Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-23T23:09:52.198Z Has data issue: false hasContentIssue false

18 - The effects of aging on sensorimotor control of the hand

Published online by Cambridge University Press:  23 December 2009

Dennis A. Nowak
Affiliation:
Klinik Kipfenberg, Kipfenberg, Germany
Joachim Hermsdörfer
Affiliation:
Technical University of Munich
Get access

Summary

Summary

Aging-related decline in hand function is ubiquitous and inexorable, beginning at about age 60 years. This decline disproportionately impacts dexterous grasp and manipulation. Many potential explanations for this decline have been offered, but the causes remain poorly understood. Here we report observations from our laboratory on timed tasks demonstrating that the forces and kinematics of dexterous grasp and manipulation in old adults differ from young adults, even at “comfortable” performance speeds. These observations support recent suggestions that controlling the moments of force applied to grasped objects is a fundamental problem in old age. Possible explanations lead to a review of contemporary issues related to the sensorimotor control of the aging hand. These topics include: sensory deterioration (both peripheral and central); reduced ability to coordinate muscle forces to control force vectors at the fingertip of a single digit and across digits; increased moment-to-moment force fluctuations; and loss of independent control of the right and left hands. On an optimistic note, training and practice appears to slow or reverse declining hand function in healthy aging.

Introduction

Hand function deteriorates unequivocally in healthy aging. Well-known decreases in muscle strength, mostly from sarcopenia (Holloszy, 1995; Hughes et al., 2001; Doherty, 2003), can account for increased difficulty in accomplishing some daily living skills, such as opening containers (Sperling, 1960; Shiffman, 1992). Manual dexterity also declines in old age, but in a manner that is dissociated from decreasing muscle strength.

