Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-26T18:35:23.751Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  31 August 2019

B. L. N. Kennett
Affiliation:
Australian National University, Canberra
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Seismic Wavefield
Volume II: Interpretation of Seismograms on Regional and Global Scales
, pp. 502 - 529
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abers, G.A., 1998. Array measurements of phases used in receiver-function calculations: importance of scattering, Bull. Seism. Soc. Am., 88, 313–318.Google Scholar
Abrahamson, N.A. & Bolt, B.A., 1987. Array analysis and synthesis mapping of strong seismic motion, in Seismic Strong Ground Motion Synthesis, ed. B.A. Bolt, Academic Press, Orlando.Google Scholar
Adams, R.D., Hughes, A.A., & McGregor, D.M., 1982. Analysis procedures at the International Seismological Centre, Phys. Earth. Planet. Inter., 30, 85–93.CrossRefGoogle Scholar
Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle, in 2nd International Symposium on Information Theory, 267–281, eds. B., Petrov & F., Csaki (Eds.), Budapest Akademiai Kiado.
Aki, K., 1960. Study of earthquake mechanism by a method of phase equilisation applied to Rayleigh and Love waves, J. Geophys. Res., 65, 729–740.Google Scholar
Aki, K., & Richards, P.G., 1980. Quantitative Seismology, W.H. Freeman, San Franciso.Google Scholar
Ammon, C.J., 1991. The isolation of receiver effects from teleseismic P waveforms, Bull. Seism. Soc. Am., 81, 2504–2510.Google Scholar
Ammon, C.J., Randall, G.E. & Zandt, G., 1990. On the nonuniqueness of receiver function inversions, J. Geophys. Res., 95, 15303–15.318.CrossRefGoogle Scholar
Ammon, C.J., & Zandt, G., 1993. Receiver structure beneath the southern Mojave Block, California, Bull. Seism. Soc. Am., 83, 737–755.Google Scholar
Ando, M., 1984. ScS polarisation anisotropy around the Pacific Ocean, J. Phys. Earth, 32, 179–196.CrossRefGoogle Scholar
Ansell, J.H. & Gubbins, D., 1986. Anomalous high frequency wave propagation from the Tonga-Kermadec seismic zone to New Zealand, Geophys. J. R. Astr. Soc., 85, 93–106.CrossRefGoogle Scholar
Astiz, L., Earle, P. & Shearer, P., 1996. Global stacking of broadband seismograms, Seism. Res. Lett., 67, 8–18.CrossRefGoogle Scholar
Babuška, V. & Cara, M., 1991. Seismic Anisotropy in the Earth, Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
Babuška, V., Plomerova, J. & Šilený, J., 1993. Models of seismic anisotropy in the deep continental lithosphere, Phys. Earth. Planet. Inter., 78 167–191.CrossRefGoogle Scholar
Bai, C.-Y., & Kennett, B.L.N., 2000. Automatic phase-detection and identification by full use of a single three-component broadband seismogram, Bull. Seism. Soc. Am., 90, 187–198.CrossRefGoogle Scholar
Bai, C.-Y., & Kennett, B.L.N., 2001. Phase identification and attribute analysis of broadband seismograms at far-regional distances, J. Seismol., 5, 217–231.CrossRefGoogle Scholar
Bamford, S.A.D., 1973. Refraction data in Western Germany - a time term interpretation, Z. Geophys., 39, 907–923.Google Scholar
Barley, B.J., Hudson, J.A. & Douglas, A., 1982. S to P scattering at the 650 km discontinuity, Geophys. J. R. Astr. Soc., 49, 159–172.Google Scholar
Barruol, G., Silver, P.G., Vauchez, A., 1997. Seismic anisotropy in the eastern United States: Deep structure of a complex continental plate, J. Geophys. Res., 102, 8329–8348.CrossRefGoogle Scholar
Barruol, G., Helffrich, G. & Vauchez, A., 1997. Shear wave splitting around the Northern Atlantic: frozen Pangaean lithospheric anisotropy, Tectonophys., 279, 135–148.CrossRefGoogle Scholar
Bataille, K., Wu, R.-S. & Flattè, S.M., 1990. Inhomogeneities near the core-mantle boundary evidenced from scattered waves: a review, Pure Appl. Geophys., 132, 151–173.CrossRefGoogle Scholar
Baumont, D., Paul, A., Beck, S. & Zandt, G., 1999. Strong crustal heterogeneity in the Bolivian Altiplano suggested by attenuation of Lg waves, J. Geophys. Res., 104, 20287–20.305.CrossRefGoogle Scholar
Beckers, J., Schwartz, S.Y. & Lay, T., 1994. The velocity structure of the crust and upper mantle under China from broad-band P and PP waveform analysis, Geophys. J. Int., 119, 574–594.CrossRefGoogle Scholar
Benndorf, H., 1912. Besprechungen: A. Mohorovičić, Das Beben von 8.X.1909, Gerlands Beitr¨age Geophys., 11(2), 348–502.Google Scholar
Benz, H. & Vidale, J.E., 1993. The sharpness of upper mantle discontinuities determined from high frequency P'P', Nature, 365, 147–150.CrossRefGoogle Scholar
Beroza, G.C., 1991. Near source modeling of the Loma Prieta earthquake: evidence for heterogeneous slip and implications for earthquake hazard, Bull. Seism. Soc. Am., 81, 1603–1621.Google Scholar
Bhattacharya, J., Shearer, P. & Masters, G., 1993. Inner core attenuation from short-period PKP(BC) versus PKP(DF) waveforms, Geophys. J. Int., 114, 1–11.CrossRefGoogle Scholar
Bhattacharyya, J., Masters, G. & Shearer, P., 1996. Global lateral variations of shear wave attenuation in the upper mantle, J. Geophys. Res., 101, 22273–22. 289.CrossRefGoogle Scholar
Bijwaard, H. & Spakman, W., 2000. Non-linear global P-wave tomography by iterated linearized inversion, Geophys. J. Int., 141, 71–82.CrossRefGoogle Scholar
Bijwaard, H., Spakman, W. & Engdahl, E.R., 1998. Closing the gap between regional and global travel time tomography, J. Geophys. Res., 103, 30055–30.078.CrossRefGoogle Scholar
Billings, S., 1994. Simulated annealing for earthquake location Geophys. J. Int., 118, 680–692.CrossRefGoogle Scholar
Billings, S., Kennett, B.L.N., & Sambridge, M.S., 1994. Hypocentre location: genetic algorithms incorporating problem-specific information, Geophys. J. Int., 118, 693–706.CrossRefGoogle Scholar
Billings, S., Sambridge, M.S., & Kennett, B.L.N., 1994. Errors in hypocentre location: picking, model and magnitude dependence, Bull. Seism. Soc. Am., 84, 1978–1990.Google Scholar
Bina, C.R. & Silver, P.G., 1990. Constraints on lower mantle composition and temperature from density and bulk-sound speed profiles, Geophys. Res. Lett., 17, 1153–1156.CrossRefGoogle Scholar
Blandford, R.R., 1980. Seismic discrimination problems at regional distances, 695–740. in Identification of Seismic Sources - Earthquake or Underground Explosion, eds. Husebye, E.S. & Mykkeltveit, S., Riedel, Dordrecht.Google Scholar
Bock, G., 1988. Sp phases from the Australian upper mantle, Geophys. J., 94, 73–81.
Bock, G., 1994. Synthetic seismogram images of upper mantle structure: No evidence for a 520-km discontinuity, J. Geophys. Res., 99, 15843–15.851.CrossRefGoogle Scholar
Bock, G. & Ha, J., 1984. Short period S–P conversion in the mantle at a depth near 700 km, Geophys. J. R. Astr. Soc., 77, 593–615.CrossRefGoogle Scholar
Bock, G. & SVEKALAPKO Working Group, 2001. Seismic probing of Fennoscandian lithosphere, EOS Trans. Am. Geophys. Union, 82, 621.CrossRefGoogle Scholar
Bolton, H., 1996. Long period travel times and the structure of the mantle, Ph.D. thesis, Univ. of California, San Diego.Google Scholar
Bolton, H. & Masters, G., 1994. Scaling S to P in the mantle: does it work? EOS Trans. Am. Geophys. Union, 75, Fall Meeting Suppl., 476.Google Scholar
Bolton, H. & Masters, G., 2001. Travel times of P and S from the global digital seismic networks: Implications for the relative variation of P and S velocity in the mantle, J. Geophys. Res., 106, 13527–13.540.CrossRefGoogle Scholar
Boschi, L. & Dzeiwonski, A.M., 2000. Whole earth tomography from delay times of P, PcP, and PKP phases: Lateral heterogeneities in the outer core or radial anisotropy in the mantle, J. Geophys. Res., 105, 13675–13696.CrossRefGoogle Scholar
Bostock, M.G., 1998. Mantle stratigraphy and evolution of the Slave province, J. Geophys. Res., 103, 21183–21.200.CrossRefGoogle Scholar
Bostock, M.G. & Kennett, B.L.N., 1990. The effect of 3-D structure on Lg propagation patterns, Geophys. J. Int., 101, 355–365.CrossRefGoogle Scholar
Bostock, M.G. & Kennett, B.L.N., 1992. Multiple scattering of surface waves from surface obstacles, Geophys. J. Int., 108, 52–70.CrossRefGoogle Scholar
Bostock, M.G. & Rondenay, S., 1999. Migration of scattered teleseismic body waves, Geophys. J. Int., 137, 732–746.
Bostock, M.G., Rondenay, S. & Shragge, J. 2002. Multiparameter two-dimensional inversion of scattered teleseismic body waves: 1 - Theory for oblique incidence. J. Geophys. Res., 106, 30 771–30 782.Google Scholar
Bostrom, A. & Karlsson, K., 1984. Exact synthetic seismograms for an inhomogeneity in a layered half space, Geophys. J. R. Astr. Soc., 79, 835–862.CrossRefGoogle Scholar
Bouchon, M. & Aki, K., 1980. Simulation of long-period, near-field motion for the great California earthquake of 1857, Bull. Seism. Soc. Am., 70, 1669–1682.Google Scholar
Bour, M. & Cara, M., 1997. Test of a simple empirical Green's function method on moderate sized earthquakes, Bull. Seism. Soc. Am., 87, 668–683.Google Scholar
Bowman, J. R., 1992. The 1998 Tennant Creek, Northern Territory, earthquakes: a synthesis, Aust. J. Earth Sci., 39, 651–669.CrossRefGoogle Scholar
Bowman, J. R. & Ando, M., 1987. Shear-wave splitting in the upper mantle wedge above the Tonga subduction zone, Geophys. J. R. Astr. Soc., 88, 25–41.CrossRefGoogle Scholar
Bowman, J. R. & Kennett, B.L.N., 1990. An investigation of the upper mantle beneath northwestern Australia using a hybrid seismograph array, Geophys. J. Int., 101, 411–424.CrossRefGoogle Scholar
Bowman, J. R. & Kennett, B.L.N., 1991. Propagation of Lg waves in the North Australian craton: influence of crustal velocity gradients, Bull. Seism. Soc. Am., 81, 592–610.Google Scholar
Bowman, J. R. & Kennett, B.L.N., 1993. The velocity structure of the Australian Shield from seismic travel times, Bull. Seism. Soc. Am., 83, 25–37.Google Scholar
Bowman, J. R., Gibson, T. & Jones, T., 1990. Aftershocks of the 11 January 1988 Tennant Creek, Australia intraplate earthquakes: evidence for a complex thrust fault geometry, Geophys. J. Int., 100, 87–91.CrossRefGoogle Scholar
Bratt, S.R. & Bache, T.C., 1988. Locating events with a sparse network of regional arrays, Bull. Seism. Soc. Am., 78, 780–798.Google Scholar
Brèger, L., Romanowicz, B. & Tkalčić, H., 1999. PKP (BC-DF) travel time residuals and short scale heterogeneity in the deep earth, Geophys. Res. Lett., 26, 3169–3172.CrossRefGoogle Scholar
Buffet, B.A., 1998. Free oscillations in the length of the day: Inferences on physical processes near the core-mantle boundary, in The Core-Mantle Boundary Region, eds. M., Gurnis, M.E., Wysession, E., Knittle & B.A., Buffet, Geodynamics Monograph, 28, American Geophysical Union.Google Scholar
Buland, R., 1976. The mechanics of locating earthquakes, Bull. Seism. Soc. Am., 66, 173–187.Google Scholar
Buland, R., & Chapman, C.H., 1983. The computation of seismic travel times, Bull. Seism. Soc. Am., 73, 1271–1302.Google Scholar
Buland, R., & Gibert, F., 1976. Matched filtering for the seismic moment tensor, Geophys. Res. Lett., 3, 205–206.CrossRefGoogle Scholar
Bungum, H., Husebye, E.S. & Ringdal, F., 1971. The NORSAR array and preliminary results of data analysis, Geophys. J. R. Astr. Soc., 25, 115–126.CrossRefGoogle Scholar
Burdick, L.J. & Helmberger, D.V., 1978. The upper mantle P wave structure of the western United States, J. Geophys. Res., 83, 1699–1712.CrossRefGoogle Scholar
Calcagnile, G., Panza, G. F., Schwab, F., & Kausel, E. G., 1976. On the computation of theoretical seismograms for multimode surface waves, Geophys. J. R. Astr. Soc., 47, 73–82.CrossRefGoogle Scholar
Calvert, A., Sandvoil, E., Seber, D., Barazangi, M., Vidal, F., Alguacil, G. & Jabour, N., 2000. Propagation of regional seismic phases (Lg and Sn) and Pn velocity structure along the Africa-Iberia plate boundary zone: tectonic implications, Geophys. J. Int., 142, 384–408.CrossRefGoogle Scholar
Campillo, M., 1987. Lg wave propagation in a laterally varying crust and the distribution of the apparent quality factor in central France, J. Geophys. Res., 92, 12604–12.614.CrossRefGoogle Scholar
Campillo, M., 1990. Propagation and attenuation characteristics of the crustal phase Lg, Pure Applied Geophys., 132, 1–9.CrossRefGoogle Scholar
Campillo, M., Bouchon, M. & Massinon, B., 1984. Theoretical study of the excitation, spectral characteristics and geometrical attenuation of regional seismic phases, Bull. Seism. Soc. Am., 74, 79–90.Google Scholar
Campillo, M., Feignier, B., Bouchon, M. & Bethoux, N., 1993. Attenuation of crustal waves across the Alpine range, J. Geophys. Res., 98, 1987–1996.CrossRefGoogle Scholar
Cao, S. & Muirhead, K.J., 1993. Finite difference modelling of Lg blockage, Geophys. J. Int., 116, 85–96.Google Scholar
Castle, J.C. & Creager, K.C., 1999. A steeply dipping discontinuity in the lower mantle beneath Izu-Bonin, J. Geophys. Res., 104, 7279–7292.CrossRefGoogle Scholar
Cara, M., 1978. Regional variations of higher Rayleigh-mode phase velocities: A spatial filtering method, Geophys. J. R. Astr. Soc., 54, 1875–1888.CrossRefGoogle Scholar
Cara, M. & Lèvêque, J.J., 1987. Waveform inversion using secondary observables, Geophys. Res. Lett., 14, 1046–1049.CrossRefGoogle Scholar
Cassell, B.R., Mykkeltveit, S., Kanestrom, R. & Husebye, E.S., 1983. A North-Sea – Southern Norway seismic crustal profile, Geophys. J. R. Astr. Soc., 72, 733–753.CrossRefGoogle Scholar
Castle, J.C. & Creager, K.C., 2000. Local sharpness and shear wave speed jump across the 660-km discontinuity, J. Geophys. Res., 105, 6191–6200.CrossRefGoogle Scholar
Červeny, V., 2001. Seismic Ray Theory, Cambridge University Press, Cambridge.
Chaljub, E., 2000. Modèlisation numèrique de la propagation d'ondes sismiques en gèomètrie sphèrique: application à la sismologie globale, Ph.D. Thesis, Universitè Paris VII Denis Diderot, France.Google Scholar
Chazalon, A., Campillo, M., Gibson, R. & Garnero, E., 1993. Crustal wave propagation anomaly across the Pyrennean range – comparison between observations and numerical simulations, Geophys. J. Int., 115, 829–838.
