Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-25T17:25:39.025Z Has data issue: false hasContentIssue false

1 - INTRODUCTION

Published online by Cambridge University Press:  03 February 2010

V. Cerveny
Affiliation:
Charles University, Prague
Get access

Summary

The propagation of seismic body waves in complex, laterally varying 3-D layered structures is a complicated process. Analytical solutions of the elastodynamic equations for such types of media are not known. The most common approaches to the investigation of seismic wavefields in such complex structures are (a) methods based on direct numerical solutions of the elastodynamic equation, such as the finite-difference and finite-element methods, and (b) approximate high-frequency asymptotic methods. Both methods are very useful for solving certain types of seismic problems, have their own advantages and disadvantages, and supplement each other suitably.

We will concentrate here mainly on high-frequency asymptotic methods, such as the ray method. The high-frequency asymptotic methods are based on an asymptotic solution of the elastodynamic equation. They can be applied to compute not only rays and travel times but also the ray-theory amplitudes, synthetic seismograms, and particle ground motions. These methods are well suited to the study of seismic wavefields in smoothly inhomogeneous 3-D media composed of thick layers separated by smoothly curved interfaces. The high-frequency asymptotic methods are very general; they are applicable both to isotropic and anisotropic structures, to arbitrary 3-D variations of elastic parameters and density, to curved interfaces arbitrarily situated in space, to an arbitrary source-receiver configuration, and to very general types of waves. High-frequency asymptotic methods are also appropriate to explain typical “wave” phenomena of seismic waves propagating in complex 3-D isotropic and anisotropic structures. The amplitudes of seismic waves calculated by asymptotic methods are only approximate, but their accuracy is sufficient to solve many 3-D problems of practical interest.

Asymptotic high-frequency solutions of the elastodynamic equation can be sought in several alternative forms.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • INTRODUCTION
  • V. Cerveny, Charles University, Prague
  • Book: Seismic Ray Theory
  • Online publication: 03 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511529399.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • INTRODUCTION
  • V. Cerveny, Charles University, Prague
  • Book: Seismic Ray Theory
  • Online publication: 03 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511529399.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • INTRODUCTION
  • V. Cerveny, Charles University, Prague
  • Book: Seismic Ray Theory
  • Online publication: 03 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511529399.002
Available formats
×