Type
Chapter
Information
Sensorimotor Control of Grasping
Physiology and Pathophysiology
, pp. 250 - 266
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamo, D. E., Martin, B. J. & Brown, S. H. (2007). Age-related differences in upper limb proprioceptive acuity. Percept Mot Skills, 104, 1297–1309.CrossRefGoogle ScholarPubMed
Barry, B., Pascoe, M., Jesunathadas, M. & Enoka, R. (2007). Rate coding is compressed but variability is unaltered for motor units in a hand muscle of old adults. J Neurophysiol, 97, 3206–3218.CrossRefGoogle Scholar
Bellgrove, M., Phillips, J., Bradshaw, J. & Gallucci, R. (1998). Response (re-)programming in aging: a kinematic analysis. J Gerontol A Biol Sci Med Sci, 53, M222–M227.CrossRefGoogle ScholarPubMed
Birznieks, I., Jenmalm, P., Goodwin, A. & Johansson, R. (2001). Encoding of direction of fingertip forces by human tactile afferents. J Neurosci, 21, 8222–8237.CrossRefGoogle ScholarPubMed
Bolton, C. F., Winkelmann, R. K. & Dyck, M. D. (1966). A quantitative study of Meissner's corpuscles in man. Neurology, 16, 1–9.CrossRefGoogle ScholarPubMed
Bruce, M. & Sinclair, D. (1980). The relationship between tactile thresholds and histology in the human finger. J Neurol Neurosurg Psychiatry, 43, 235–242.CrossRefGoogle ScholarPubMed
Buchman, A., Boyle, P., Wilson, R., Bienias, J. & Bennett, D. (2006). Physical activity and motor decline in older persons. Muscle Nerve, 35, 354–362.CrossRefGoogle Scholar
Carmeli, E., Patish, H. & Coleman, R. (2003). The aging hand. J Gerontol Med Sci, 58A, 146–152.CrossRefGoogle Scholar
Cauna, N. (1965). The effects of aging on the receptor organs of the human dermis. In Montagna, W. (Ed.), Advances in Biology of the Skin, Vol. VI (pp. 63–96). New York, NY: Pergamon.Google Scholar
Cerella, J. (1990). Information processing rates in the elderly. In Birren, J. E., Schaie, K. W. (Eds.), Handbook of the Psychology of Aging, 3rd edition (pp. 201–221). New York, NY: Academic Press.CrossRefGoogle Scholar
Chance, S. A. (2006). Subtle changes in the ageing human brain. Nutr Health, 18, 217–224.CrossRefGoogle ScholarPubMed
Cole, K. J. (1991). Grasp force control in older adults. J Motor Behav, 23, 251–258.CrossRefGoogle ScholarPubMed
Cole, K. (2006). Age-related directional bias of fingertip force. Exp Brain Res, 175, 285–291.Google ScholarPubMed
Cole, K. & Rotella, D. (2001). Old age affects fingertip forces when restraining an unpredictably loaded object. Exp Brain Res, 136, 535–542.CrossRefGoogle ScholarPubMed
Cole, K. J., Rotella, D. L. & Harper, J. G. (1998). Tactile impairments cannot explain the effect of age on a grasp and lift task. Exp Brain Res, 121, 263–269.CrossRefGoogle ScholarPubMed
Cole, K., Rotella, D. & Harper, J. (1999). Mechanisms of age-related changes in fingertip forces during precision gripping and lifting in adults. J Neuroscience, 19, 3238–3247.CrossRefGoogle ScholarPubMed
Desrosiers, J., Hebert, R., Bravo, G. & Rochette, A. (1999). Age-related changes in upper extremity performance of elderly people: a longitudinal study. Exp Gerontol, 34, 393–405.CrossRefGoogle ScholarPubMed
Dickens, W. N., Winkelmann, R. K. & Mulder, D. W. (1963). Cholinesterase demonstration of dermal nerve endings in patients with impaired sensation: a clinical and pathological study of 41 patients and 27 control subjects. Neurology, 13, 91–100.CrossRefGoogle Scholar
Dinse, H. R. (2006). Cortical reorganization in the aging brain. Prog Brain Res, 157, 57–80.CrossRefGoogle ScholarPubMed
Doherty, T. J. (2003). Invited review: aging and sarcopenia. J Appl Physiol, 95, 1717–1727.CrossRefGoogle ScholarPubMed
Drachman, D. A. (2006). Aging of the brain, entropy, and Alzheimer disease. Neurology, 67, 1340–1352.CrossRefGoogle ScholarPubMed
Enoka, R., Christou, E., Hunter, S.et al. (2003). Mechanisms that contribute to differences in motor performance between young and old adults. J Electromyogr Kinesiol, 13, 1–12.CrossRefGoogle ScholarPubMed