Choy, G.L., 1977. Theoretical seismograms of core phases calculated by a frequencydependent full wave theory, and their interpretation, Geophys. J. R. Astr. Soc., 51, 275–311.CrossRefGoogle Scholar
Choy, G.L. & Richards, P.G., 1975. Pulse distortion and Hilbert transformation in multiply reflected and refracted body waves, Bull. Seism. Soc. Am., 65, 55–70.Google Scholar
Chinn, D., Isacks, B. & Barazangi, M., 1980. High-frequency wave propagation in western South America along the continental margin, in the Nazca plate, and across the Altiplano, Geophys. J. R. Astr. Soc., 60, 209–244.CrossRefGoogle Scholar
Clayton, R.W. & Wiggins, R.A., 1976. Source shape estimation and deconvolution of teleseismic body waves, Geophys. J. R. Astr. Soc., 47, 151–177.CrossRefGoogle Scholar
Clèvède, E., Mègnin, C., Romanowicz, B. & Lognonnè, P., 2000. Seismic waveform modelling and surface wave tomography in a three-dimensional Earth: asymptotic and non-asymptotic approaches, Phys. Earth Planet. Inter., 119, 37–56.CrossRefGoogle Scholar
Citheroe, G. & van der Hilst, R.D., 1998. Complex anisotropy in the Australian lithosphere for shear-wave splitting in briad-band SKS records, in Structure and Evolution of the Australian Continent, eds. J., Braun, J., Dooley, B., Goleby, R. van der, Hilst & C., Klootwijk, AGU Geodynamics Monographs, 26, 73–78.Google Scholar
Clouser & Langston, 1995. Modelling P-Rg conversions form isolated topographic features near the NORESS array, Bull. Seism. Soc. Am., 85, 859–873.
Clowes, R.M., Gens-Lenartowicz, E., Demartin, M. & Saxov, S., 1987. Lithospheric structure in southern Sweden - results from FENNOLORA, Tectonophys., 142, 1–14.CrossRefGoogle Scholar
Christofferson, A.E., Husebye, E.S. & Ingate, S., 1988. Wave field decomposition using ML-probabilities in modelling single site 3-component records, Geophys. J., 93, 197–213.CrossRefGoogle Scholar
Cleary, J. R. & Haddon, R.A.W., 1972. Seismic wave scattering near the core-mantle boundary: A new interpretation of precursors to PKIKP, Nature, 240, 549–551.CrossRefGoogle Scholar
Cleary, J.R., King, D.W. & Haddon, R.A.W., 1976. Seismic wave scattering in the earth's crust and upper mantle, Geophys. J. R. Astr. Soc., 43, 861–872.Google Scholar
Coates, R.T. & Chapman, C.H., 1990. Quasi-shear wave coupling in weakly anisotropic 3-D media, Geophys. J. Int., 103, 301–320.CrossRefGoogle Scholar
Cormier, V. & Richards, P.G., 1977. Full wave theory applied to a discontinuous velocity increase: The inner core boundary, J. Geophys., 43, 3–31.Google Scholar
Crampin, S.C., 1975. Distinctive particle motion of surface waves as a diagnostic of anisotropic layering, Geophys. J. R. Ast. Soc., 40, 177–186.CrossRefGoogle Scholar
Crampin, S.C., Stephen, R. & McGonigle, R., 1982. The polarization of P-waves in anistropic media, Geophys. J. R. Astr. Soc., 68, 477–485.CrossRefGoogle Scholar
Creager, K.C., 1992. Anisotropy of the inner core from differential times of the phases PKP and PKIKP, Nature, 356, 309–314.CrossRefGoogle Scholar
Creager, K.C., 1999. Large scale variation in inner core anisotropy, J. Geophys. Res., 104, 23 127–23 139.CrossRefGoogle Scholar
Creager, K.C., 2000. Inner core anisotropy and rotation, in Earth's Deep Interior: Mineral Physics and Tomography from Atomic to the Global Scale, eds. S.I., Karato, A.M., Forte, R.C., Liebermann, G., Masters & L., Stixrude, AGU Geophysical Monograph, 117, 89–114.Google Scholar
Creager, K.C. & Jordan, T.H., 1984. Slab penetration into the lower mantle, J. Geophys. Res., 89, 3031–3049.CrossRefGoogle Scholar
Creager, K.C. & Jordan, T.H., 1986. Aspherical structure of the core-mantle boundary from PKP travel times, Geophys. Res. Lett., 13, 1497–1500.CrossRefGoogle Scholar
Cummins, P.R., 1997. Earthquake near field and W phase observations at teleseismic distance, Geophys. Res. Lett., 24, 2857–2860.CrossRefGoogle Scholar
Cummins, P. & Johnson, L.R., 1988. Short-period body wave constraints of properties of the Earth's inner core boundary, J. Geophys. Res., 93, 9058–9074.CrossRefGoogle Scholar
Cummins, P.R., Takeuchi, N. & Geller, R.J., 1997 Computation of complete synthetic seismograms for laterally heterogeneous models using the Direct Solution Method, Geophys. J. Int., 130, 1–16.CrossRefGoogle Scholar
Cummins, P.R., Kennett, B.L.N. Bowman, J.R. & Bostock, M.G., 1992. The 520 km discontinuity? Bull. Seism. Soc. Am, 82, 323–336.Google Scholar
Dahlen, F.A., Hung, S.-H. & Nolet, G., 2000. Frèchet kernels for finite frequency traveltimes - I. Theory, Geophys. J. Int., 141, 157–174.CrossRefGoogle Scholar
Davies, G.F. & Richards, M.A., 1992, Mantle convection, J. Geology, 100, 151–206.CrossRefGoogle Scholar
Debayle, E., 1996. Tomographie du manteau supèrieur de l'Ocèan Indien par inversion de forme d'ondes, Ph.D. thesis, 170 pp., Univ. Louis Pasteur, Strasbourg, France.Google Scholar
Debayle, E., 1998. SV-wave azimuthal anisotropy in the Australian upper mantle: preliminary results from automated Rayleigh waveform inversion, Geophys. J. Int., 137, 747–751.Google Scholar
Debayle, E. & Kennett, B.L.N., 2000a. The Australian continental upper mantle - structure and deformation inferred from surface waves, J. Geophys. Res., 105, 25343–25.540.CrossRefGoogle Scholar
Debayle, E. & Kennett, B.L.N., 2000b. Anisotropy in the Australian upper mantle from Love and Rayleigh wave inversion, Earth Planet. Sci. Lett., 184, 339–351.CrossRefGoogle Scholar
Deuss, A., Woodhouse, J.H., Paulssen, H. & Trampert, J., 2000. The observation of inner core shear waves, Geophys. J. Int., 142, 67–73.CrossRefGoogle Scholar
Dey, S.C., Kennett, B.L.N., Bowman, J.R. & Goody, A., 1993. Variations in upper mantle structure under northern Australia, Geophys. J. Int., 114, 304–310.CrossRefGoogle Scholar
Doornbos, D.J., 1974. Seismic wave scattering near caustics: observation of PKKP precursors, Nature, 274, 352–353.Google Scholar
Doornbos, D.J., 1976. Characteristics of lower mantle heterogeneities from scattered waves, Geophys. J. R. Astr. Soc., 44, 447–470.CrossRefGoogle Scholar
Doornbos, D.J., 1978. On seismic-wave scattering by a rough core-mantle boundary, Geophys. J. R. Astr. Soc., 53, 643–662.CrossRefGoogle Scholar
Doornbos, D.J., 1980. The effect of a rough core-mantle boundary on PKKP, Phys. Earth Planet. Inter., 21, 351–358.CrossRefGoogle Scholar
Doornbos, D.J., 1988a. Multiple scattering by topographic relief with application to the core-mantle boundary, Geophys. J. Int. 92, 465–478.Google Scholar
Doornbos, D.J., 1988b. Asphericity and ellipticity corrections, in Seismological Algorithms, 75–85. ed. Doornbos, D.J., Academic Press, New York.Google Scholar
Doornbos, D.J. & Vlaar, N.J., 1973. Regions of seismic wave scattering in the Earth's mantle and precursors to PKP, Nature Phys. Sci., 243, 58–61.CrossRefGoogle Scholar
Dravinski, M., 1983. Scattering of plane SH waves by dipping layers of arbitrary shape, Bull. Seism. Soc. Am., 73, 1303–1319.Google Scholar
Dreger, D.S. & Helmberger, D.V., 1990. Broadband modelling of local earthquakes, Bull. Seism. Soc. Am., 80, 1162–1179.Google Scholar
Dreger, D.S. & Helmberger, D.V., 1993. Determination of source parameters at regional distances with single station or sparse network data, J. Geophys. Res., 98, 8107–8125.CrossRefGoogle Scholar
Dueker, K.G. & Sheehan, A.F., 1997. Mantle discontinuity structure from midpoint stacks of converted P-to-S waves across the Yellowstone hotspot track, J. Geophys. Res., 101, 8313–8327.Google Scholar
Dziewonski, A.M., 1970. On regional differences in dispersion of mantle Rayleigh waves, Geophys. J. R. Astr. Soc., 22, 289–325.Google Scholar
Dziewonski, A.M., 1971. Upper mantle models from ‘pure path’ dispersion data, J. Geophys. Res., 76, 2587–2601.CrossRefGoogle Scholar
Dziewonski, A.M., 1984. Mapping the lower mantle: Determination of lateral heterogeneities in P velocity up to degree and order 6, J. Geophys. Res., 89, 5962–5952.CrossRefGoogle Scholar
Dziewonski, A.M., 1995. Global seismic tomography of the mantle, Rev. Geophys., 33, 419–423.CrossRefGoogle Scholar
Dziewonski, A.M. & Hales, A.L., 1972. Numerical analysis of dispersed seismic waves, in Methods in Computational Physics, 11, 39–85. ed. B.A. Bolt, Academic Press, New York.Google Scholar
Dziewonski, A.M. & Gilbert, F., 1976. The effect of small, aspherical corrections on travel times and a re-examination of the corrections for ellipticity, Geophys. J. R. Astr. Soc., 44, 7–17.CrossRefGoogle Scholar
Dziewonski, A.M. & Anderson, D.L., 1981. Preliminary reference Earth model, Phys. Earth. Planet. Inter., 25, 297–358.CrossRefGoogle Scholar
Dziewonski, A.M. & Woodhouse, J.H., 1983. An experiment in systematic study of global seismicity: centroid moment tensors for 201 moderate and large earthquakes of 1981, J. Geophys. Res., 88, 3247–3271.CrossRefGoogle Scholar
Dziewonski, A.M., Hales, A.L. & Lapwood, E.R., 1975. Parametrically simple Earth models consistent with geophysical data, Phys. Earth. Planet. Inter., 10, 12–48.CrossRefGoogle Scholar
Dziewonski, A.M., Chou, T.-A. & Woodhouse, J.H., 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 86, 2825–2852.CrossRefGoogle Scholar
Dziewonski, A.M., Franzen, J.E. & Woodhouse, J.H., 1984. Centroid moment tensor solutions for January - March 1984, Phys. Earth Planet. Inter., 34, 209–219.CrossRefGoogle Scholar
Dziewonski, A.M., Ekström, G. & Maternovskaya, N.N., 1999. Centroid-moment tensor solutions for April-June, 1997, Phys. Earth Planet. Inter. 112, 1–9.
Ekström, G., Tromp, J. & Larson, E.W.F., 1997. Measurements and global models of surface wave propagation, J. Geophys. Res., 102, 8137–8157.CrossRefGoogle Scholar
Emmerich, H. & Korn, M., 1987. Incorporation of attentuation into time-domain computations of seismic wave fields, Geophysics, 52, 1252–1264.CrossRefGoogle Scholar
Engdahl, E.R. & Flinn, E.A., 1969. Seismic waves reflected from discontinuities within Earth's upper mantle, Science, 163, 177–179.CrossRefGoogle ScholarPubMed
Engdahl, E.R., van der Hilst, R.D. & Buland, R., 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination, Bull Seism. Soc. Am., 88, 722–743.Google Scholar
England, P.C., Worthington, M.H. & King, D.W., 1977. Lateral variation in the structure of the upper mantle beneath Eurasia, Geophys. J. R. Astr. Soc., 48, 71–79.CrossRefGoogle Scholar
England, P.C., Kennett, B.L.N. & Worthington, M.H., 1978. A comparison of upper mantle structures under Eurasia and the North Atlantic and Arctic oceans, Geophys. J. R. Astr. Soc., 54, 575–585.CrossRefGoogle Scholar
Estabrook, C.H. & Kind. R., 1996. The nature of the 660-kilometer upper-mantle seismic discontinuity from precursors to the PP phase, Science, 274, 1179–1182.CrossRefGoogle ScholarPubMed
Faber, S. & Müller, G., 1980. Sp phases from the transition zone between the upper and lower mantle, Bull. Seism. Soc. Am., 70, 487–508.Google Scholar
Faber, S. & Müller, G., 1984. Converted phases from the mantle transition zone observed at European stations, J. Geophys., 54, 183–194.Google Scholar
Faccioli, E., Maggio, F., Paolucci, R. & Quarteroni, A., 1997. 2D and 3D elastic wave propagation by a pseudo-spectral domain decomposition method, J. Seismol., 1, 237–251.CrossRefGoogle Scholar
Farra, V. & Vinnik, L., 2000. Upper mantle stratification by P and S receiver functions, Geophys. J. Int., 141, 699–712.CrossRefGoogle Scholar
Farra, V., Vinnik, L.P., Romanowicz, B., Kosarev, G.L. & Kind, R., 1991. Inversion of teleseismic S particle motion for azimuthal anisotropy in the upper mantle: a feasibility study, Geophys. J. Int., 106, 421–431.CrossRefGoogle Scholar
Field, E.D., 1996. Spectral amplification in a sediment-filled valley exhibiting clear basin-edge-induced waves, Bull. Seism. Soc. Am., 86, 991–1005.Google Scholar
Finlayson, B.A., 1972. The Method of Weighted Residuals and Variational Principles, Academic Press, New York.Google Scholar
Finlayson, D.M., 1982. Seismic crustal structure of the Proterozoic north Australian craton between Tennant Creek and Mount Isa, J. Geophys. Res., 87, 10569–10.578.CrossRefGoogle Scholar
Fischer, K.M., Creager, K.C. & Jordan, T.H., 1991. Mapping the Tonga slab, J. Geophys. Res., 96, 14403–14.427.CrossRefGoogle Scholar
Flanagan, M.P. & Shearer, P.M., 1998. Global mapping of topography on transition zone discontinuities by stacking SS precursors, J. Geophys. Res., 103, 2673–2692.CrossRefGoogle Scholar
Frankel, A., 1993. Three-dimensional simulations of ground motions in the San Bernardino valley, California, for hypothetical earthquakes on the San Andreas fault, Bull. Seism. Soc. Am., 83, 1020–1041.Google Scholar
Fuchs, K., 1975. Synthetic seismograms of PS reflections from transition zones computed with the reflectivity method, J. Geophys., 41, 445–462.Google Scholar
Fuchs, K. & Schulz, K., 1976. Tunneling of low-frequency waves through the subcrustal lithosphere, J. Geophys., 42, 175–190.Google Scholar
Fujiwara, H., 2000. The fast multipole method for solving integral equations of three-dimensional topography and basin problems, Geophys. J. Int., 140, 198–210.CrossRefGoogle Scholar
Fukao, Y., 1984. Evidence from core-reflected shear wave for anisotropy in the Earth's mantle, Nature, 309, 695–698.CrossRefGoogle Scholar
Fukao, Y., Obayashi, M., Inoue, H. & Nenbai, M., 1992. Subduction zones stagnant in the lower mantle. J. Geophys. Res., 97, 4809–4822.CrossRefGoogle Scholar
Fukuyama, E., Ishida, M., Dreger, D.S. & Kawai, H., 1998. Automated seismic moment tensor determination by using on-line broadband seismic waveforms, Zisin, 51, 149–156.CrossRefGoogle Scholar
Furumura, M., Kennett, B.L.N. & Furumura, T., 1999. Seismic wavefield calculation for laterally heterogeneous Earth models II. - the effect of upper mantle heterogeneity, Geophys. J. Int., 138, 623–644.Google Scholar
Furumura, T. & Takenaka, H., 1996. 2.5-D modelling of elastic waves using the pseudospectral method Geophys. J. Int., 124, 820–832.CrossRefGoogle Scholar
Furumura, T. & Kennett, B.L.N., 1997, On the nature of regional seismic phases - II. On the effect of crustal barriers, Geophys. J. Int., 129, 221–234.CrossRefGoogle Scholar
Furumura, T. & Kennett, B.L.N., 1998. On the nature of regional seismic phases - III. The influence of crustal heterogeneity on the wavefield for subduction earthquakes: the 1985 Michoacan and 1995 Copala, Guerrero, Mexico earthquakes, Geophys. J. Int., 135, 1060–1084.CrossRefGoogle Scholar
Furumura, T. & Kennett, B.L.N., 2001. Variations in regional phase propagation in the area around Japan, Bull. Seism. Soc. Am., 96, 667–682.Google Scholar
Furumura, T. & Koketsu, K., 1998. Specific distribution of ground motion during the 1995 Kobe earthquake and its generation mechanism, Geophys. Res. Lett., 25, 785–788.CrossRefGoogle Scholar
Furumura, T. & Koketsu, K., 2000. Parallel 3-D simulation of ground motion for the 1995 Kobe earthquake: the component decomposition approach, Pure Appl. Geophys., 157, 2047–2062.CrossRefGoogle Scholar
Furumura, T., Kennett, B.L.N. & Furumura, M., 1998. Synthetic seismograms for a laterally heterogeneous whole earth models by the pseudospectral method, Geophys. J. Int., 135, 845–860.CrossRefGoogle Scholar
Furumura, T., Koketsu, K. & Wen, K.L., 2002. Parallel PSM/GDSM hybrid simulations of ground motions from the 1999 Chi-Chi earthquake, Pure Appl. Geophys., in press.
