Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T22:25:09.450Z Has data issue: false hasContentIssue false

12 - Predictive mechanisms and object representations used in object manipulation

Published online by Cambridge University Press:  23 December 2009

Dennis A. Nowak
Affiliation:
Klinik Kipfenberg, Kipfenberg, Germany
Joachim Hermsdörfer
Affiliation:
Technical University of Munich
Get access

Summary

Summary

Skilled object manipulation requires the ability to estimate, in advance, the motor commands needed to achieve desired sensory outcomes and the ability to predict the sensory consequences of the motor commands. Because the mapping between motor commands and sensory outcomes depends on the physical properties of grasped objects, the motor system may store and access internal models of objects in order to estimate motor commands and predict sensory consequences. In this chapter, we outline evidence for internal models and discuss their role in object manipulation tasks. We also consider the relationship between internal models of objects employed by the sensorimotor system and representations of the same objects used by the perceptual system to make judgements about objects.

Introduction

Although we have designed computers that can beat grand masters at chess, we have yet to design robots that can manipulate chess pieces with anything like the dexterity of a 5-year-old child. What makes humans so good at object manipulation in comparison to robots? There is no question that the anatomy of the human hand is well adapted for manipulation. On the sensory side, the hand is richly endowed with tactile sensors that provide exquisitely precise information about mechanical interactions between the skin and objects. On the motor side, the numerous kinematic degrees of freedom of the hand enable it to grasp objects of all shapes and sizes.

