 8567–8572CrossRefGoogle ScholarPubMed
Golemis, E. A., Tew, K. D. and Dadke, D. (2002). Protein interaction-targeted drug discovery: Evaluating critical issues. BioTechniques, 32, 636–638Google ScholarPubMed
Grunwald, V., DeGraffenried, L., Russel, D., Friedrichs, W. E., Ray, R. B. and Hidalgo, M. (2002). Inhibitors of mTOR reverse doxorubicin resistance conferred by PTEN status in prostate cancer cells. Cancer Research, 62, 6141–6145Google ScholarPubMed
Harborth, J., Elbashir, S. M., Bechert, K., Tuschl, T. and Weber, K. (2001). Identification of essential genes in cultured mammalian cells using small interfering RNAs. Journal of Cell Science, 114, 4557–4565Google ScholarPubMed
Hemann, M. T., Fridman, J. S., Zilfou, J. T., Hernando, E., Paddison, P. J., Cordon-Cardo, C., Hannon, G. J. and Lowe, S. W. (2003). An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nature Genetics, 33, 396–400CrossRefGoogle ScholarPubMed
Hopkins, A. L. and Groom, C. R. (2002). The druggable genome. Nature Reviews Drug Discovery, 1, 727–730CrossRefGoogle ScholarPubMed
Iversen, P. L. (2001). Phosphorodiamidate morpholino oligomers: Favorable properties for sequence-specific gene inactivation. Current Opinion in Molecular Therapy, 3, 235–238Google ScholarPubMed
James, W. (2001). Nucleic acid and polypeptide aptamers: A powerful approach to ligand discovery. Current Opinion in Pharmacology, 1, 540–546CrossRefGoogle ScholarPubMed
Klabunde, T. and Hessler, G. (2002). Drug design strategies for targeting G-protein-coupled receptors. Chemicalbiochemistry, 3, 928–9443.0.CO;2-5>CrossRefGoogle ScholarPubMed
Knowles, J. and Gromo, G. (2003). A guide to drug discovery: Target selection in drug discovery. Nature Reviews Drug Discovery, 2, 63–69CrossRefGoogle ScholarPubMed
Krichevsky, A. M. and Kosik, K. S. (2002). RNAi functions in cultured mammalian neurons. Proceedings of the National Academy of Sciences USA, 99, 11926–11929CrossRefGoogle ScholarPubMed
Lee, N. S., Dohjima, T., Bauer, G., Li, H., Li, M. J., Ehsani, A., Salvaterra, P. and Rossi, J. (2002). Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature Biotechnology, 20, 500–505CrossRefGoogle ScholarPubMed
Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S. I., Puc, J., Miliaresis, C., Rodgers, L., McCombie, R., Bigner, S. H., Giovanella, B. C., Ittmann, M., Tycko, B., Hibshoosh, H., Wigler, M. H. and Parsons, R. (1997). PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science, 275, 1943–1947CrossRefGoogle ScholarPubMed
Madhani, H. D., Styles, C. A. and Fink, G. R. (1997). MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell, 91, 673–684CrossRefGoogle ScholarPubMed
Mao, B., Wu, W., Davidson, G., Marhold, J., Li, M., Mechler, B. M., Delius, H., Hoppe, D., Stannek, P., Walter, C., Glinka, A. and Niehrs, C. (2002). Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature, 417, 664–667CrossRefGoogle ScholarPubMed
McManus, M. T., Petersen, C. P., Haines, B. B., Chen, J. and Sharp, P. A. (2002). Gene silencing using micro-RNA designed hairpins. RNA, 8, 842–850CrossRefGoogle ScholarPubMed
Michiels, F., Es, H., Rompaey, L., Merchiers, P., Francken, B., Pittois, K., Schueren, J., Brys, R., Vandersmissen, J., Beirinckx, F., Herman, S., Dokic, K., Klaassen, H., Narinx, E., Hagers, A., Laenen, W., Piest, I., Pavliska, H., Rombout, Y., Langemeijer, E., Ma, L., Schipper, C., Raeymaeker, M. D., Schweicher, S., Jans, M., Beeck, K., Tsang, I. R., Stolpe, O. and Tomme, P. (2002). Arrayed adenoviral expression libraries for functional screening. Nature Biotechnology, 20, 1154–1157CrossRefGoogle ScholarPubMed
Miyagishi, M. and Taira, K. (2002). U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nature Biotechnology, 20, 497–500CrossRefGoogle ScholarPubMed
Moon, R. T., Bowerman, B., Boutros, M. and Perrimon, N. (2002). The promise and perils of Wnt signaling through beta-catenin. Science, 296 1644–1646CrossRefGoogle ScholarPubMed
Nagahara, H., Vocero-Akbani, A. M., Snyder, E. L., Ho, A., Latham, D. G., Lissy, N. A., Becker-Hapak, M., Ezhevsky, S. A. and Dowdy, S. F. (1998). Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nature Medicine, 4, 1449–1452CrossRefGoogle ScholarPubMed
Neshat, M. S., Mellinghoff, I. K., Tran, C., Stiles, B., Thomas, G., Petersen, R., Frost, P., Gibbons, J. J., Wu, H. and Sawyers, C. L. (2001). Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proceedings of the National Academy of Sciences USA, 98, 10314–10319CrossRefGoogle ScholarPubMed