Falconer, J., Hughes, S. L., Naughton, B. J.et al. (1991). Self report and performance-based hand function tests as correlates of dependency in the elderly. J Am Geriatr Soc, 39, 695–699.CrossRefGoogle ScholarPubMed
Ferrell, W., Crighton, A. & Sturrock, R. (1992). Age-dependent changes in position sense in human proximal interphalangeal joints. Neuroreport, 3, 259–261.CrossRefGoogle ScholarPubMed
Galganski, M. E., Fuglevand, A. J. & Enoka, R. M. (1993). Reduced control of motor output in a human hand muscle of elderly subjects during submaximal contractions. J Neurophysiol, 69, 2108–2115.CrossRefGoogle Scholar
Gescheider, G. A., Beiles, E. J., Checkosky, C. M., Bolanowski, S. J. & Verrillo, R. T. (1994a). The effects of aging on information-processing channels in the sense of touch. 2. Temporal summation in the P channel. Somatosensory Motor Res, 11, 359–365.CrossRefGoogle Scholar
Gescheider, G. A., Bolanowski, S. J., Hall, K. L., Hoffman, K. E. & Verrillo, R. T. (1994b). The effects of aging on information-processing channels in the sense of touch. 1. Absolute sensitivity. Somatosensory Motor Res, 11, 345–357.CrossRefGoogle Scholar
Gescheider, G. A., Edwards, R. R., Lackner, E. A., Bolanowski, S. J. & Verrillo, R. T. (1996). The effects of aging on information-processing channels in the sense of touch. 3. Differential sensitivity to changes in stimulus intensity. Somatosensory Motor Res, 13, 73–80.CrossRefGoogle ScholarPubMed
Holloszy, J. O. (Ed.) (1995). Workshop on sarcopenia: muscle atrophy in old age. Airlie, Virginia, September 19–21, Proceedings. J Gerontol A Biol Sci Med Sci, 50A, 1–161.
Hughes, S. L., Edelman, P., Chang, R. W., Singer, R. H. & Schuette, P. (1991). The GERI-AIMS. Reliability and validity of the arthritis impact measurement scales adapted for elderly respondents. Arthritis Rheumat, 34, 856–865.CrossRefGoogle ScholarPubMed
Hughes, V., Frontera, W., Wood, M.et al. (2001). Longitudinal muscle strength changes in older adults: influence of muscle mass, physical activity, and health. J Gerontol A Biol Sci Med Sci, 56, B209–B217.CrossRefGoogle ScholarPubMed
Jebsen, R. H., Taylor, N., Trieschmann, R. B., Trotter, M. J. & Howard, L. A. (1969). An objective and standardized test of hand function. Arch Phys Med Rehab, 50, 311–319.Google ScholarPubMed
Jenmalm, P., Birznieks, I., Goodwin, A. & Johansson, R. (2003). Influence of object shape on responses of human tactile afferents under conditions characteristic of manipulation. Eur J Neurosci, 18, 164–176.CrossRefGoogle ScholarPubMed
Jodar, M. & Junque, C. (1998). Frontal functions in normal aging and the performance in Purdue Pegboard test. In Vellas, V., Fitten, J. & Frisoni, G. (Eds.), Research and Practice in Alzheimer's Disease (pp. 151–162). New York, NY: Springer.Google Scholar
Johansson, R. S. & Westling, G. (1987). Signals in tactile afferents from the fingers eliciting adaptive motor-responses during precision grip. Exp Brain Res, 66, 141–154.CrossRefGoogle ScholarPubMed
Johansson, R. & Birznieks, I. (2004). First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat Neurosci, 7, 170–177.CrossRefGoogle ScholarPubMed
Katzman, R. & Terry, R. (1983). Normal aging of the nervous system. In Katzman, R. (Ed.), The Neurology of Aging (pp. 15–50). Philadelphia, PA: F.A. Davis.Google Scholar
Keen, D. A., Yue, G. H. & Enoka, R. M. (1994). Training-related enhancement in the control of motor output in elderly humans. J Appl Physiol, 77, 2648–2658.CrossRefGoogle ScholarPubMed
Kellor, M., Frost, J., Silberberg, B., Iverson, I. & Cummings, R. (1971). Hand strength and dexterity. Am J Occup Ther, 25, 77–83.Google ScholarPubMed
Kenshalo, D. R. (1986). Somesthetic sensitivity in young and elderly humans. J Gerontol, 41, 732–742.Google Scholar
Kinoshita, H. & Francis, P. R. (1996). A comparison of prehension force control in young and elderly individuals. Eur J Appl Physiol, 74, 450–460.Google Scholar
Kornatz, K., Christou, E. & Enoka, R. (2005). Practice reduces motor unit discharge variability in a hand muscle and improves manual dexterity in old adults. J Appl Physiol, 98, 2072–2080.CrossRefGoogle Scholar