Gajewski, D., Stangl, R., Fuchs, K. & Sandmeier, K.J., 1990. A new constraint on the composition of the topmost continental mantle - anomalously different depth increases of P and S velocity, Geophys. J. Int., 103, 497–507.CrossRefGoogle Scholar
Garnero, E.J. & Helmberger, D.V., 1996. Seismic detection of a thin laterally varying boundary layer at the base of the mantle beneath the central Pacific, Geophys. Res. Lett., 23, 977–980.CrossRefGoogle Scholar
Garnero, E.J., Revenaugh, J., Williams, Q., Lay, T. & Kellogg, L.H., 1998. Ultralow velocity zone at the core mantle boundary, in The Core-Mantle Boundary Region, eds.M. Gurnis, M.E. Wysession, E. Knittle & B.A. Buffet, Geodynamics Monograph, 28, American Geophysical Union.Google Scholar
Gao, S., Liu, H., Davis, P.M. & Knopoff, L., 1996. Localised amplification of seismic waves and correlation with damage due to the Northridge earthquake, Bull. Seism. Soc. Am., 86, S209–S230.
Gee, L.S. & Jordan, T.H., 1992. Generalized seismological data functionals: 1. Theory, Geophys. J. Int., 111, 363–390.CrossRefGoogle Scholar
Geiger, L., 1910. Herdbestimmung bei Erdbeden aus den Ankunftzeiten, K. Gessel. Wiss. Goett., 4, 331–349.Google Scholar
Geller, R.J. & Ohminato, T., 1994. Computation of synthetic seismograms and their partial derivatives for heterogeneous media with arbitrary natural boundary conditions using the Direct Solution Method (DSM), Geophys. J. Int., 116, 421–446.CrossRefGoogle Scholar
Glatzmaier, G.A. & Roberts, P.H., 1995. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle, Phys. Earth Planet. Inter., 91, 63–75.CrossRefGoogle Scholar
Girardin, N. & Farra, V., 1998. Azimuthal anisotropy in the upper mantle from observations of P-to-S phases: application to southeast Australia, Geophys. J. Int., 133, 615–629.CrossRefGoogle Scholar
Goes, S., Govers, R. & Vacher, P., 2000. Shallow mantle temperatures under Europe from P and S tomography, J. Geophys. Res., 105, 11153–11169.CrossRefGoogle Scholar
Goldstein, P. & Dodge, P., 1999. Fast and accurate depth and source mechanism estimation using P-waveform modeling: a tool for special event analysis, event screening, and regional calibration, Geophys. Res. Lett., 26, 2569–2572. 1999.CrossRefGoogle Scholar
Gorbatov, A., Fukao, Y. & Widiyantoro, S., 2001. Application of a three-dimensional ray tracing technique to global P, PP and Pdiff traveltime tomography, Geophys. J. Int., 146, 583–593.CrossRefGoogle Scholar
Grad, M. & Luosto, U., 1987. Seismic models of the crust of the Baltic shield along the SVEKA profile in Finland, Annales Geophysicae, 5B, 639–650.
Grand, S.P., 1987. Tomographic inversion for shear velocity beneath the North American plate, J. Geophys. Res., 92, 14065–14.090.CrossRefGoogle Scholar
Grand, S.P., 1994. Mantle shear structures beneath the Americas and surrounding oceans, J. Geophys. Res., 99, 11591–11.621.CrossRefGoogle Scholar
Grand, S.P. & Helmberger, D.V., 1984a. Upper mantle shear structure of North America, Geophys. J. R. Astr. Soc., 76, 399–428.CrossRefGoogle Scholar
Grand, S.P. & Helmberger, D.V., 1984b. Upper mantle shear structure beneath the northwest Atlantic Ocean, J. Geophys. Res., 89, 11465–11.475.CrossRefGoogle Scholar
Grand, S.P. & Helmberger, D.V., 1985. Upper mantle shear structure beneath Asia from multi-bounce S waves, Phys. Earth. Planet, Inter., 41, 154–169.CrossRefGoogle Scholar
Grand, S.P., van der Hilst, R.D. & Widiyantoro, S., 1997. Global seismic tomography: a snapshot of convection in the Earth, GSA Today, 7(4), 1–7.Google Scholar
Graves, R.W., 1996. Simulating seismic wave propagation in 3-D elastic media using staggered grid finite difference schemes: stability and grid dispersion, Bull. Seism. Soc. Am., 86, 1091–1106.Google Scholar
Gregersen, S., 1982. Seismicity and observations of Lg wave attenuation in Greenland, Tectonophys., 89, 77–93.CrossRefGoogle Scholar
Gregersen, S., 1984. Lg wave propagation and crustal structure differences near Denmark and the North Sea, Geophys. J. R. Astr. Soc., 79, 217–234.CrossRefGoogle Scholar
Gregersen, S. & TOR Working Group, 1999. Important findings expected from Europe's largest seismic array, EOS Trans. Am. Geophys. Union, 80, 1.CrossRefGoogle Scholar
Gubbins, D. & Snieder, R., 1986. Dispersion of P subducted lithosphere: evidence for an eclogite layer, J. Geophys. Res., 96, 93–106.Google Scholar
Gudmundsson, O. & Sambridge, M., 1998. A regionalized upper mantle (RUM) seismic model, J. Geophys. Res., 103, 7121–7136.CrossRefGoogle Scholar
Gudmundsson, O., Kennett, B.L.N. & Goody, A., 1994. Broadband observations of upper mantle seismic phases in northern Australia and the attenuation structure in the upper mantle, Phys. Earth Planet. Inter., 84, 207–236.CrossRefGoogle Scholar
Guggisberg, B. & Berthelsen, A., 1987. A two-dimensional model for the lithosphere beneath the Baltic Shield and its possible tectonic significance, Terra Cognita, 7, 631–638.Google Scholar
Gurnis, M., Wysession, M.E., Knittle, E. & Buffet, B.A. (eds.), 1998. The Core-Mantle Boundary Region, Geodynamics Monograph, 28, American Geophysical Union.CrossRefGoogle Scholar
Gurrola, H., Minster, J.B. & Owens, T., 1994. The use of velocity spectrum for stacking receiver functions and imaging upper mantle discontinuities, Geophys. J. Int., 117, 427–440.CrossRefGoogle Scholar
Gurrola, H., Baker, F.G. & Minster, J.B., 1995. Simultaneous time-domain deconvolution with application to the computation of receiver functions, Geophys. J. Int., 120, 537–543.CrossRefGoogle Scholar
Haase, J., Hauksson, E., Vernon, F. & Edelman, A., 1996. Modeling of ground motion from a 1994 Northridge aftershock using a tomographic velocity model of the Los Angeles basin, Bull. Seism. Soc. Am., 86, S156–S167.
Haddon, R.A.W. & Cleary, J.R., 1974. Evidence for scattering of seismic PKP waves near the mantle core boundary, Phys. Earth Planet. Inter., 8, 211–234.CrossRefGoogle Scholar
Haines, A.J., 1988. Multi-source, multi-receiver synthetic seismograms for laterally heterogeneous media using f − k domain propagators, Geophys. J. Int., 95, 237–260.CrossRefGoogle Scholar
Hales, A.L., 1971. The travel times of P seismic waves and their relevance to the upper mantle velocity distribution, Tectonophys., 13, 447–482.Google Scholar
Hales, A.L., Muirhead, K.J. & Rynn, J.W., 1980. A compressional velocity distribution for the upper mantle, Tectonophys., 63, 309–348.CrossRefGoogle Scholar
Hammond, W.C. & Humphreys, E., 2000a. Upper mantle seismic wave velocity: effects of realistic partial melt geometries, J. Geophys. Res., 105, 10975–10986.Google Scholar
Hammond, W.C. & Humphreys, E., 2000b. Upper mantle seismic wave attenuation: effects of realistic partial melt distribution, J. Geophys. Res., 105, 10987–10999.Google Scholar
Hanks, T.C. & Krawinkler, H., 1991. The 1989 Loma Prieta, California, earthquake and its effects: introduction to the special issue, Bull. Seism. Soc. Am., 81, 1415–1423.Google Scholar
Hansen, R.A., Ringdal, F. & Richards, P.G., 1990. The stability of rms Lg measurements and their potential for accurate estimates of the yields of Soviet underground nuclear explosions, Bull. Seism. Soc. Am., 80, 2106–2126.Google Scholar
Harjes, H.-P., 1990. Design and siting of a new regional seismic array in central Europe, Bull. Seism. Soc. Am., 80, 1801–1817.Google Scholar
Hartzell, S.H., Stewart, G.S. & Mendoza, C., 1991. Comparison of L1 and L2 norms in a teleseismic waveform inversion for the slip history of the Loma Prieta, California, earthquake, Bull. Seism. Soc. Am., 81, 1518–1539.Google Scholar
Hartzell, S.H., Harmson, S., Frankel, A. & Larson, S., 1999. Calculation of broadband histories of ground motion: comparison of methods and validation using strong-ground motion from the 1994 Northridge earthquake, Bull. Seism. Soc. Am., 89, 1484–1504.Google Scholar
Hasegawa, A., Zhao, D., Hori, S., Yamamoto, A. & Horiuchi, S., 1991. Deep structure of the northeastern Japan arc and its relationship to seismic and volcanic activity, Nature, 352, 683–689.CrossRefGoogle Scholar
Hatayama, K. & Fujiwara, H., 1998. Excitation of secondary Love and Rayleigh waves in a three-dimensional sedimentary basin evaluated by the direct boundary element method with normal modes, Geophys. J. Int., 133, 260–278.CrossRefGoogle Scholar
He, X. & Tromp, J., 1996. Normal mode constraints on the structure of the Earth, J. Geophys. Res., 101, 20053–20.082.CrossRefGoogle Scholar
Heaton, T.H., Hall, J.F., Wald, D.J. & Halling, M.W., 1995. Response of high-rise and base-isolated buildings to a hypothetical Mw 7.0 blind thrust earthquake, Science, 267, 206–211.CrossRefGoogle ScholarPubMed
Hedlin, M.A.H. & Shearer, P., 2000. An analysis of large scale variations in small-scale mantle heterogeneity using Global Seismographic Network recordings of precursors to PKP, J. Geophys. Res., 105, 13655–13673.CrossRefGoogle Scholar
Helmberger, D.V. & Wiggins, R.A., 1971. Upper mantle structure of the midwestern United States, J. Geophys. Res., 76, 3229–3245.CrossRefGoogle Scholar
Helmberger, D.V. & Engen, G.R., 1974. Upper mantle shear structure, J. Geophys. Res., 79, 4017–4028.CrossRefGoogle Scholar
Helmberger, D.V., Song, X.J. & Zhu, L., 2001. Crustal complexity from regional waveform tomography: aftershocks of the 1992 Landers earthquake, California. J. Geophys. Res., 106, 609–620.CrossRefGoogle Scholar
Hestholm, S., & Rudd, B., 1998 3-D finite-difference elastic wave modelling including surface topography, Geophysics, 63, 613–622.Google Scholar
Hirahara, K., 1977. A large-scale three-dimensional seismic structure under the Japan islands and the Sea of Japan, J. Phys. Earth, 28, 221–241.Google Scholar
Hirahara, K. & Mikumo, T., 1980. Three-dimensional seismic structure of subducting lithospheric plates under the Japan islands, Phys. Earth Planet. Inter., 21, 109–121.CrossRefGoogle Scholar
Hirn, A., 1977. Anisotropy in the continental upper mantle: possible evidence from explosion seismology, Geophys. J. R. Astr. Soc., 49, 49–58.CrossRefGoogle Scholar
Hirn, A., Steinmetz, L., Kind, R. & Fuchs, K., 1973. Long range profiles in western Europe. II. Fine structure of the lithosphere in Bretagne (France), Z. Geophys., 39, 363–384.Google Scholar
Hirn, A., Prodehl, C. & Steinmetz, L., 1975. An experimental test of models of the lower lithosphere in Bretagne (France), Ann. G´eophys., 31, 517–530.Google Scholar
Hiyoshi, Y., 2001. Regional surfce waveform inversion for Australian paths, Ph.D. thesis, Australian National University.Google Scholar
Holland, J.H., 1975 Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor.Google Scholar
Hung, S.-H., Dahlen, F.A. & Nolet, G., 2000. Frèchet kernels for finite frequency traveltimes - II. Examples, Geophys. J. Int., 141, 175–203.CrossRefGoogle Scholar
Husebye, E., King, D.W. & Haddon, R.A.W., 1976. Precursors to PKIKP and seismic wave scattering near the mantle-core boundary. J. Geophys. Res., 81, 1870–1882.CrossRefGoogle Scholar
Hutchings, L., 1994. Kinematic earthquake models and synthesised ground motion using empirical Green's functions, Bull. Seism. Soc. Am., 84, 1028–1050.Google Scholar
Igel, H. & Weber, M., 1996. P-SV wave propagation in the whole mantle using high-order finite differences: application to lowermost mantle structure, Geophys. Res. Lett., 23, 415–418.CrossRefGoogle Scholar
Igel, H. & Gudmundsson, O., 1997. Frequency dependent effects on travel times and waveforms of long period S and SS waves, Phys. Earth Planet. Inter., 104, 229–249.CrossRefGoogle Scholar
Igel, H. & Geller, R.J., 2000. Numerical modelling of global seismic wave propagtion: algorithms - accuracy - verification, Phys. Earth Planet. Inter., 119, 1–2.CrossRefGoogle Scholar
Igel, H., Takeuchi, N., Geller, R.J., Mègnin, C., Bunge, H.-P., Clèvède, E., Dalkolmo, J. & Romanowicz, B., 2000. The COSY project: verification of global seismic modelling algorithms, Phys. Earth Planet. Inter., 119, 3–24.CrossRefGoogle Scholar
Inoue, T. & Miyatake, T., 1997. 3-D simulation of near-field strong motion: basin edge effect derived from rupture directivity, Geophys. Res. Lett., 24, 905–908.CrossRefGoogle Scholar
Inoue, H., Fukao, Y., Tanabe, K. & Ogata, Y., 1990. Whole mantle P-wave mantle tomography, Phys. Earth. Planet Inter., 59, 294–328.CrossRefGoogle Scholar
Ishii, M., Tromp, J., Dziewonski, A.M. & Ekström, G., 2002a. Joint inversion of normal-mode and body wave data for inner-core anisotropy: 1. Simple inner-core models and mantle heterogeneity, J. Geophys. Res., submitted.CrossRef