Ohlstein, E. H., Ruffolo, R. R. Jr. and Elliott, J. D. (2000). Drug discovery in the next millennium. Annual Reviews of Pharmacology and Toxicology, 40, 177–191CrossRefGoogle ScholarPubMed
O'Neil, N. J., Martin, R. L., Tomlinson, M. L., Jones, M. R., Coulson, A. and Kuwabara, P. E. (2001). RNA-mediated interference as a tool for identifying drug targets. American Journal of Pharmacogenomics, 1, 45–53CrossRefGoogle ScholarPubMed
Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J. and Conklin, D. S. (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes & Development, 16, 948–958CrossRefGoogle ScholarPubMed
Paul, C. P., Good, P. D., Winer, I. and Engelke, D. R. (2002). Effective expression of small interfering RNA in human cells. Nature Biotechnology, 20, 505–508CrossRefGoogle ScholarPubMed
Polakis, P. (2000). Wnt signaling and cancer. Genes & Development, 14, 1837–1851Google ScholarPubMed
Rhoades, K. and Wong-Staal, F. (2003). Inverse Genomics as a powerful tool to identify novel targets for the treatment of neurodegenerative diseases. Mechanisms of Ageing and Development, 124, 125–132CrossRefGoogle ScholarPubMed
Roh, H., Green, D. W., Boswell, C. B., Pippin, J. A. and Drebin, J. A. (2001). Suppression of beta-catenin inhibits the neoplastic growth of APC-mutant colon cancer cells. Cancer Research, 61, 6563–6568Google ScholarPubMed
Sawyers, C. L. (2002). Rational therapeutic intervention in cancer: Kinases as drug targets. Current Opinion Genetics and Development, 12, 111–115CrossRefGoogle ScholarPubMed
Shi, Y. (2003). Mammalian RNAi for the masses. Trends in Genetics, 19, 9–12CrossRefGoogle ScholarPubMed
Shi, Y., Gera, J., Hu, L., Hsu, J. H., Bookstein, R., Li, W. and Lichtenstein, A. (2002). Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Research, 62, 5027–5034Google ScholarPubMed
Shibamoto, S., Higano, K., Takada, R., Ito, F., Takeichi, M. and Takada, S. (1998). Cytoskeletal reorganization by soluble Wnt-3a protein signalling. Genes & Cells, 3, 659–670Google ScholarPubMed
Sternberger, M., Schmiedeknecht, A., Kretschmer, A., Gebhardt, F., Leenders, F., Czauderna, F., Carlowitz, I., Engle, M., Giese, K., Beigelman, L. and Klippel, A. (2002). GeneBlocs are powerful tools to study and delineate signal transduction processes that regulate cell growth and transformation. Antisense Nucleic Acid Drug Development, 12, 131–143CrossRefGoogle Scholar
Sui, G., Soohoo, C., Affarel, B., Gay, F., Shi, Y. and Forrester, W. C. (2002). A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proceedings of the National Academy of Sciences USA, 99, 5515–55120CrossRefGoogle ScholarPubMed
Taylor, M. F. (2001). Target validation and functional analyses using antisense oligonucleotides. Expert Opinion in Therapeutic Targets, 5, 297–301CrossRefGoogle ScholarPubMed
Tetsu, O. and McCormick, F. (2003). Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell, 3, 233–245CrossRefGoogle ScholarPubMed
Torrance, C. J., Agrawal, V., Vogelstein, B. and Kinzler, K. W. (2001). Use of isogenic human cancer cells for high-throughput screening and drug discovery. Nature Biotechnology, 19, 940–945CrossRefGoogle ScholarPubMed
Voorhoeve, P. M. and Agami, R. (2003). Knockdown stands up. Trends in Biotechnology, 21, 2–4CrossRefGoogle ScholarPubMed
Wang, J., Tekle, E., Oubrahim, H., Mieyal, J. J., Stadtman, E. R. and Chock, P. B. (2003). Stable and controllable RNA interference: Investigating the physiological function of glutathionylated actin. Proceedings of the National Academy of Sciences USA, 100, 5103–5106CrossRefGoogle ScholarPubMed
Wiley, S. R. (1998). Genomics in the real world. CurrentPharmaceutical Design, 4, 417–422Google Scholar
Williams, D. H. and Mitchell, T. (2002). Latest developments in crystallography and structure-based design of protein kinase inhibitors as drug candidates. Current Opinion Pharmacology, 2, 567–573CrossRefGoogle ScholarPubMed
Yu, J. Y., DeRuiter, S. L. and Turner, D. L. (2002). RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proceedings of the National Academy of Sciences USA, 99, 6047–6052CrossRefGoogle ScholarPubMed
Yu, K., Toral-Barza, L., Discafani, C., Zhang, W. G., Skotnicki, J., Frost, P. and Gibbons, J. J. (2001). mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocrinology Related Cancer, 8, 249–258CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×