Krampe, R. (2002). Aging, expertise and fine motor movement. Neurosci Biobehav Rev, 26, 769–776.CrossRefGoogle ScholarPubMed
Krampe, R. & Ericsson, K. (1996). Maintaining excellence: deliberate practice and elite performance in young and older pianists. J Exp Psychol Gen, 125, 331–359.CrossRefGoogle Scholar
Laidlaw, D., Bilodeau, M. & Enoka, R. (2000). Steadiness is reduced and motor unit discharge is more variable in old adults. Muscle Nerve, 23, 600–612.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Liu, J., Eriksson, L., Thornell, L. & Pedrosa-Domellof, F. (2005). Fiber content and myosin heavy chain composition of muscle spindles in aged human biceps brachii. J Histochem Cytochem, 53, 445–454.CrossRefGoogle ScholarPubMed
Macefield, V. G. & Johansson, R. S. (1996). Control of grip force during restraint of an object held between finger and thumb: responses of muscle and joint afferents from the digits. Exp Brain Res, 108, 172–184.Google ScholarPubMed
Macefield, V. G., Rothwell, J. C. & Day, B. L. (1996). The contribution of transcortical pathways to long-latency stretch and tactile reflexes in human hand muscles. Exp Brain Res, 108, 147–154.CrossRefGoogle ScholarPubMed
Mahneke, H., Bronstone, A. & Merzenich, M. (2006). Brain plasticity and functional losses in the aged: scientific bases for a novel intervention. Prog Brain Res, 157, 81–109.CrossRefGoogle Scholar
Manning, H. & Tremblay, F. (2006). Age differences in tactile pattern recognition at the fingertip. Somatosens Mot Res, 23, 147–155.CrossRefGoogle ScholarPubMed
Morgan, M., Phillips, J. G., Bradshaw, J. L.et al. (1994). Age-related motor slowness – simply strategic?J Gerontol, 49, M133–M139.CrossRefGoogle ScholarPubMed
Nudo, R. (2006). Mechanisms for recovery of motor function following cortical damage. Curr Opin Neurobiol, 16, 638–644.CrossRefGoogle ScholarPubMed
Nudo, R. J. & Milliken, G. W. (1996). Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol, 75, 2144–2149.CrossRefGoogle ScholarPubMed
Olafsdottir, H., Zhang, W., Zatsiorsky, V. & Latash, M. (2007). Age-related changes in multifinger synergies in accurate moment of force production tasks. J Appl Physiol, 102, 1490–1501.CrossRefGoogle ScholarPubMed
Ostwald, S. K., Snodown, D. A., Rysavy, S. D. M., Keeana, N. L. & Kane, R. L. (1989). Manual dexterity as a correlate of dependency in the elderly. J Am Geriatr Soc, 37, 963–969.CrossRefGoogle ScholarPubMed
Pujol, J., Junque, C., Vendrell, P., Grau, J. & Capdevila, A. (1992). Reduction of the substantia nigra width and motor decline in aging and Parkinson's disease. Arch Neurol, 49, 1119–1122.CrossRefGoogle ScholarPubMed
Ranganathan, V., Siemionow, V., Sahgal, V. & Gue, G. (2001a). Effects of aging on hand function. J Am Geriatr Soc, 49, 1478–1484.CrossRefGoogle ScholarPubMed
Ranganathan, V., Siemionow, V., Sahgal, V., Liu, J. & Gue, G. (2001b). Skilled finger movement exercise improves hand function. J Gerontol A Biol Sci Med Sci, 56, M518–M522.CrossRefGoogle ScholarPubMed
Raz, N. & Rodrigue, K. (2006). Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev, 30, 730–748.CrossRefGoogle ScholarPubMed
Raz, N., Rodrigue, K. & Haacke, E. (2007). Brain aging and its modifiers: insights from in vivo neuromorphometry and susceptibility weighted imaging. Ann NY Acad Sci, 1097, 84–93.CrossRefGoogle ScholarPubMed
Salthouse, T. (1984). Effects of age and skill in typing. J Exp Psychol Gen, 113, 345–371.CrossRefGoogle ScholarPubMed
Schaumberg, M. D., Spencer, P. S. & Ochoa, J. (1983). The aging human peripheral nervous system. In Katzman, R. (Ed.), The Neurology of Aging (pp. 111–122). Philadelphia, PA: F. A. Davis.Google Scholar
Schmidt, R. F., Wahren, L. K. & Hagbarth, K. E. (1990). Multiunit neural responses to strong finger pulp vibration. I. Relationship to age. Acta Physiol Scand, 140, 1–10.CrossRefGoogle Scholar
Scholer, S. G., Potter, J. F. & Burke, W. J. (1990). Does the Williams Manual Test predict service use among subjects undergoing geriatric assessment?J Am Geriatr Soc, 38, 767–772.Google ScholarPubMed