Ishii, M., Tromp, J., Dziewonski, A.M. & Ekström, G., 2002b. Joint inversion of normal-mode and body wave data for inner-core anisotropy: 2. Possible complexities within the inner core and mantle, J. Geophys. Res., submitted.CrossRef
Iyer, H.M., Pakiser, L.C., Stuart, D.J. & Warren, D.H., 1969. Project Early Rise: seismic probing of the upper mantle, J. Geophys. Res., 74, 4409–4441.CrossRefGoogle Scholar
Iyer, H.M. & Hirahara, K., 1993 Seismic Tomography, Chapman & Hall, London.Google Scholar
Jacob, A.W.B. & Booth, D.C., 1977. Observations of PS reflections from the Moho, J. Geophys., 43, 687–692.Google Scholar
Jeffreys, H., 1932. An alternative to the rejection of observations. Proc. R. Soc. Lond., 137A, 78–87.Google Scholar
Jeffreys, H. & Bullen, K.E., 1940. Seismological Tables, British Association Seismological Committee, London.Google Scholar
Jobert, N. Gaulon, R., Dieulin, A. & Roult, G., 1977. Sur les ondes de très longue pèriode, caractèristiques du manteau supèrieur, Compte Rendu Acad. Sci. Paris, B285, 49–51.Google Scholar
Jepsen, D.C. & Kennett, B.L.N., 1990. Three component array analysis, Bull. Seism. Soc. Am., 80, 2032–2052.Google Scholar
Jones, L.M. & Helmberger, D.V., 1998. Earthquake source parameters in the eastern California Shear Zone, Bull. Seism. Soc. Am., 88, 1337–1352.Google Scholar
Jones, L.E., Mori, J. & Helmberger, D.V., 1992. Short-period constraints on the proposed transition zone discontinuity, J. Geophys. Res., 97, 8765–8774.CrossRefGoogle Scholar
Jordan, T.H., 1975. The continental tectosphere, Rev. Geophys., 13, 1–12.CrossRefGoogle Scholar
Jordan, T.H., 1977. Lithospheric slab penetration into the lower mantle beneath the Sea of Okhotsk, J. Geophys. Res., 43, 473–496.Google Scholar
Jordan, T.H., 1978. A procedure for estimating lateral variations from low-frequency eigenspectra data, Geophys. J. R. Astr. Soc., 52, 441–455.CrossRefGoogle Scholar
Jordan, T.H., 1988. Structure and formation of continental tectosphere, J. Petrology, Special Lithosphere Issue, 11–37.Google Scholar
Jordan, T.H. & Lynn, W.S., 1974. A velocity anomaly in the lower mantle, J. Geophys. Res., 79, 2679–2685.CrossRefGoogle Scholar
Jordan, T.H., & Sverdrup, K.A., 1981. Teleseismic location techniques and their application to earthquake clusters in the South-Central Pacific, Bull. Seism. Soc. Am., 71, 1105–1130.Google Scholar
Jurkevics, A., 1988. Polarization analysis of three-component array data, Bull. Seism. Soc. Am., 78, 1725–1743.Google Scholar
Kaiho, Y. & Kennett, B.L.N., 2000. Three-dimensional seismic structure beneath the Australasian region from refracted wave observations, Geophys J. Int., 142, 651–668.CrossRefGoogle Scholar
Kamae, K. & Irikura, K., 1998. Source model of the 1995 Hyogo-ken Nanbu earthquake and simulation of near-source ground motion, Bull. Seism. Soc. Am., 88, 400–412.Google Scholar
Kaminski, W., Bamford, D., Faber, S., Jacob, B., Nunn, K. & Prodehl, C., 1976. A lithospheric profile in Britain in Britain II - A preliminary report on the recording of a local earthquake, J. Geophys., 45, 255–272.Google Scholar
Kanamori, H., 1972. Tectonic implications of the 1944 Tonankai and the 1946 Nankaido earthquakes, Phys. Earth Planet. Inter., 5, 129–139.CrossRefGoogle Scholar
Kanamori, H., Mori, J., Hauksson, E., Heaton, T.H., Hutton, L.K. & Jones, L.M., 1993. Determination of earthquake energy release and ML using TERRAscope, Bull. Seism. Soc. Am., 83, 330–346.Google Scholar
K'arason, H. & van der Hilst, R.D., 2001. Constraints on mantle convection from seismic tomography, in History and Dynamics of Plate Motion, 277–288, eds. M., Richards, R., Gordon & R.D. van der, Hilst, AGU Geophysical Monograph Series, 121.Google Scholar
K'arason, H. & van der Hilst, R.D., 2001. Tomographic imaging of the lowermost mantle with differential times of refracted and diffracted core phases (PKP, Pdiff), J. Geophys. Res., 106, 6569–6588.Google Scholar
Kato, M. & Kawakatsu, H., 2001. Seismological in situ estimation of density jumps across the transition zone discontinuities beneath Japan, Geophys. Res. Lett., 28, 2541–2544.CrossRefGoogle Scholar
Kato, M., Misawa, M. & Kawakatsu, H., 2001. Small subsidence of the 660-km discontinuity beneath Japan probed by ScS reverberations, Geophys. Res. Lett., 28, 447–450.CrossRefGoogle Scholar
Katzman, R., Zhao, L. & Jordan, T.H., 1998. High-resolution two-dimensional vertical tomography of the central Pacific mantle using ScS reverberations and frequency-dependent travel times, J. Geophys. Res., 103, 17933–17 932.CrossRefGoogle Scholar
Kawase, H., 1996. The cause of the damage belt in Kobe: “The basin-edge effect”, constructive interference of the direct S-wave with the basin induced/diffracted Rayleigh waves, Seism. Res. Lett., 67, 25–34.CrossRefGoogle Scholar
Kawakatsu, H., 1995. Automated near-realtime CMT inversion, Geophys. Res. Lett., 22, 2569–2572.CrossRefGoogle Scholar
Katzman, R., Zhao, L. & Jordan, T.H., 1998. High-resolution, 2-dimensional vertical tomography of the central Pacific mantle using ScS reverberations and frequency dependent traveltimes, J. Geophys. Res., 103, 17933–17 971.CrossRefGoogle Scholar
Keers, H., Nolet, G. & Dahlen, F.A., 1996. Ray theoretical analysis of Lg, Bull. Seism. Soc. Am., 86, 726–736.Google Scholar
Kelly, K.R., Ward, R.W., Treitel, S. & Alford, R.M., 1976. Synthetic seismograms: A finite difference approach. Geophysics, 41, 2–27.CrossRefGoogle Scholar
Kendall, J.-M. & Shearer, P.M., 1994. Lateral variations in D” thickness from long-period shear-wave data, J. Geophys. Res., 99, 11575–11 590.CrossRefGoogle Scholar
Kendall, J.-M. & Silver, P.G., 1996. Constraints from seismic anisotropy on the nature of the lowermost mantle, Nature, 381, 409–412.CrossRefGoogle Scholar
Kennett, B.L.N., 1975. The effects of attenuation on seismograms, Bull. Seism. Soc. Am, 65, 1643–1651.Google Scholar
Kennett, B.L.N., 1976. A comparison of travel time inversions, Geophys. J. R. Astr. Soc., 44, 1643–1651.CrossRefGoogle Scholar
Kennett, B.L.N., 1977a. Inversion of long-range seismic profiles, J. Geophys., 43, 243–356.Google Scholar
Kennett, B.L.N., 1977b. Towards a more detailed seismic picture of the oceanic crust and mantle, Marine Geophys. Res., 3, 7–42.CrossRefGoogle Scholar
Kennett, B.L.N., 1984a. Guided waves in laterally varying media, I: Theoretical development, Geophys. J. R. Astr. Soc., 79, 235–255.CrossRefGoogle Scholar
Kennett, B.L.N., 1984b. An operator approach to forward modelling, data processing and migration, Geophys. Prospect., 32, 1074–1090.CrossRefGoogle Scholar
Kennett, B.L.N., 1985. On regional S, Bull. Seism. Soc. Am., 75, 1077–1088.Google Scholar
Kennett, B.L.N., 1986a. Wavenumber and wavetype coupling in laterally heterogeneous media, Geophys. J. R. Astr. Soc., 87, 313–331.CrossRefGoogle Scholar
Kennett, B.L.N., 1986b. Lg waves and structural boundaries, Bull. Seism. Soc. Am., 76, 1131–1141.Google Scholar
Kennett, B.L.N., 1987. Observational and theoretical constraints on crustal and upper mantle heterogeneity, Phys. Earth Planet. Inter., 47, 235–255.CrossRefGoogle Scholar
Kennett, B.L.N., 1989a. Lg-wave propagation in heterogeneous media, Bull. Seism. Soc. Am., 79, 860–872.Google Scholar
Kennett, B.L.N., 1989b. On the nature of regional seismic phases - I. Phase representations for Pn, Pg, Sn, Lg, Geophys. J. R. Astr. Soc., 98, 447–456.CrossRefGoogle Scholar
Kennett, B.L.N., 1991a. The removal of free surface interactions from three-component seismograms, Geophys J. Int., 104, 153–163.CrossRefGoogle Scholar
Kennett, B.L.N., 1991b. Seismic velocity gradients in the upper mantle Geophys. Res. Lett., 18, 1115–1118.CrossRefGoogle Scholar
Kennett, B.L.N., 1991c. IASPEI 1991 Seismological Tables, Research School of Earth Sciences, Australian National University, Canberra.CrossRefGoogle Scholar
Kennett, B.L.N., 1992. Locating oceanic earthquakes - the influence of regional models and location criteria, Geophys. J. Int., 108, 945–854.CrossRefGoogle Scholar
Kennett, B.L.N., 1993a. The distance dependance of regional phase discriminants, Bull. Seism. Soc. Am., 83, 1155–1166.Google Scholar
Kennett, B.L.N., 1993b. Seismic structure and heterogeneity in the upper mantle, in Relating Geophysical Structures and Processes: the Jeffreys Volume, AGU Monograph 76, IUGG Volume 16, 53–66, American Geophysical Union, Washington.Google Scholar
Kennett, B.L.N., 1995. Approximations for surface wave propagation in laterally varying media, Geophys. J. Int., 122, 470–478.CrossRefGoogle Scholar
Kennett, B.L.N., 1998. Guided waves in three-dimensional structures, Geophys. J. Int., 133, 159–174.CrossRefGoogle Scholar
Kennett, B.L.N. & Mykkeltveit, S., 1984. Guided waves in laterally varying media, II: Lg-waves in north-western Europe, Geophys. J. R. Astr. Soc., 79, 257–267.CrossRefGoogle Scholar
Kennett, B.L.N. & Bowman, J. R., 1990. The velocity structure and heterogeneity of the upper mantle, Phys. Earth. Planet. Inter., 59, 134–144.CrossRefGoogle Scholar
Kennett, B.L.N. & Nolet, G., 1990. The interaction of the S-wavefield with upper mantle heterogeneity, Geophys. J. Int., 101, 751–762.Google Scholar
Kennett, B.L.N. & Engdahl, E.R., 1991. Traveltimes for global earthquake location and phase identification, Geophys. J. Int., 105, 429–465.CrossRefGoogle Scholar
Kennett, B.L.N. & Sambridge, M.S., 1992. Earthquake location: genetic algorithms for teleseisms, Phys. Earth. Planet. Inter., 75, 103–110.CrossRefGoogle Scholar
Kennett, B.L.N. & Gudmundsson, O., 1996. Ellipticity corrections for seismic phases, Geophys. J. Int., 127, 40–48.CrossRefGoogle Scholar
Kennett, B.L.N. & Sambridge, M.S., 1998. Inversion for multiple parameter classes, Geophys. J. Int., 134, 304–306.Google Scholar
Kennett, B.L.N. & Widiyantoro, S., 1999. A low seismic wavespeed anomaly beneath northwestern India - a seismic signature of the Deccan plume?, Earth Planet. Sci. Lett., 165, 145–155.CrossRefGoogle Scholar
Kennett, B.L.N. & Furumura, T., 2001. Regional Phases in continental and oceanic environments, Geophys. J. Int., 146, 562–568.CrossRefGoogle Scholar
Kennett, B.L.N. & Furumura, T., 2002. The influence of 3-D structure on the propagation of seismic waves away from earthquakes, Pure Appl. Geophys., in press.CrossRef
Kennett, B.L.N. & Ringdal, F., 2001. Locating seismic events in a CTBT context, Pure Appl. Geophys., 158, 7–18.Google Scholar
Kennett, B.L.N. & Yoshizawa, K., 2002. A reappraisal of regional surface wave tomography, Geophys. J. Int., 150, in press.CrossRef
Kennett, B.L.N., Bostock, M.G. & Xie, J.-K., 1990. Guided wave tracking in 3-D - a tool for interpreting complex regional seismograms, Bull. Seism. Soc. Am., 80, 633–642.Google Scholar
Kennett, B.L.N., Gudmundsson, O., & Tong, C., 1994. The upper-mantle S and P velocity structure beneath northern Australia from broad-band observations, Phys. Earth Planet. Inter., 86, 85–98.CrossRefGoogle Scholar
Kennett, B.L.N., Engdahl, E.R. & Buland, R., 1995. Constraints on the velocity structure in the Earth from travel times, Geophys. J. Int., 122, 108–124.CrossRefGoogle Scholar
Kennett, B.L.N., Widiyantoro, S. & van der Hilst, R.D., 1998. Joint seismic tomography for bulk-sound and shear wavespeed in the Earth's mantle, J. Geophys. Res., 103, 12 469.ndash;12 493.CrossRefGoogle Scholar
Kennett, B.L.N., Marson-Pidgeon, K. & Sambridge, M.S., 2000. Seismic source characterization using a Neighbourhood Algorithm, Geophys. Res. Lett., 27, 3401–3404.CrossRefGoogle Scholar
Kennett, B.L.N., Gregersen, S., Mykkeltveit, S. & Newmark, R., 1985. Mapping of crustal heterogeneity in the North Sea basin via the propagation of Lg waves, Geophys. J. R. Astr. Soc., 83, 299–306.CrossRefGoogle Scholar
Kincaid, C. & Olson, P., 1987. An experimental study of subduction and slab migration, J. Geophys. Res., 92, 13832–13 840.CrossRefGoogle Scholar
Kind, R., 1974, Long range propagation of seismic energy in the lower lithosphere, J. Geophys., 40, 189–202.Google Scholar
Kind, R., Kosarev, G.L. & Petersen, N.V., 1995. Receiver functions at the stations of the German Regional Seismic Network (GRSN), Geophys. J. Int., 121, 191–202.CrossRefGoogle Scholar
King, D.W. & Calcagnile, G., 1976. P-wave velocities in the upper mantle beneath Fennoscandia and Western Russia, Geophys. J. R. Astr. Soc., 46, 407–432.CrossRefGoogle Scholar
King, D.W., Haddon, R.A.W. & Cleary, J. R., 1974. Array analysis of precursors to PKIKP in the distance range 128◦ to 142◦, Geophys. J. R. Astr. Soc., 37, 157–173.CrossRefGoogle Scholar
King, D.W., Haddon, R.A.W. & Husebye, E.S., 1975. Precursors to PP, Phys. Earth Planet. Inter., 10, 103–127.CrossRefGoogle Scholar
Kinoshita, S., Fujiwara, H., Mikoshiba, T. & Hoshino, T., 1992. Secondary Love waves observed by a strong-motion array in the Tokyo lowlands, Japan, J. Phys. Earth, 40, 99–116.CrossRefGoogle Scholar
Kirkwood, S.C., 1978. The significance of isotropic inversion of anisotropic surface-wave dispersion, Geophys. J. R. Astr. Soc., 55, 131–142.CrossRefGoogle Scholar
Kirkwood, S.C. & Crampin, S., 1981. Surface-wave propagation in an ocean basin with an anisotropic upper mantle: observations of polarization anomalies, Geophys. J. R. Astr. Soc., 64, 487–497.Google Scholar
Knopoff, L., 1972. Observation and inversion of surface wave dispersion, Tectonophys., 13, 497–520.CrossRefGoogle Scholar
Knopoff, L., Schwab, F. & Kausel, E., 1973. Interpretation of Lg, Geophys. J. R. Astr. Soc, 33, 389–404.CrossRefGoogle Scholar
Knopoff, L., Mitchel, R.G., Kausel, E.G. & Schwab, F., 1979. A search for the oceanic Lg phase, Geophys. J. R. Astr. Soc, 56, 211–218.CrossRefGoogle Scholar
Kohler, M.D., 1997. Three-dimensional velocity structure and resolution of the core-mantle boundary region from whole-mantle inversions of body waves, Phys. Earth. Planet. Inter., 101, 85–104.CrossRefGoogle Scholar
Koketsu, K. & Higashi, S., 1992. Three-dimensional topography of the sediment/basement interface in the Tokyo Metropolitan Area, Bull. Seism. Soc. Am., 82, 2328–2349.Google Scholar
Koketsu, K. & Kikuchi, K., 2000. Propagation of seismic ground motion in the Kanto Basin, Japan, Science, 288, 1237–1239.CrossRefGoogle ScholarPubMed
Koketsu, K., Kennett, B.L.N. & Takenaka, H., 1991. 2-D reflectivity method and synthetic seismograms for irregularly layered structure - II. Invariant embedding approach, Geophys. J. Int., 105, 119–130.CrossRefGoogle Scholar
Komatitsch, D. & Vilotte, J.P., 1998. The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures, Bull. Seism. Soc. Am., 88, 368–392.Google Scholar
Komatitsch, D. & Tromp, J., 1999. Introduction to the spectral element method for three-dimensional seismic wave propagation, Geophys. J. Int., 139, 806–822.CrossRefGoogle Scholar
Komatitsch, D. & Tromp, J., 2002a. Spectral-element simulations of global seismic wave propagation - I. Validation, Geophys. J. Int., submitted.CrossRef
Komatitsch, D. & Tromp, J., 2002b. Spectral-element simulations of global seismic wave propagation - II. 3-D models, oceans, rotation and self-gravitation, Geophys. J. Int., submitted.CrossRef
Kosarev, G., Kind, R., Sobolev, S.V., Yuan, X., Hanka, W. & Oreshin, S., 1999. Seismic evidence for a detached Indian lithosphere beneath Tibet, Science, 283, 1306–1309.CrossRefGoogle Scholar
Kosarev, G.L., Petersen, N.V., Vinnik, L.P. & Roecker, S.W., 1993. Receiver functions for the Tien Shan analog broadband network: Contrasts in the evolution of structures across the Talasso-Fergana fault, J. Geophys. Res., 98, 4437–4448.CrossRefGoogle Scholar
Kremenetskaya, E., Asming, V. & Ringdal, F., 2001. Seismic location calibration of the European Arctic, Pure Appl. Geophys., 158, 117–128.CrossRefGoogle Scholar
Kuo, B-Y. & Wu, K-Y., 1997. Global shear velocity heterogeneities in the D” layer: inversion from Sd – SKS travel times, J. Geophys. Res, 102, 11775–11 788.CrossRefGoogle Scholar
Langston, C.A., 1977. Corvallis, Oregon, crustal and upper mantle receiver structure from teleseismic P and S waves, Bull. Seism. Soc. Am., 67, 713–724.Google Scholar
Langston, C.A., 1979. Structure under Mount Rainier, Washington,inferred from teleseismic body waves, J. Geophys. Res., 84, 4749–4762.CrossRefGoogle Scholar
Langston, C.A. & Helmberger, D.V., 1975. A procedure for modelling shallow dislocation sources, Geophys. J. R. Astr. Soc., 42, 117–130.Google Scholar
Laske, G., 1995. Global observations of off-great-circle propagation of long-period surface waves, Geophys. J. Int, 123, 245–259.CrossRefGoogle Scholar
Laske, G. & Masters, G., 1996. Constraints on global phase velocity maps by long-period polarization data, J. Geophys. Res., 101, 16059–16 075.CrossRefGoogle Scholar
Laske, G. & Masters, G., 1999. Rotation of the inner core from a new analysis of free scillations, Nature, 402, 66–69.CrossRefGoogle Scholar
Lay, T., 1994. The fate of descending slabs, Ann. Rev. Earth Planet. Sci., 22, 33–61.CrossRefGoogle Scholar
Lay, T. & Wallace, T., 1995. Modern Global Seismology, Academic Press, Orlando.Google Scholar
Lay, T., Garnero, E.J., Young, C.J. & Gaherty, J.B., 1997. Scale lengths of shear velocity heterogeneity at the base of the mantle from S wave differential times, J. Geophys. Res., 102, 9887–9910.CrossRefGoogle Scholar
Lay, T., Williams, Q., Garnero, E.J., Kellogg, L.H. & Wysession, M.E., 1998. Seismic wave anisotropy in the D”region and its implications, in The Core-Mantle Boundary Region, eds. M., Gurnis, M.E., Wysession, E., Knittle & B.A., Buffet, Geodynamics Monograph, 28, American Geophysical Union.Google Scholar
LeFevre, L.V. & Helmberger, D.V., 1989. Upper mantle P velocity structure of the Canadian shield, J. Geophys. Res., 94, 17749–17 765.CrossRefGoogle Scholar
Lerner-Lam, A.L. & Jordan, T.H., 1983. Earth structure analysis from fundamental and higher-mode waveform analysis, Geophys. J. R. Astr. Soc., 75, 759–797.CrossRefGoogle Scholar
Levander, A.R. & Hill, N.R., 1985. P-SV resonances in irregular low velocity surface layers, Bull. Seism. Soc. Am., 75, 847–864.Google Scholar
Leven, J.H., 1985. The application of synthetic seismograms in the interpretation of the upper mantle P-wave velocity structure in northern Australia, Phys. Earth Planet. Inter., 38, 9–27.CrossRefGoogle Scholar
Lèvêque, J.J., Cara, M. & Rouland, D., 1991. Waveform inversion of surface wave data : test of a new tool for systematic investigation of upper mantle structures, Geophys. J. Int., 104, 565–581.Google Scholar
Lèvêque, J., Debayle, E. & Maupin, V., 1998. Anisotropy in the Indian Ocean upper mantle from Rayleigh- and Love-waveform inversion, Geophys. J. Int., 133, 529–540.CrossRefGoogle Scholar
Levin, V. & Park, J., 1998. Quasi-Love phases between Tonga and Hawaii: Observations, simulations and explanations, J. Geophys. Res., 103, 24321–24 331.CrossRefGoogle Scholar
Leonard, M. & Kennett, B.L.N., 1999. Multi-component autoregressive techniques for the analysis of seismograms, Phys. Earth Planet. Inter., 113, 247–263.CrossRefGoogle Scholar
Levshin, A. L., 1985. Effect of lateral inhomogeneities on surface wave amplitude measurements, Ann. Geophys., 3, 511–518.Google Scholar
Lighthill, J., 1978. Waves in Fluids, Cambridge University Press, Cambridge.Google Scholar
Liu, X.-F. & Tromp, J., 1996. Uniformly valid body-wave ray theory, Geophys. J. Int., 127, 461–491.CrossRefGoogle Scholar
Liu, X-F. & Dziewonski, A.M., 1994. Improved resolution of the the lowermost shear velocity structure using SKS – S data, EOS Trans. Am. Geophys. Union, 75, Spring Meeting Suppl., 232.
Lundgren, P.R. & Giardini, D., 1992. Seismicity, shear-failure and modes of deformation in deep subduction zones, Phys. Earth Planet. Inter., 74, 63–74.CrossRefGoogle Scholar
Luosto, U, Flueh, E.R., Lund, C.E., Banda, E., Bialas, J., Cassidy, F., Chroston, N., Green, C., Ivanoff, C., Kiorbor, L., Moeller, C. & Yliniemi, J., 1989. The crustal structure along the POLAR profile from seismic refraction investigations, Tectonophys, 162, 51–8.CrossRefGoogle Scholar
Lysmer, J. & Drake, L.A., 1972. A finite element method for seismology, in Methods in Computational Physics, 11, 181–216. ed. B.A., Bolt, Academic Press, New York.Google Scholar
McGarr, A., Celebi, M., Sembera, E., Noce, T. & Mueller, C., 1991. Ground motion at the San Francisco International Airport from the Loma Prieta earthquake. Bull. Seism. Soc. Am., 81, 1923–1944.Google Scholar
McNamara, D.E., Owens, T.J. & Walter, W.R., 1996. Propagation characteristics of Lg across the Tibetan plateau. Bull. Seism. Soc. Am., 86, 457–469.Google Scholar
Marfurt, K., 1984. Accuracy of finite-difference and finite-element modeling of the scalar wave equation, Geophysics, 49, 533–549.CrossRefGoogle Scholar
Marquering, H. & Snieder, R., 1995. Surface-wave mode coupling for efficient forward modelling and inversion of body wave phases, Geophys. J. Int., 120, 186–208.CrossRefGoogle Scholar
Marson-Pidgeon, K., Savage, M.K., Gledhill, K. & Stuart, G., 1999. Seismic anisotropy beneath the lower half of the North Island, New Zealand, J. Geophys. Res., 104, 20277–20 286.CrossRefGoogle Scholar
Masters, G. & Gilbert, F., 1981. Structure of the inner core inferred from observations of its spheroidal shear modes, Geophys. Res. Lett., 8, 569–571.CrossRefGoogle Scholar
Masters, G. & Ritzwoller, M., 1987. Low frequency seismology and three-dimensional structure - observational aspects, in Mathematical Geophysics, eds. N.J., Vlaar, G., Nolet, M.J. R., Wortel & S.A.P.L., Cloetingh, D. Riedel, Dordrecht.Google Scholar
Masters, T.G. & Shearer, P.M., 1990. Summary of seismological constraints on the structure of the Earth's core, J. Geophys. Res., 95, 21691–21 695.CrossRefGoogle Scholar
Masters, T.G. & Widmer, R., 1995. Free oscillations: Frequencies and attenuation, 104–125, in Global Earth Physics: a handbook of physical constants, ed. Ahrens, T.J., American Geophysical Union, Washington.Google Scholar
Masters, G., Jordan, T.H., Silver, P.G. & Gilbert, F., 1982. Aspherical earth structure from fundamental spheroidal mode data, Nature, 298, 609–613.CrossRefGoogle Scholar
Masters, G., Johnson, S., Laske, G. & Bolton, H., 1996. A shear-velocity model of the mantle, Phil. Trans. R. Soc. Lond., 354A, 1385–1411.Google Scholar
Masters, G., Laske, G., Bolton, H. & Dziewonski, A., 2000. The relative behaviour of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure, in Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale, eds. S.I., Karato, A.M., Forte, R.C., Liebermann, G., Masters & L., Stixrude, AGU Geophysical Monograph, 117, 63–87.Google Scholar
Maupin, V., 1988. Surface waves across 2D structure: a method based on coupled local modes, Geophys. J. R. Astr. Soc., 93, 173–185.CrossRefGoogle Scholar
Maupin, V., 1989. Surface waves in weakly anisotropic structures: on the use of ordinary or quasi-degenerate perturbation methods, Geophys. J. Int., 98, 553–563.CrossRefGoogle Scholar
Maupin, V., 1990. Modelling of three-component Lg waves in anisotropic crustal models, Bull. Seism. Soc. Am., 80, 1311–1325.Google Scholar
Maupin, V., 1994. On the possibility of anisotropy in the D” layer as inferred from the polarization of diffracted S waves, Phys. Earth. Planet. Inter., 87, 1–32.CrossRefGoogle Scholar
Maupin, V., 2001. A multiple scattering scheme for modelling surface wave propagation in isotropic and anisotropic three-dimensional structures Geophys. J. Int., 146, 332–348.CrossRefGoogle Scholar
Maupin, V., & Kennett, B.L.N., 1987. On the use of truncated modal expansions in laterally varying media, Geophys. J. R. Astr. Soc., 91, 837–851.CrossRefGoogle Scholar
Mechie, J., Egorkin, A.V., Fuchs, K., Ryberg, T., Solidilov, L. & Wenzel, F., 1993. P-wave mantle velocity structure beneath northern Eurasia from long-range recordings along the profile Quartz, Phys. Earth. Planet. Inter., 79, 269–286.CrossRefGoogle Scholar
Megnin, C. & Romanowicz, B., 2000. The three-dimensional shear velocity structure of the mantle from the inversion of body, surface and higher-mode waveforms, Geophys. J. Int., 143, 709–728.CrossRefGoogle Scholar
Melbourne, T. & Helmberger, D.V., 2002. Pure path mantle shear structure along the East Pacific Rise, J. Geophys. Res., 107, in press.CrossRefGoogle Scholar
Menke, W.H. & Richards, P.G., 1980. Crust-mantle whispering gallery phases: A deterministic model of teleseismic Pn wave propagation, J. Geophys. Res., 85, 5416–5422.CrossRefGoogle Scholar
Mellors, R.J., Camp, V.E., Vernon, F.L., Al-Amri, A & Ghalib, A., 1999. Regional waveform propagationm in the Arabian Peninsula, J. Geophys. Res., 104, 20221–20 235.CrossRefGoogle Scholar
Mitchell, B.J. & Cong, L., 1998. Lg coda Q and its relation to the structure and evolution of continents: a global perspective, Pure Appl. Geophys., 153, 639–654.Google Scholar
Moczo, P., Bystrický, E., Kristek, J., Carcione, J.M. & Bouchon, M., 1997. Hybrid modelling of P-SV seismic motion at inhomogeneous viscoelastic topographic structures, Bull. Seism. Soc. Am., 87, 1305–1323.Google Scholar
Moczo, P., Kristek, J. & Halada, L., 2000. 3-D fourth order staggered grid finite difference schemes: stability and grid dispersion, Bull. Seism. Soc. Am., 90, 587–603.CrossRefGoogle Scholar
Mohorovičić, A., 1910. Das Beben von 8. Okt. 1909, Jahrb. Meteorol. Obs. Agram (Zagreb), 9, Teil IV.