Shiffman, L. M. (1992). Effects of aging on adult hand function. Am J Occup Ther, 46, 785–792.CrossRefGoogle ScholarPubMed
Shim, J., Lay, B., Zatsiorsky, V. & Latash, M. (2004). Age-related changes in finger coordination in static prehension tasks. J Appl Physiol, 97, 213–224.CrossRefGoogle ScholarPubMed
Shinohara, M., Keenan, K. & Enoka, R. (2003). Contralateral activity in homologous hand muscle during voluntary contractions is greater in old adults. J Appl Physiol, 94, 373–384.CrossRefGoogle ScholarPubMed
Smith, C., Umberger, G., Manning, B.et al. (1999). Critical decline in fine motor hand movements in human aging. Neurology, 53, 1458–1461.CrossRefGoogle ScholarPubMed
Smith, C., Walton, A., Loveland, A.et al. (2005). Memories that last in old age: motor skill learning and memory preservation. Neurobiol Aging, 26, 883–890.CrossRefGoogle ScholarPubMed
Sosnoff, J. & Newell, K. (2006). Are age-related increases in force variability due to decrements in strength?Exp Brain Res, 174, 86–94.CrossRefGoogle ScholarPubMed
Sperling, G. (1960). The information available in brief visual presentations. Psychol Monog Gen Applied, 74, 1–30.CrossRefGoogle Scholar
Stevens, J. (1992). Aging and spatial acuity of touch. J Gerontol: Psychol Sci, 47, 35–40.CrossRefGoogle Scholar
Stevens, J. C. & Patterson, M. Q. (1995). Dimensions of spatial acuity in the touch sense: Changes over the life span. Somatosensory Motor Res, 12, 29–47.CrossRefGoogle ScholarPubMed
Stevens, J. C., Cruz, L. A., Marks, L. E. & Lakatos, S. (1998). A multimodal assessment of sensory thresholds in aging. J Gerontol Ser B Psychol Sci, 53, P263–P272.CrossRefGoogle Scholar
Swash, M. & Fox, K. (1972). The effect of age on human skeletal muscle. Studies of the morphology and innervation of muscle spindles. J Neurol Sci, 16, 417–432.CrossRefGoogle ScholarPubMed
Tracy, B., Maluf, K., Stephenson, J., Hunter, S. & Enoka, R. (2005). Variability of motor unit discharge and force fluctuations across a range of muscle forces in older adults. Muscle Nerve, 32, 533–540.CrossRefGoogle ScholarPubMed
Tremblay, F., Wong, K., Sanderson, R. & Cote, L. (2003). Tactile spatial acuity in elderly persons: assessment with grating domes and relationship with manual dexterity. Somatosensory Motor Res, 20, 127–132.CrossRefGoogle ScholarPubMed
Tremblay, F., Mireault, A., Dessurault, L., Manning, H. & Sveistrup, H. (2005). Postural stabilization from fingertip contact: II. Relationships between age, tactile sensibility and magnitude of contact forces. Exp Brain Res, 164, 155–164.CrossRefGoogle ScholarPubMed
Boven, R., Tilghman, D. & Johnson, K. (1989). Oral tactile spatial resolution: a pyschophysical study. J Dent Res, 68, 329.Google Scholar
Verrillo, R. T. (1979). Change in vibrotactile thresholds as a function of age. Sensory Proc, 3, 49–59.Google ScholarPubMed
Volkow, N., Gur, R., Wang, G.et al. (1998). Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. Am J Psychiatry, 155, 344–349.Google ScholarPubMed
Volkow, N., Logan, J., Fowler, J.et al. (2000). Association between age-related decline in brain dopamine activity and impairment in frontal and cingulate metabolism. Am J Psychiatry, 157, 75–80.CrossRefGoogle ScholarPubMed
Welford, A. (1958). Aging and Human Skill. Oxford, UK: Oxford University Press for the Nuffield Foundation.Google Scholar
Welford, A. (1981). Signal, noise, performance, and age. Hum Factors, 23, 97–109.CrossRefGoogle Scholar
Welford, A. T. (1977). Motor performance. In Birren, J. E. & Schaie, K. W. (Eds.), Handbook of the Psychology of Aging (pp. 450–496). New York, NY: Van Nostrand Reinhold.Google Scholar
Welford, A. T., Norris, A. H. & Shock, N. W. (1969). Speed and accuracy of movement and their changes with age. Acta Psychol, 30, 3–15.CrossRefGoogle ScholarPubMed
Westling, G. & Johansson, R. S. (1987). Responses in glabrous skin mechanoreceptors during precision grip in humans. Exp Brain Res, 66, 128–140.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×