Montalbetti, J.F. & Kanasewich, E., 1970. Enhancement of teleseismic body wave phases with a polarization filter, Geophys. J. R. Astr. Soc., 21, 119–129.CrossRefGoogle Scholar
Montagner, J.P., 1986a. Regional three-dimensional structures using long-period surface waves, Ann. Geophys., 4, 283–294.Google Scholar
Montagner, J.P., 1986b. Three-dimensional structure of the Indian Ocean inferred from long-period surface waves, Geophys. Res. Lett., 13, 315–318.CrossRefGoogle Scholar
Montagner, J.-P., 1998. Where can seismic anisotropy be detected in the Earth's Mantle? In boundary layers Pure Appl. Geophys, 151, 223–256.CrossRefGoogle Scholar
Montagner, J.P. & Jobert, N., 1988. Vectorial tomography, 2, Application to the Indian Ocean, Geophys. J. R. Astr. Soc., 94, 309–344.CrossRefGoogle Scholar
Montagner, J.P. & Tanimoto, T., 1991. Global upper mantle tomography of seismic velocities and anisotropies, J. Geophys. Res., 96, 20337–20 351.CrossRefGoogle Scholar
Montagner, J-P. & Kennett, B.L.N., 1996. How to reconcile body-wave and normal mode reference Earth models? Geophys. J. Int., 125, 229–248.CrossRefGoogle Scholar
Morelli, A. & Dziewonski, A.M., 1987. The harmonic expansion approach to the determination of deep earth structure, in Seismic Tomography, ed G., Nolet, Reidel, Dordrecht.Google Scholar
Morelli, A., Dziewonski, A.M. & Woodhouse, J.H., 1986. Anisotropy of the inner core inferred from PKIKP travel times, Geophys. Res. Lett., 13, 1545–1548.CrossRefGoogle Scholar
Mori, J. & Helmberger, D.V., 1995. Localised boundary layer below the mid-Pacific velocity anomaly identified from a PcP precursor, J. Geophys. Res., 100, 20359–20 365.CrossRefGoogle Scholar
Morita, Y., 1996. The characteristics of J-array seismograms, J. Phys. Earth., 44, 657–668.CrossRefGoogle Scholar
Morozov, I.B., Morozova, E.A. & Smithson, S.B., 1998. On the nature of the teleseismic Pn phase observed in the recordings from the ultra-long-range profile “Quartz”, Bull. Seism. Soc. Am., 88, 62–73.Google Scholar
Morozov, I.B. & Smithson, S.B., 2000. Coda of long-range arrivals from nuclear explosions, Bull. Seism. Soc. Am., 90, 929–939.CrossRefGoogle Scholar
Morozova, E.A., Morozov, I.B., Smithson, S.B. & Solodilov, L.N., 1999. Heterogenity of the upper mantle beneath the ultra-long-range profile Quartz, J. Geophys. Res., 104, 20 329.ndash;20 348.CrossRefGoogle Scholar
Muirhead, K.J., 1968. Eliminating false alarms when detecting seismic events automatically, Nature, 217, 533–534.CrossRefGoogle Scholar
Müuller, G., 1985. The reflectivity method: A tutorial, J. Geophys., 38, 153–174.Google Scholar
Mykkeltveit, S. & Ringdal, F., 1981. Phase identification and event location at regional distances using small-aperture array data, 467–483, in Identification of Seismic Sources: Earthquake or Underground Explosion, eds. E.S., Husebye & S., Mykkeltveit, D. Reidel Dordrecht.Google Scholar
Mykkeltveit, S., Ringdal, F., Kvarna, T. & Alewine, R.W., 1990. Application of regional arrays in seismic verification, Bull. Seism. Soc. Am., 80, 1777–1800.Google Scholar
NAT study group, 1985. North Atlantic Transect: A wide-aperture, two-ship multichannel seismic investigation of the oceanic crust, J. Geophys. Res., 90, 10321–10 341.CrossRef
Nataf, H.C. & VanDecar, J., 1993. Seismological detection of mantle plume? Nature, 364, 115–120.CrossRefGoogle Scholar
Nagano, K., Niitsuma, H. & Chubachi, N., 1989. Automatic algorithm for triaxial hodogram source location in downhole acoustic emission measurement, Geophysics, 54, 508–513.CrossRefGoogle Scholar
Nakanishi, I., 1989. Reflections of P'P' from upper mantle discontinuities beneath the Mid-Atlantic Ridge, Geophys. J. R. Astr. Soc., 93, 335–346.Google Scholar
Neal, S.L. & Pavlis, G.L., 2001. Imaging P-to-S with broad-band seismic arrays using multichannel time domain deconvolution, Geophys. J. Int., 147, 57–67.CrossRefGoogle Scholar
Neidell, N. & Taner, M.T., 1971. Semblance and other coherency measures for multichannel data, Geophysics, 36, 482–497.CrossRefGoogle Scholar
Niu, F. & Kawakatsu, H., 1997 Depth variation of the mid-mantle seismic discontinuity, Geophys. Res. Lett., 24, 429–432.CrossRefGoogle Scholar
Nolet, G., 1977. The upper mantle under western Europe inferred from the dispersion of Rayleigh modes, J. Geophys., 43, 265–285.Google Scholar
Nolet, G., 1987a. Seismic wave propagation and seismic tomography, in Seismic Tomography, ed G., Nolet, Reidel, Dordrecht.CrossRefGoogle Scholar
Nolet, G., 1987b. Waveform tomography, in Seismic Tomography, ed G., Nolet, Reidel, Dordrecht.CrossRefGoogle Scholar
Nolet, G., 1990. Partitioned waveform inversion and two-dimensional structure under the network of autonomously recording seismographs, J. Geophys. Res, 95, 8499–8512.CrossRefGoogle Scholar
Nolet, G., van Trier, J. & Huisman, R., 1986. A formalism for nonlinear inversion of seismic surface waves, Geophys. Res. Lett., 13, 26–29.CrossRefGoogle Scholar
Nolet, G., Grand, S.P. & Kennett, B.L.N., 1994. Seismic heterogeneity in the upper mantle, J. Geophys. Res., 99, 23753–23 766.CrossRefGoogle Scholar
Nolet, G., Montelli, R. & Virieux, J., 1999. Explicit, approximate expressions for the resolution and a posteriori covariance of massive tomographic systems, Geophys. J. Int., 138, 36–44.CrossRefGoogle Scholar
Nolet, G., Montelli, R. & Virieux, J., 2001. Reply to comment by Z.S.Yao, R.G. Roberts & A. Tryggvason on “Explicit, approximate expressions for the resolution and a posteriori covariance of massive tomographic systems”, Geophys. J. Int., 145, 315.CrossRefGoogle Scholar
Nuttli, O.W., 1973. Seismic wave attenuation and magnitude relations for eastern North America, J. Geophys. Res., 78, 876–885.CrossRefGoogle Scholar
Nuttli, O.W., 1986. Lg magnitudes of selected East Kazakhstan underground nuclear explosions, Bull. Seism. Soc. Am., 76, 1241–1251.Google Scholar
Obayashi, M. & Fukao, Y., 1997. P and PcP travel time tomography for the core-mantle boundary J. Geophys. Res., 102, 17825–17 842.CrossRefGoogle Scholar
Ohminato, T. & Chouet, B.A., 1997. A free surface boundary condition for including 3-D topography in the finite difference method, Bull. Seism. Soc. Am., 87, 494–515.Google Scholar
Okino, K., Ando, M., Kaneshima, S. & Hirahara, K., 1989. A horizontally lying slab, Geophys. Res. Lett., 16, 1059–1063.CrossRefGoogle Scholar
Olsen, K.B. & Archuleta, R.J., 1996. 3-D simulation of earthquakes on the Los Angeles fault system, Bull. Seism. Soc. Am., 86, 575–596.Google Scholar
Olsen, K.B., Archuleta, R.J. & Matarese, J. R., 1995. Three-Dimensional Simulation of a Magnitude 7.75 Earthquake on the San Andreas Fault, Science, 270, 1628–1632.CrossRefGoogle Scholar
Olsen, K.H.L., Braile, L.W. & Stewart, J.N., 1983. Modelling short-period crustal phases (P-Lg) for long-range refraction profile, Phys. Earth Planet. Inter., 31, 334–347.CrossRefGoogle Scholar
Olson, P., Silver, P.G. & Carlson, W.W., 1990. The large-scale structure of convection in the Earth's mantle, Nature, 344, 209–215.CrossRefGoogle Scholar
Owens, T.J., Zandt, G. & Taylor, S.R., 1984. Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: A detailed analysis of broadband teleseismic P waveforms, J. Geophys. Res., 89, 7783–7795.CrossRefGoogle Scholar
Park, J., 1986. Synthetic seismograms form coupled free oscillations: the effect of lateral structure and rotation, J. Geophys. Res., 91, 6441–6464.CrossRefGoogle Scholar
Park, J. & Levin, V., 2000. Receiver functions from multiple-taper spectral correlation estimates, Bull. Seism. Soc. Am, 90, 1507–1520.CrossRefGoogle Scholar
Park, J. & Levin, 2001. Receiver functions from regional P waves, Geophys. J. Int., 147, 1–11.CrossRefGoogle Scholar
Paulssen, H., 1987. Lateral heterogeneity of Europe's upper mantle as inferred from modelling of broad-band body waves, Geophys. J. R. Astr. Soc., 91, 171–199.CrossRefGoogle Scholar
Paulssen, H., 1988. Evidence for a sharp 670-km discontinuity as inferred from P- to S-converted waves, J. Geophys. Res., 93, 10489–10 50.CrossRefGoogle Scholar
Pasyanos, M.E., Dreger, D.S. & Romanowicz, B., 1996. Towards real-time estimation of regional moment tensors, Bull. Seism. Soc. Am., 86, 1255–1269.Google Scholar
Pearce, R.G., 1977. Fault plane solutions using relative amplitudes of P and pP, Geophys. J. R. Astr. Soc., 50, 381–394.Google Scholar
Pearce, R.G., 1980. Fault plane solutions using relative amplitudes of P and surface reflections: further studies, Geophys. J. R. Astr. Soc., 60, 459–487.Google Scholar
Pekeris, C.L., 1948. Theory of propagation of explosive sound in shallow water, Geol. Soc. Am. Memoirs, 27.CrossRefGoogle Scholar
Pitarka, A., 1999. 3-D elastic finite-difference modelling of seismic motion using staggered grids with nonuniform spacing, Bull. Seism. Soc. Am., 89, 54–68.Google Scholar
Pitarka, A., Irikura, K., Iwata, T. & Sekiguchi, H., 1998. Three-Dimensional simulation of the near-fault ground motion for the 1995 Hyogo-ken Nanbu (Kobe), Japan, earthquake Bull. Seism. Soc. Am., 88, 428–440.Google Scholar
Pitarka, A., Somerville, P., Fukushima, Y., Uetake, T. & Irikura, K., 2000. Simulation of near-fault strong-ground-motion using hybrid Green's functions, Bull. Seism. Soc. Am., 90, 566–586.CrossRefGoogle Scholar
Pomeroy, P.W., Best, W. J. & McEvilly, T.J., 1982. Test ban treaty verification with regional data - a review, Bull. Seism. Soc. Am., 72, S89-S129Google Scholar
Poupinet, G., & Wright, C.,1972. The generation and propagation of shear-coupled PL waves, Bull. Seism. Soc. Am., 62, 1699–1710.Google Scholar
Poupinet, G.R., Pillet, R. & Souriau, A., 1983. Possible heterogeneity of the Earth's core inferred from PKIKP travel times, Nature, 305, 204–206.CrossRefGoogle Scholar
Press, F. & Ewing, M., 1952. Two slow surface waves across North America, Bull. Seism. Soc. Am., 42, 219–228.Google Scholar
Press, W., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P., 1992. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd edition, Cambridge University Press.Google Scholar
Pulliam, R.J., Vasco, D.W. & Johnson, L.R., 1993. Tomographic inversions for mantle P wave velocity structure based on the minimization of L2 and L1 norms of International Seismological Centre travel time residuals, J. Geophys. Res., 98, 699–734.CrossRefGoogle Scholar
Restivo, A. & Helffrich, G., 1999. Teleseismic shear wave splitting in noisy environments, Geophys. J. Int., 137, 821–830.CrossRefGoogle Scholar
Resovsky, J.S. & Ritzwoller, M.H., 1998. New and refined constraints on three-dimensional Earth structure from normal modes below 3 mHz, J. Geophys. Res., 103, 783–810.CrossRefGoogle Scholar
Revenaugh, J. & Jordan, T.H., 1991a. Mantle layering from ScS reverberations 1. Waveform inversion of zeroth-order reverberation, J. Geophys. Res., 96, 19749–19 762.CrossRefGoogle Scholar
Revenaugh, J. & Jordan, T.H., 1991b. Mantle layering from ScS reverberations 2. The transition zone, J. Geophys. Res., 96, 19763–19 780.Google Scholar
Revenaugh, J. & Jordan, T.H., 1991c. Mantle layering from ScS reverberations 3. The upper mantle, J. Geophys. Res., 96, 19781–19 811.Google Scholar
Revenaugh, J. & Jordan, T.H., 1991d. Mantle layering from ScS reverberations 4. The lower mantle and core-mantle boundary, J. Geophys. Res., 96, 19811–19824.Google Scholar
Revenaugh, J. & Meyer, R., 1997. Seismic evidence of partial melt with a possibly ubiquitous low-velocity layer at the base of the mantle, Science, 277, 670–673.CrossRefGoogle Scholar
Rial, J.A. & Ritzwoller, M.H., 1994. Propagation efficiency of long-period Lg waves in the South American continent, Geophys. J. Int., 131, 401–408.Google Scholar
Rial, J.A., Grand, S. & Helmberger, D.V., 1984. A note on lateral variation in upper mantle shear-wave structure across the Alpine front, Geophys. J. Astr. Soc., 77, 639–654.CrossRefGoogle Scholar
Ricard, Y., Nataf, H.C. & Montagner, J.P., 1996. The three-dimensional seismological model a priori constrained: Confrontation with Seismic Data, J. Geophys. Res., 101, 8457–8472.CrossRefGoogle Scholar
Richards, M.A. & Wicks. C., 1990. S-P conversion from the transition zone beneath Tonga and the nature of the 670 km discontinuity. Geophys. J. Int., 101, 1–35.CrossRefGoogle Scholar
Richards, P.G., 1973. Calculations of body waves, for caustics and tunnelling in core phases, Geophys. J. R. Astr. Soc., 35, 243–264.Google Scholar
Richards, P.G., 1976. On the adequacy of plane wave reflection/transmission coefficients in the analysis of seismic body waves, Bull. Seism. Soc. Am., 66, 701–717.Google Scholar
Ringwood, A.E., 1991. Phase transformations and their bearing on the constitution and dynamics of the mantle, Geochimica et Cosmochimica, 55, 2083–2110.CrossRefGoogle Scholar
Ringdal, F., 1990. Introduction Special Symposium Issue: Regional seismic arrays and nuclear test ban verification, Bull. Seism. Soc. Am., 80, 1775–1777.Google Scholar
Ringwood, A.E. & Irifune, T., 1988. Nature of the 650-km seismic discontinuity: implications for mantle dynamics and differentiation, Nature, 331, 131–136.CrossRefGoogle Scholar
Ritzwoller, M.H. & Levshin, A.L., 1998. Eurasian surface wave tomography: Group velocities, J. Geophys. Res., 103, 4839–4878.CrossRefGoogle Scholar
Ritzwoller, M.H. & Lavely, E.M., 1995. Three-dimensional models of the Earth's mantle, Rev. Geophys., 33, 1–66.CrossRefGoogle Scholar
Robertson, G.S. & Woodhouse, J.H., 1995. Evidence for the proportionality of P and S heterogeneity in the mantle, Geophys. J. Int., 123, 85–116.CrossRefGoogle Scholar
Robertson, G.S. & Woodhouse, J.H., 1996. Ratio of relative S to P velocity heterogeneities in the lower mantle, J. Geophys. Res, 101, 20041–20 052.CrossRefGoogle Scholar
Robertson, G.S. & Woodhouse, J.H., 1997. Comparison of P and S station corrections and their relation to upper mantle structure, J. Geophys. Res, 102, 27355–27 366.CrossRefGoogle Scholar
Robinson, E., 1957. Predictive decomposition of seismic traces. Geophysics, 22, 767–778.CrossRefGoogle Scholar
Robinson, E., 1963. Mathematical development of discrete filters for the detection of nuclear explosions. J. Geophys. Res., 68, 5559–5568.CrossRefGoogle Scholar
Rodgers, A., Ni, J.F. & Hearn, T.M., 1997. Propagation characteristics of short-period Sn and Lg in the Middle East, Bull. Seism. Soc. Am., 87, 396–413.Google Scholar
Rodgers, A. & Wahr, J., 1993. Inference of core-mantle boundary topography from ISC PcP and PKP, Geophys. J. Int., 115, 991–1011.Google Scholar
Romanowicz, B., 1991. Seismic tomography of the earth's mantle, Ann. Rev. Earth Planet. Sci., 19, 77–99.CrossRefGoogle Scholar
Romanowicz, B., 1995. A global tomographic model of shear attenuation in the upper mantle, J. Geophys. Res., 100, 12375–12394.CrossRefGoogle Scholar
Romanowicz, B. & Brèger, L., 2000. Anomalous splitting of free oscillations: A revaluation of possible interpretations, J. Geophys. Res., 105, 21559–21578.CrossRefGoogle Scholar
Romanowicz, B. Dreger, D., Pasyanos, M. & Uhrhammer, R., 1994. Accessing northern California earthquake data via internet, EOS Trans. Am. Geophys. Union, 75, 258–261.CrossRefGoogle Scholar
Romanowicz, B., Tkalčić, H. & Bréger, L., 2002. On the origin of complexity in PKP travel time data from broadband records, Geophys. J. Int, submittedCrossRef
Ronchi, C., Ianoco, R. & Paolucci, P.S., 1996. The “Cubed-Sphere”: a new method for the solution of partial differential equations in spherical geometry, J. Comput. Phys., 124, 93–114.CrossRefGoogle Scholar
Rondenay, S., Bostock, M.G. & Shragge, J. 2002. Multiparameter two-dimensional inversion of scattered teleseismic body waves: III - Application to the Cascadia 1993 data set. J. Geophys. Res., 106, 30795–30 808.Google Scholar
Russo, R.M. & Okal, E.A., 1998. Shear wave splitting and upper mantle deformation in French Polynesia: Evidence for small-scale heterogeneity related to the Society hot spot, J. Geophys. Res., 103, 15089–15107.CrossRefGoogle Scholar
Ruzaikan, A. I., Nersesov, I.L., Khalturin, V.I. & Molnar, P., 1977. Propagation of Lg and lateral variation in crustal structure in Asia, Geophys. J. R. Astr. Soc., 82, 307–316.Google Scholar
Ryberg, T. & Wenzel, F., 1999. High frequency wave propagation in the uppermost mantle, J. Geophys. Res., 104, 10655–10 666.CrossRefGoogle Scholar
Rydberg, T. & Weber, M., 2000. Receiver function arrays: A reflection seismic approach. Geophys. J. Int., 141, 1–11.Google Scholar
Ryberg, T., Fuchs, K., Egorkin, A.V. & Solodilov, L., 1995. Observations of high frequency teleseismic Pn on the long-range Quartz profile, J. Geophys. Res., 100, 18151–18 163.CrossRefGoogle Scholar
Rydberg, T., Wenzel, F., Egorkin, A.V. & Solodilov, L., 1997. Short-period observation of the 520 km discontinuity in northern Eurasia, J. Geophys. Res., 102, 5413–5422.Google Scholar
Rydberg, T., Wenzel, F., Egorkin, A.V. & Solodilov, L., 1997. Properties of the mantle transition zone in northern Eurasia, J. Geophys. Res., 103, 811–822.Google Scholar
Saikia, C.K., 1994. Modified frequency-wavenumber algorithm for regional seismograms using Filon's quadrature: modelling of Lg waves in eastern North America, Geophys. J. Int., 118, 142–158.CrossRefGoogle Scholar
Sakai, Y. & Minami, T., 1996. Destructive power of strong ground motions with high level ground acceleration, Proc. 11th World Conf. Earthq. Eng., paper no. 568.Google Scholar
Sambridge, M.S., 1999a. Geophysical inversion with a neighbourhood algorithm -I. Searching a parameter space, Geophys. J. Int., 138, 479–494.Google Scholar
Sambridge, M.S., 1999b. Geophysical inversion with a neighbourhood algorithm -II. Appraising the ensemble, Geophys. J. Int., 138, 727–746.Google Scholar
Sambridge, M.S. & Faletic., R., 2002. Adaptive whole Earth tomography, Geophys. Geochem. Geosyst., in press.CrossRef
Sambridge, M.S., & Kennett, B.L.N., 1986. A novel method of hypocentre location, Geophys. J. R. Astr. Soc., 87, 313–331.CrossRefGoogle Scholar
Sambridge, M., & Drijkoningen, G., 1992. Genetic algorithms in seismic waveform inversion, Geophys. J. Int., 109, 323–342.CrossRefGoogle Scholar
Sambridge, M.S., & Gallagher, K., 1993. Earthquake hypocenter location using genetic algorithms, Bull. Seism. Soc. Am., 83, 1467–1491.Google Scholar
Sambridge, M. & Gudmundsson, O., 1998. Tomographic systems of equations with irregular cells, J. Geophys. Res., 103, 773–782.CrossRefGoogle Scholar
Sambridge, M.S. & Kennett, B.L.N., 2001. Seismic event location: nonlinear inversion using a neighbourhood algorithm, Pure Appl. Geophys., 158, 241–257.CrossRefGoogle Scholar
S'anchez-Sesma, F.J. & Esquivel, J.A., 1979. Ground motion on alluvial valley under the incident plane SH-waves, Bull. Seism. Soc. Am., 69, 1107–1120.Google Scholar
Sandvol, E., Seber, D., Calvert, A. & Barazangi, M., 1998. Grid search modelling of receiver functions: implications for crustal structure in the Middle East and North Africa, J. Geophys. Res., 103, 26899–26 917.CrossRefGoogle Scholar
Sato, H. & Fehler, M.C., 1998. Seismic Wave Propagation and Scattering in the Heterogeneous Earth, Springer-Verlag, New York.CrossRefGoogle Scholar
Savage, M.K., 1998. Lower crustal anisotropy or dipping boundaries? Effects on receiver functions and a case study in New Zealand, J. Geophys. Res., 103, 15069–15 089.CrossRefGoogle Scholar
Schimmel, M. & Paulssen, H., 1997. Noise reduction and detection of weak, coherent signals through phase weighted stacks, Geophys. J. Int., 130, 497–505.CrossRefGoogle Scholar
Schueller, W., Morozov, I.B. & Smithson, S.B., 1997. Crustal and upper mantle structure of northern Eurasia along the profile Quartz, Bull. Seism. Soc. Am., 87, 414–426.Google Scholar
Schulte-Pekum, V., Masters, G. & Shearer, P.M., 2001. Upper mantle anisotropy from long-period P polarization, J. Geophys. Res., 106, 21917–21 934.Google Scholar
Schwartz, S.Y. & Nelson, G.D., 1991. Loma Prieta aftershock relocation with S-P travel times: effects of 3-D structure and true error estimates. Bull. Seism. Soc. Am., 85, 1021–1038.Google Scholar
Schwartz, S.Y. & Lay, T., 1993. Complete PP-waveform modelling for determining crust and upper mantle structure, Geophys. J. Int., 112, 210–224.CrossRefGoogle Scholar
Scrivner, C.W. & Helmberger, D.V., 1999. Finite-difference modelling of two aftershocks of the 1994 Northridge, California, earthquake. Bull. Seism. Soc. Am., 89, 1505–1518.Google Scholar
Sekiguchi, H., Irikura, K., Iwata, T., Kakehi, Y. & Hoshiba, M., 1996. Minute locating of faulting beneath Kobe and the waveform inversion of the source process during the 1995 Hyogo-ken Nanbu, Japan, earthquake using strong ground motion records, J. Phys. Earth, 44, 473–487.CrossRefGoogle Scholar
Sekiya, K. & Omori, F., 1894. The diagram of the semi-destructive earthquake of June 20th 1894 (Tokyo), J. Coll. Sci. Imp. Univ. Tokyo, 7, 1–9.Google Scholar
Sereno, T. & Orcutt, J.A., 1985. The synthesis of realistic oceanic Pn wavetrains, J. Geophys. Res., 90, 12755–12 776.Google Scholar
Sereno, T. & Orcutt, J.A., 1987. Synthetic Pn and Sn wavetrains and the frequency dependence of Q of oceanic lithosphere, J. Geophys. Res., 92, 3541–3566.CrossRefGoogle Scholar
Sharrock, D.S. & Woodhouse, J.H., 1998. Investigation of time dependent inner core structure by the analysis of free oscillation spectra, Earth Planet. Space, 50, 1013–1018.CrossRefGoogle Scholar
Shearer, P.M., 1991a. Constraints on upper mantle discontinuities from observations of long-period reflected and converted phases, J. Geophys. Res., 96, 18147–18 182.CrossRefGoogle Scholar
Shearer, P.M., 1991b. Imaging global body wave phases by stacking long-period seismograms, J. Geophys. Res., 96, 20353–20 364.CrossRefGoogle Scholar
Shearer, P.M., 1993. Global mapping of upper mantle reflectors from long-period reflectors from long-period SS precursors, Geophys. J. Int., 115, 878–904.CrossRefGoogle Scholar
Shearer, P.M., 1994. Imaging the Earth's seismic response at long periods, EOS Trans Am. Geophys. Union, 75, 457–452.CrossRefGoogle Scholar
Shearer, P.M., 1999. Introduction to Seismology, Cambridge University Press, Cambridge.Google Scholar
Shearer, P.M & Masters, T.G., 1992. Global mapping of topography on the 660-km discontinuity, Nature, 355, 791–796.CrossRefGoogle Scholar
Shearer, P.M. & Flanagan, M.P., 1999. Seismic velocity and density jumps across the 410- and 660-kilometer discontinuities, Science, 285, 1545–1548.CrossRefGoogle ScholarPubMed
Shearer, P.M., Hedlin, M.A.H. & Earle, P.S., 1998. PKP and PKKP precursor observations: Implications for the small-scale structure of the deep mantle and core, in The Core-Mantle Boundary Region, eds. M., Gurnis, M.E., Wysession, E., Knittle & B.A., Buffet, AGU Geodynamics Monograph, 28, 37–55.Google Scholar
Sheriff, R.E. & Geldart, L.P., 1995. Exploration Seismology, 2nd edition, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Shibutani, T., 1993. A new method of receiver function inversion for investigating S-wave velocity structure of the crust and uppermost mantle, Doctoral Thesis, Kyoto University.Google Scholar
Shibutani, T., Sambridge, M. & Kennett, B., 1996. Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure beneath Eastern Australia, Geophys. Res. Lett., 23, 1829–1832.CrossRefGoogle Scholar
Shin, T.C. & Hermann, R.B., 1987. Lg attenuation and source studies using 1982 Miramichi data, Bull. Seism. Soc. Am., 77, 384–397.Google Scholar
Shin, T.C., Kuo, K.W., Lee, W.H.K., Teng, T.L. & Tsai, Y.B., 2000. A preliminary report on the 1999 Chi-Chi (Taiwan) earthquake, Seism. Res. Lett., 71, 24–30.CrossRefGoogle Scholar
Shragge, J., Bostock, M.G. & Rondenay, S., 2002. Multiparameter two-dimensional inversion of scattered teleseismic body waves: 2 - Numerical Examples. J. Geophys. Res., 106, 30 783.ndash;30 794.Google Scholar
Sipkin, S., 1982. Estimation of earthquake source parameters by the inversion of wave form data: synthetic waveforms, Phys. Earth. Planet. Inter., 30, 242–259.CrossRefGoogle Scholar
Sipkin, S., 1994. Rapid determination of global moment-tensor solutions, Geophys. Res. Lett., 21, 1667–1670.CrossRefGoogle Scholar
Silver, P.G., 1996. Seismic anistropy beneath the continents: probing the depths of geology, Ann. Rev. Earth Planet. Sci., 24, 385–432.CrossRefGoogle Scholar
Silver, P.G. & Chan, W.C., 1991. Shear wave splitting and subcontinental mantle deformation, J. Geophys. Res., 96, 16429–16454.CrossRefGoogle Scholar
Silver, P. & Savage, M.K., 1994. The interpretation of shear wave splitting parameters in the presence of two anisotropic layers, Geophys. J. Int., 119, 949–963.CrossRefGoogle Scholar
Silver, P.G., Carlson, W.W. & Olson, P., 1988. Deep slabs, geochemical heterogeneity, and the large-scale structure of mantle convection: investigations of an enduring paradox, Ann. Rev. Earth Planet. Sci., 16, 477–541.CrossRefGoogle Scholar
Simons, F.J., Zielhuis, A. & van der Hilst, R.D., 1999. The deep structure of the Australian continent from surface wave tomography, Lithos, 48, 17–43.CrossRefGoogle Scholar
Smith, M.L. & Dahlen, F.A., 1973. The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium, J. Geophys. Res., 78, 3321–3333.CrossRefGoogle Scholar
Smith, G. & Ekströom, G., 1999. A global study of Pn anisotropy beneath continents, J. Geophys. Res., 104, 963–980.CrossRefGoogle Scholar
Snieder, R., 1986. 3D linearized scattering of surface waves and a formalism for surface wave holography, Geophys. J. R. Astr. Soc., 84, 581–605.CrossRefGoogle Scholar
Sneider, R., 1988. Large-scale waveform inversion of surface waves for lateral heterogeneity: 2. Application to surface waves in Europe and the Mediterranean, J. Geophys. Res., 93, 12 067.ndash;12 080.Google Scholar
Song, X., 2000. Joint inversion for inner core rotation, inner core anisotropy and mantle heterogeneity, J. Geophys. Res., 105, 7931–7944.CrossRefGoogle Scholar
Song, X. & Helmberger, D.V., 1995. Depth dependence of anisotropy of Earth's inner core, J. Geophys. Res., 100, 9805–9816.CrossRefGoogle Scholar
Song, X.-J. & Helmberger, D.V., 1997. Northridge aftershocks, a source study with TERRAscope data, Bull. Seism. Soc. Am., 87, 1024–1034.Google Scholar
Song, X. & Richards, P.G., 1996. Seismological evidence for differential rotation of the Earth's inner core, Nature, 382, 221–224.CrossRefGoogle Scholar
Souriau, A., 1998. New seismological constraints on differential rotation rates of inner core from Novaya Zemlya events recorded at DRV, Antarctica, Geophys. J. Int., 134, F1–F5.CrossRefGoogle Scholar
Souriau, A. & Souriau, M., 1989. Ellipticity and density at the inner core boundary from sub-critical PKiKP and PcP data, Geophys. J. Int., 98, 39–54.CrossRefGoogle Scholar
Souriau, A., Roudil, P. & Moynot, B., 1997. Inner core differential rotation: Facts and artefacts, Geophys. J. Int., 24, 2103–2026.Google Scholar
Spakman, W., 1991. Delay-time tomography of the upper mantle below Europe, the Mediterranean, and Asia minor, Geophys. J. Int., 107, 309–332.Google Scholar
Stephen, R.A., 1984. Finite difference seismograms for laterally varying marine models, Geophys. J. R. Astr. Soc., 79, 39–58.CrossRefGoogle Scholar
Stangl, R., 1990. Die Struktur der Lithosphäare in Schweden, abgeleitet aus einer gemeinsamen Interpretation der P- und S-Wellen Registrierungen auf dem FENNOLORA-Profil, Doktors der Naturwissenschaften Thesis, University of Karlsruhe.Google Scholar
Stark, P.B. & Hengartner, N.W., 1993. Reproducing Earth's kernel: uncertainty of the shape of the core-mantle boundary from PKP and PcP travel times, J. Geophys. Res., 98, 1957–1971.CrossRefGoogle Scholar
Steidl, J.H., Archuleta, R.J. & Hartzell, S.H., 1991. Rupture history of the 1989 Loma Prieta, California, earthquake, Bull. Seism. Soc. Am., 81, 1573–1602.Google Scholar
Stutzmann, E. & Montagner, J.P., 1993. An inverse technique for retrieving higher mode phase velocity and mantle structure, Geophys. J. Int., 113, 669–683.CrossRefGoogle Scholar
Stutzmann, E. & Montagner, J.P., 1994. Tomography of the transition zone from the inversion of higher-mode surface-waves, Phys. Earth Planet. Inter., 89, 99–115.Google Scholar
Su, L. & Park, J., 1994. Anisotropy and the splitting of PS waves, Phys. Earth. Planet. Inter., 86, 263–276.CrossRefGoogle Scholar
Su, W-J. & Dziewonski, A.M., 1991. Predominance of long-wavelength heterogeneity in the mantle, Nature, 352, 121–126.CrossRefGoogle Scholar
Su, W-J. & Dziewonski, A.M., 1998. Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle, Phys. Earth. Planet. Inter., 100, 135–156.Google Scholar
Su, W-J., Woodward, R.L & Dziewonski, A.M., 1994. Degree 12 model of shear velocity heterogeneity in the mantle, J. Geophys. Res, 99, 6945–6981.CrossRefGoogle Scholar
Suda, N., Nawa, K. & Fukao, Y., 1998. Earth's background free oscillations, Science, 279, 2089–2091.CrossRefGoogle ScholarPubMed
Sugioka, H., Fukao, Y. & Sakai, S. 1996. Anomalously early first arrivals to the J-Array from teleseismic events, J. Phys. Earth, 44, 687–699.CrossRefGoogle Scholar
Sykes, L.R., 1967. Mechanisms of earthquakes and the nature of faulting on mid-ocean ridges, J. Geophys. Res., 72, 2131–2153.CrossRefGoogle Scholar
Takanami, T. & Kitagawa, G., 1988. A new efficient procedure for the estimation of onset times of seismic waves. J. Phys. Earth, 36, 267–290.CrossRefGoogle Scholar
Takanami, T. & Kitagawa, G., 1993. Multivariate time-series models to estimate the arrival times of S waves. Computers and Geosciences, 19, 295–301.CrossRefGoogle Scholar
Takeuchi, H. & Saito, M., 1972. Seismic Surface Waves, in Methods in Computational Physics, 11, 217–295. Academic Press, London.Google Scholar
Takeuchi, N., Geller, R.J. & Cummins, P.R., 2000. Complete synthetic seismograms for 3-D heterogeneous Earth models computed using modified DSM operators and their applicability to inversion for Earth structure, Phys. Earth Planet. Inter., 119, 25–36.CrossRefGoogle Scholar
Tanaka, S. & Hamaguchi, H., 1996. Frequency-dependent Q in the Earth's center core from short period P4KP/PcP spectral ratio, J. Phys. Earth, 44, 745–749.CrossRefGoogle Scholar
Tanimoto, T., 1987. The three-dimensional shear wave structure in the mantle by overtone waveform inversion. I. Radial seismogram inversion, Geophys. J. R. Astr. Soc., 89, 713–740.CrossRefGoogle Scholar
Tanimoto, T. & Um, J., 1999. Cause of continuous oscillations of the Earth, J. Geophys. Res., 104, 28723–28 739.CrossRefGoogle Scholar
Tarantola, A., 1987. Inverse Problem Theory, Elsevier, Amsterdam.Google Scholar
Tarantola, A. & Valette, B., 1982. Generalized nonlinear inverse problems solved using the least square criterion, Rev. Geophys. Space Phys., 20, 219–232.CrossRefGoogle Scholar
Teng, T.L. & Aki, K., 1996. Preface to the 1994 Northridge Earthquake special issue, Bull. Seism. Soc. Am., 8, S1–S2.Google Scholar
Thio, H.-K. & Kanamori, H., 1995. Moment tensor inversions for local earthquakes using surface waves recorded at TERRAscope, Bull. Seism. Soc. Am., 85, 1021–1038.Google Scholar
Thomas, P.D., 1965. Geodesic arc length on the reference ellipsoid to second order terms in the flattening, J. Geophys. Res., 70, 3331–3340.CrossRefGoogle Scholar
Thybo, H. & Perchuc, E., 1997. The seismic 8° discontinuity and partial melting in continental mantle, Science, 275, 1626–1629.CrossRefGoogle ScholarPubMed
Tittgemeyer, M., Wenzel, F., Fuchs, K. & Ryberg, T., 1996 Wave propagation in a multiple-scattering upper mantle: observations and modelling, Geophys. J. Int., 127, 492–502.CrossRefGoogle Scholar
Tkalčić, H., Romanowicz, B. & Huoy, N., 2002. Constraints on D” structure using PKP(AB-DF), PKP(BC-DF) and PcP-P travel time data from broadband records, Geophys. J. Int., in press.CrossRef
Toksöz, M.N., Minnear, J.W. & Julian, B.R., 1971. Temperature field and geophysical effects of a downgoing slab, J. Geophys. Res., 76, 1113–1138.CrossRefGoogle Scholar
Tong, C. & Kennett, B.L.N., 1995. Towards the identification of later seismic phases, Geophys. J. Int., 123, 948–958.CrossRefGoogle Scholar
Tong, C. & Kennett, B.L.N., 1996. Automatic seismic event recognition and later phase identification for broad-band seismograms, Bull. Seism. Soc. Am., 86, 1896–1909.Google Scholar
Tong, C., Gudmundsson, O. & Kennett, B.L.N., 1994. Shear wave splitting in refracted waves returned from the upper-mantle transition zone beneath Northern Australia, J. Geophys. Res., 99, 15783–15 797.CrossRefGoogle Scholar
Tono, Y. & Yomogida, K., 1996. Complex scattering at the core-mantle boundary observed in short period diffracted P waves, J. Phys. Earth, 44, 729–744.CrossRefGoogle Scholar
Trampert, J. & Woodhouse, J.H., 1995. Global phase velocity maps of Love and Rayleigh waves between 40 and 150 seconds, Geophys. J. Int., 122, 675–690.CrossRefGoogle Scholar
Trampert, J. & Woodhouse, J.H., 1996. High resolution global phase-velocity distributions, Geophys. Res. Lett., 23, 21–24.CrossRefGoogle Scholar
Tromp, J., 1993. Support for anisotropy of the Earth's inner core from free oscillations, Nature, 366, 678–681.CrossRefGoogle Scholar
Tromp, J., 2001. Dawn of a new era in computational global seismology, Seism. Res. Lett., 72, 639–640.CrossRefGoogle Scholar
Valenzuela, R.W. & Wysession, M.E., 1998. Illuminating the base of the mantle with diffracted waves, 57–72, in The Core-Mantle Boundary Region, eds. M., Gurnis, M.E., Wysession, E., Knittle & B.A., Buffet, Geodynamics Monograph, 28, American Geophysical Union.Google Scholar
van der Hilst, R.D., 1995. Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench, Nature, 374, 154–157.CrossRefGoogle Scholar
van der Hilst, R.D. & Spakman, W., 1989. Importance of the reference model in linearized tomography and images of subduction below the Caribbean Plate, Geophys. Res. Lett., 16, 1093–1096.CrossRefGoogle Scholar
van der Hilst, R.D. & Seno, T., 1993. Effects of relative plate motion on the deep structure and penetration depth of slabs below the Izu-Bonin and Mariana Island arcs, Earth Planet. Sci. Lett., 120, 375–407.CrossRefGoogle Scholar
van der Hilst, R.D., Kennett, B.L.N. & Shibutani, T., 1998. Upper mantle structure beneath Australia from portable array deployments, in Structure and Evolution of the Australian Continent, eds. J., Braun, J., Dooley, B., Goleby, R. van der, Hilst & C., Klootwijk, AGU Geodynamics Monographs, 26, 39–58.CrossRefGoogle Scholar
van der Hilst, R.D., Engdahl, E.R., Spakman, W. & Nolet, G., 1991. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs, Nature, 353, 37–43.Google Scholar
van der Hilst, R.D., Widiyantoro, S. & Engdahl, E.R., 1997, Evidence for deep mantle circulation from global tomography, Nature, 386, 578–584.CrossRefGoogle Scholar
van der Hilst, R.D., Kennett, B.L.N., Christie, D.R. & Grant, J., 1994. Project Skippy explores the lithosphere and mantle beneath Australia, EOS Trans. Amer. Geophys. Union, 75, 177 & 180–181.CrossRefGoogle Scholar
van der Lee, S. & Nolet, G., 1997. Upper mantle S velocity structure of North America, J. Geophys. Res., 102, 22815–22 838.CrossRefGoogle Scholar
van Heijst, H.J. & Woodhouse, J.H., 1997. Measuring surface-wave overtone phase velocities using a mode branch stripping technique, Geophys. J. Int., 131, 209–230.Google Scholar
van Heijst, H.J. & Woodhouse, J.H., 1999. Global high resolution phase velocity distributions of overtone and fundamental-mode surface waves determined by mode branch stripping. Geophys. J. Int., 137, 601–620.Google Scholar
Vasco, D.W., Johnson, L.R., Pulliam, R.J. & Earle, P.S., 1994. Robust inversion of IASP91 travel time residuals for mantle P and S velocity structure, J. Geophys. Res., 99, 11727–11 755.CrossRefGoogle Scholar
Vasco, D.W. & Johnson, L.R., 1998. Whole Earth structure estimated from seismic travel times, J. Geophys. Res., 103, 2633–2672.CrossRefGoogle Scholar
Vidale, J.E., 1986. Complex polarization analysis of particle motion, Bull. Seism. Soc. Am., 76, 1393–1405.Google Scholar
Vidale, J.E. & Benz, H., 1993. Seismological mapping of fine structure near the base of the Earth's mantle, Nature, 361, 529–532.CrossRefGoogle Scholar
Vinnik, L. & Montagner, J.P., 1996. Shear wave splitting in the mantle Ps phases. Geophys. Res. Lett., 18, 2449–2452.Google Scholar
Vinnik, L.P., Kosarev, G.L. & Makeyeva, L.I., 1984. Anisotropy of the lithosphere from the observation of SKS and SKKS, Proc. Acad. Sci. USSR, 278, 1335–1339.(in Russian).Google Scholar
Vinnik, L., Chrevrot, S. & Montagner, J.-P., 1998. Seismic evidence of flow at the base of the upper mantle, Geophys. Res. Lett., 25, 1995–1998.CrossRefGoogle Scholar
Vinnik, L., Kato, M. & Kawakatsu, H., 2001. Search for seismic discontinuities in the lower mantle, Geophys. J. Int., 147, 41–56.CrossRefGoogle Scholar
Vinnik, L., Makeyeva, L.I., Milev, A. & Usenko, A.Y., 1992. Global patterns of azimuthal anisotropy and deformation in the continental mantle, Geophys. J. Int., 111, 433–447.CrossRefGoogle Scholar
Virieux, J., 1984. SH wave propagation in heterogeneous media: velocity-stress finite difference method, Geophysics, 49, 1933–1957.CrossRefGoogle Scholar
Virieux, J., 1986. P-SV wave propagation in heterogeneous media: velocity-stress finite difference method, Geophysics, 51, 889–901.CrossRefGoogle Scholar
Vogfjord, K.S., 1997. Effects of explosion depth and earth structure on the excitation of Lg waves: S* revisited, Bull. Seism. Soc. Am., 87, 1100–1114.Google Scholar
Vogfjord, K.S., & Langston, C.A., 1990. Analysis of regional events recorded at NORESS, Bull. Seism. Soc. Am., 80, 2016–2031.Google Scholar
Vogfjord, K.S., & Langston, C.A., 1996. Characteristics of short-period wave propagation in regions of Fennoscandia, with emphasis on Lg, Bull. Seism. Soc. Am., 86, 1873–1895.Google Scholar
Walck, M.C., 1984. The P-wave upper mantle structure beneath an active spreading center: The Gulf of California, Geophys. J. R. Astr. Soc., 76, 697–723.CrossRefGoogle Scholar
Walck, M.C., 1985. The upper mantle beneath the north-east Pacific rim: a comparison with the Gulf of California, Geophys. J. R. Astr. Soc., 81, 243–276.CrossRefGoogle Scholar
Wald, D.J., Helmberger, D.V. & Heaton, T.H., 1991. Rupture model of the 1989 Loma Prieta earthquake from the inversion of strong-motion and broad-band teleseismic data, Bull. Seism. Soc. Am., 81, 1540–1572.Google Scholar
Walker, D., 1977. High frequency Pn and Sn phases recorded in the western Pacific, J. Geophys. Res., 82, 3850–3360.CrossRefGoogle Scholar
Walker, D., 1981. High frequency Pn and Sn velocities: some comparisons for the western, central and south Pacific, Geophys. Res. Lett., 9, 207–209.Google Scholar
Wallace, T.C, & Helmberger, D.V., 1982. Determining source mechanisms of moderate size earthquakes from regional waveforms, Phys. Earth Planet. Inter., 30, 185–196.CrossRefGoogle Scholar
Weber, M. & Davis, J.P., 1990. Evidence of a laterally variable lower mantle structure from Pand S- waves, Geophys. J. Int., 102, 231–255.CrossRefGoogle Scholar
White, J.H., 1964. Motion product seismograms, Geophysics, 29, 288–298.CrossRefGoogle Scholar
Widiyantoro, S. & van der Hilst, R., 1996. Structure and evolution of lithospheric slab beneath the Sunda arc, Indonesia, Science, 271, 1566–1570.CrossRefGoogle Scholar
Widiyantoro, S., Kennett, B.L.N. & van der Hilst, R.D., 1998. Extending shear-wave tomography for the lower mantle using S and SKS arrival-time data, Earth Planets Space, 50, 999–1012.CrossRefGoogle Scholar
Widiyantoro, S., Gorbatov, A., Kennett, B.L.N. & Fukao, Y., 2000. Improving global shear-wave delay-time tomography using three-dimensional ray tracing and iterative inversion, Geophys. J. Int., 141, 747–758.CrossRefGoogle Scholar
Widmer, R., Masters, G. & Gilbert, F., 1992. Observably split multiples - data analysis and interpretation in terms of large-scale aspherical structure, Geophys. J. Int., 111, 559–576.CrossRefGoogle Scholar
Wiggins, R. & Robinson, E., 1965. Recursive solution to the multichannel filtering problem. J. Geophys. Res., 70, 1885–1891.CrossRefGoogle Scholar
Wiggins, R.A. & Helmberger, D.V., 1973. Upper mantle structure of the western United States, J. Geophys. Res., 78, 1870–1880.CrossRefGoogle Scholar
Willmore, P., 1949. Seismic experiments on the North German Explosions, 1946–1947, Phil. Trans. R. Soc. London, 242A, 123–151.Google Scholar
Wolfe, C. & Silver, P.G., 1998. Seismic anisotropy of oceanic upper mantle: Shear wave splitting methodologies and observations, J. Geophys. Res., 103, 747–771.Google Scholar
Wood, R. & Barton, P., 1983. Crustal thinning and subsidence in the North Sea, Nature, 302, 134–136.CrossRefGoogle Scholar
Woodhouse, J.H., 1974. Surface waves in a laterally varying layered structure. Geophys. J. R. Astr. Soc., 37, 461–490.CrossRefGoogle Scholar
Woodhouse, J.H., 1980. The coupling and attenuation of nearly resonant multiplets in the Earth's free oscillation spectrum, Geophys. J. Astr. Soc., 61, 261–283.CrossRefGoogle Scholar
Woodhouse, J.H. & Dahlen, F.A., 1978. The effect of a general aspherical perturbation on the free oscillations of the Earth, Geophys. J. Astr. Soc., 53, 335–354.CrossRefGoogle Scholar
Woodhouse, J.H. & Dziewonski, A.M., 1984. Mapping the upper mantle: three-dimensional modelling of Earth structure by inversion of waveforms, J. Geophys. Res., 89, 5953–598.CrossRefGoogle Scholar
Woodhouse, J.H. & Wong, Y.K., 1986. Amplitude, phase and path anomalies of mantle waves, Geophys. J. Astr. Soc., 87, 753–773.CrossRefGoogle Scholar
Woodhouse, J.H., Giardini, D. & Li, X.-D., 1986. Evidence for inner-core anisotropy from splitting in free oscillation data, Geophys. Res. Lett., 13, 1549–1552.CrossRefGoogle Scholar
Woodward, R.L. & Masters, G., 1991a. Lower mantle structure from ScS-S differential travel times, Nature, 352, 231–233.CrossRefGoogle Scholar
Woodward, R.L. & Masters, G., 1991b. Global upper mantle structure from long-period differential travel times, J. Geophys. Res., 96, 6351–6377.CrossRefGoogle Scholar
Wookey, J., Kendall, J.-M. & Barroul, G., 2002. Mid-mantle deformation from seismic anisotropy, Nature, 415, 777–780.CrossRefGoogle ScholarPubMed
Wortel, R., 1982. Seismicity and rheology of subducting slabs, Nature, 296, 553–556.CrossRefGoogle Scholar
Wright, C., Muirhead, K.J. & Dixon, A.E., 1985. The P wave velocity structure near the base of the mantle, J. Geophys. Res., 90, 623–634.CrossRefGoogle Scholar
Wright, C., Barton, T., Goleby, B.R., Spence, A.G. & Pfister, D., 1990. The interpretation of expanding spread reflection profiles: examples from central and eastern Australia Tectonophys., 173, 73–82.CrossRefGoogle Scholar
Wysession, M.E., Lay, T., Revenaugh, J., Williams, Q., Garnero, E.J., Jeanloz, R. & Kellogg, L.H., 1998. The D” discontinuity and its implication, in The Core-Mantle Boundary Region, eds. M., Gurnis, M.E., Wysession, E., Knittle & B.A., Buffet, Geodynamics Monograph, 28, American Geophysical Union.Google Scholar
Xie, X.-B. & Lay, T., 1994. The excitations of Lg waves by explosions: a finite difference investigation, Bull. Seism. Soc. Am., 84, 324–342.Google Scholar
Yao, Z.S., Roberts, R.G. & Tryggvason, A., 1999. Calculating resolution and covariance matrices for seismic tomography with the LSQR method, Geophys. J. Int., 138, 886–894.CrossRefGoogle Scholar
Yao, Z.S., Roberts, R.G. & Tryggvason, A., 2001. Comment on “Explicit, approximate expressions for the resolution and a posteriori covariance of massive tomographic systems” by G. Nolet, R. Montelli & J. Virieux, Geophys. J. Int., 145, 307–314.CrossRefGoogle Scholar
Yegorkin, A.V. & Chernyshov, N.M., 1983. Pecularities of mantle waves from long-range profiles, J. Geophys., 54, 30–34.Google Scholar
Yomogida, K. & Etgen, J.T., 1993. 3-D Wave Propagation in the Los Angeles Basin for the Whittier-Narrows Earthquake, Bull. Seism. Soc. Am., 83, 1325–1344.Google Scholar
Yoshida, S., Koketsu, K., Shibazaki, B., Sagiya, T., Kato, T. & Yoshida, Y., 1996. Joint inversion of near-and far-field waveforms and geodetic data for the rupture process of the 1995 Kobe earthquake, J. Phys. Earth, 44, 437–454.CrossRefGoogle Scholar
Yoshizawa, K. & Kennett, 2002a. Nonlinear waveform inversion for surface waves with a Neighbourhood Algorithm - Application to multi-mode dispersion measurements, Geophys. J. Int., 149, 118–133.CrossRefGoogle Scholar
Yoshizawa, K. & Kennett, B.L.N., 2002b. Determination of the influence zone for surface wave paths, Geophys. J. Int., 149, 440–453.CrossRefGoogle Scholar
Yoshizawa, K., Yomogida, K. & Tsuboi, S., 1999. Resolving power of surface wave polarization data for higher-order heterogeneities, Geophys. J. Int., 138, 205–220.CrossRefGoogle Scholar
Young, C.J. & Lay, T., 1987. Evidence for a shear velocity discontinuity in the lower mantle beneath India and the Indian Ocean, Phys. Earth Planet. Inter., 49, 37–53.CrossRefGoogle Scholar
Zhao, L. & Helmberger, D.V., 1994. Source estimation from broadband regional seismograms, Bull. Seism. Soc. Am., 84, 91–104.Google Scholar
Zhao, L. & Jordan, T.H., 1998. Semsitivity of frequency-dependent traveltimes to laterally heterogeneous, anisotropic earth structure, Geophys. J. Int., 133, 683–704.CrossRefGoogle Scholar
Zhao, L., Jordan, T.H. & Chapman, C.H., 2000. Three-dimensional Frèchet differential kernels for the seismic delay times, Geophys. J. Int., 141, 558–576.CrossRefGoogle Scholar
Zhang, T. & Lay, T., 1995. Why the Lg phase does not traverse oceanic crust, Bull. Seism. Soc. Am., 85, 1665–1678.Google Scholar
Zhang, Y.-S. & Lay, T., 1996. Global surface wave phase velocity variations, J. Geophys. Res., 101, 8415–8436.CrossRefGoogle Scholar
Zhang, Y.-S. & Tanimoto, T., 1991. Global Love wave phase velocity and its significance to plate tectonics, Phys. Earth Planet. Inter., 66, 160–202.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • B. L. N. Kennett, Australian National University, Canberra
  • Book: The Seismic Wavefield
  • Online publication: 31 August 2019
  • Chapter DOI: https://doi.org/10.1017/9781108780155.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • B. L. N. Kennett, Australian National University, Canberra
  • Book: The Seismic Wavefield
  • Online publication: 31 August 2019
  • Chapter DOI: https://doi.org/10.1017/9781108780155.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • B. L. N. Kennett, Australian National University, Canberra
  • Book: The Seismic Wavefield
  • Online publication: 31 August 2019
  • Chapter DOI: https://doi.org/10.1017/9781108780155.020
Available formats
×