Type
Chapter
Information
Sensorimotor Control of Grasping
Physiology and Pathophysiology
, pp. 161 - 177
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aglioti, S., DeSouza, J. F. X. & Goodale, M. A. (1995). Size-contrast illusions deceive the eye but not the hand. Curr Biol, 5, 679–685.CrossRefGoogle Scholar
Blakemore, S. J., Goodbody, S. J. & Wolpert, D. M. (1998). Predicting the consequences of our own actions: the role of context sensorimotor context estimation. J Neurosci, 18, 7511–7518.CrossRefGoogle ScholarPubMed
Birznieks, I., Jenmalm, P., Goodwin, A. W. & Johansson, R. S. (2001). Encoding of direction of fingertip forces by human tactile afferents. J Neurosci, 21, 8222–8237.CrossRefGoogle ScholarPubMed
Culham, J. C., Danckert, S. L., DeSouza, J. F.et al. (2003). Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Exp Brain Res, 153, 180–189.CrossRefGoogle Scholar
Charpentier, A. (1891). Analyse experimentale quelques elements de la sensation de poids [Experimental study of some aspects of weight perception]. Archiv Physiol Normales Pathologiq, 3, 122–135.Google Scholar
Cole, K. J. & Abbs, J. H. (1988). Grip force adjustments evoked by load force perturbations of a grasped object. J Neurophysiol, 60, 1513–1522.CrossRefGoogle ScholarPubMed
Cole, K. J., Potash, M. & Peterson, C. (2006). ‘Sensorimotor’ memory affects the lift and grip forces differently in a simple grip and lift task. Soc Neurosci Abstr, Poster 655.1.Google Scholar
Cothros, N., Wong, J. D. & Gribble, P. L. (2006). Are there distinct neural representations of object and limb dynamics?Exp Brain Res, 173, 689–697.CrossRefGoogle ScholarPubMed
Danion, F. (2004). How dependent are grip force and arm actions during holding an object?Exp Brain Research, 158, 109–119.CrossRefGoogle Scholar
Davidson, P. R. & Wolpert, D. M. (2004). Internal models underlying grasp can be additively combined. Exp Brain Res, 155, 334–340.CrossRefGoogle ScholarPubMed
Davis, C. M. & Roberts, W. (1976). Lifting movements in the size-weight illusion. Percept Psychophys, 20, 33–36.CrossRefGoogle Scholar
Delevoye-Turrell, Y. N. & Wing, A. M. (2003). Efficiency of grip force adjustments for impulsive loading during imposed and actively produced collisions. Quart J Exp Psychol, 56A, 1113–1128.CrossRefGoogle Scholar
Descoins, M., Danion, F. & Bootsma, R. J. (2006). Predictive control of grip force when moving object with an elastic load applied on the arm. Exp Brain Res, 172, 331–342.CrossRefGoogle Scholar
Ellis, R. R. & Lederman, S. J. (1993). The role of haptic versus visual volume cues in the size-weight illusion. Percept Psychophys, 53, 315–324.CrossRefGoogle ScholarPubMed
Flanagan, J. R. & Tresilian, J. (1994). Grip-load force coupling: a general control strategy for transporting objects. J Exp Psychol Hum Percept Perform, 20, 944–957.CrossRefGoogle ScholarPubMed
Flanagan, J. R. & Wing, A. M. (1993). Modulation of grip force with load force during point-to-point arm movements. Exp Brain Res, 95, 131–143.CrossRefGoogle ScholarPubMed
Flanagan, J. R. & Wing, A. M. (1995). The stability of precision grip forces during cyclic arm movements with a hand-held load. Exp Brain Res, 105, 455–464.Google ScholarPubMed
Flanagan, J. R. & Wing, A. M. (1997). The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci, 17, 1519–1528.CrossRefGoogle ScholarPubMed
Flanagan, J. R. & Beltzner, M. A. (2000). Independence of perceptual and sensorimotor predictions in the size-weight illusion. Nat Neurosci, 3, 737–741.CrossRefGoogle ScholarPubMed
Flanagan, J. R. & Lolley, S. (2001). The inertial anisotropy of the arm is accurately predicted during movement planning. J Neurosci, 21, 1361–1369.CrossRefGoogle ScholarPubMed
Flanagan, J. R., King, S., Wolpert, D. M. & Johansson, R. S. (2001). Sensorimotor prediction and memory in object manipulation. Can J Exp Psychol, 55, 89–97.CrossRefGoogle ScholarPubMed
Flanagan, J. R., Vetter, P., Johansson, R. S. & Wolpert, D. M. (2003). Prediction precedes control in motor learning. Curr Biol, 13, 146–150.CrossRefGoogle ScholarPubMed
Flanagan, J. R., Bowman, M. C. & Johansson, R. S. (2006). Control strategies in object manipulation tasks. Curr Opin Neurobiol, 16, 650–659.CrossRefGoogle ScholarPubMed
Flourney, T. (1894). De l'influence de la perception visuelle des corps sur leur poids apparrent [The influence of visual perception on the apparent weight of objects]. L'Année Psychologiq, 1, 198–208.Google Scholar
Ganel, T. & Goodale, M. A. (2003). Visual control of action but not perception requires analytical processing of object shape. Nature, 426, 664–667.CrossRefGoogle Scholar
Goodale, M. A., Milner, A. D., Jakobson, L. S. & Carey, D. P. (1991). A neurological dissociation between perceiving objects and grasping them. Nature, 349, 154–156.CrossRefGoogle Scholar
Goodwin, A. W., Jenmalm, P. & Johansson, R. S. (1998). Control of grip force when tilting objects: effect of curvature of grasped surfaces and applied tangential torque. J Neurosci, 18, 10724–10734.CrossRefGoogle ScholarPubMed
Gordon, A. M., Forssberg, H., Johansson, R. S. & Westling, G. (1991a). Visual size cues in the programming of manipulative forces during precision grip. Exp Brain Res, 83, 477–482.CrossRefGoogle ScholarPubMed
Gordon, A. M., Forssberg, H., Johansson, R. S. & Westling, G. (1991b). The integration of haptically acquired size information in the programming of precision grip. Exp Brain Res, 83, 483–488.CrossRefGoogle ScholarPubMed
Gordon, A. M., Forssberg, H., Johansson, R. S. & Westling, G. (1991c). Integration of sensory information during the programming of precision grip: comments on the contributions of size cues. Exp Brain Res, 85, 226–229.CrossRefGoogle ScholarPubMed
Gordon, A. M., Westling, G., Cole, K. J. & Johansson, R. S. (1993). Memory representations underlying motor commands used during manipulation of common and novel objects. J Neurophysiol, 69, 1789–1796.CrossRefGoogle ScholarPubMed
Grandy, M. S. & Westwood, D. A. (2006). Opposite perceptual and sensorimotor responses to a size-weight illusion. J Neurophysiol, 95, 3887–3892.CrossRefGoogle ScholarPubMed
Granit, R. (1972). Constant errors in the execution and appreciation of movement. Brain, 95, 451–460.CrossRefGoogle Scholar
Häger-Ross, C. & Johansson, R. S. (1996). Nondigital afferent input in reactive control of fingertip forces during precision grip. Exp Brain Res, 110, 131–141.CrossRefGoogle ScholarPubMed
Hermsdörfer, J. & Blankenfeld, H. (2008). Grip force control of predictable external loads. Exp Brain Res, DOI 10.1007/s00221-007-1195-6.CrossRefGoogle ScholarPubMed
Hu, Y. & Goodale, M. A. (2000). Grasping after a delay shifts size-scaling from absolute to relative metrics. J Cogn Neurosci, 12, 856–868.CrossRefGoogle ScholarPubMed
Jenmalm, P. & Johansson, R. S. (1997). Visual and somatosensory information about object shape control manipulative fingertip forces. J Neurosci, 17, 4486–4499.CrossRefGoogle ScholarPubMed
Jenmalm, P., Goodwin, A. W. & Johansson, R. S. (1998). Control of grasp stability when humans lift objects with different surface curvatures. J Neurophysiol, 79, 1643–1652.CrossRefGoogle ScholarPubMed
Jenmalm, P., Dahlstedt, S. & Johansson, R. S. (2000). Visual and tactile information about object-curvature control fingertip forces and grasp kinematics in human dexterous manipulation. J Neurophysiol, 84, 2984–2997.CrossRefGoogle ScholarPubMed
Johansson, R. S. & Birznieks, I. (2004). First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat Neurosci, 7, 170–177.CrossRefGoogle ScholarPubMed
Johansson, R. S. & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic-control of precision grip when lifting rougher or more slippery objects. Exp Brain Res, 56, 550–564.CrossRefGoogle ScholarPubMed
Johansson, R. S. & Westling, G. (1987). Signals in tactile afferents from the fingers eliciting adaptive motor-responses during precision grip. Exp Brain Res, 66, 141–154.CrossRefGoogle ScholarPubMed
Johansson, R. S. & Westling, G. (1988a). Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Exp Brain Res, 71, 59–71.CrossRefGoogle ScholarPubMed
Johansson, R. S. & Westling, G. (1988b). Programmed and triggered actions to rapid load changes during precision grip. Exp Brain Res, 71, 72–86.CrossRefGoogle ScholarPubMed
Johansson, R. S., Häger, C. & Riso, R. (1992). Somatosensory control of precision grip during unpredictable pulling forces. II: Changes in load force rate. Exp Brain Res, 89, 192–203.CrossRefGoogle ScholarPubMed
Johansson, R. S., Backlin, J. L. & Burstedt, M. K. (1999). Control of grasp stability during pronation and supination movements. Exp Brain Res, 128, 20–30.CrossRefGoogle ScholarPubMed
Kawato, M. (1999). Internal models for motor control and trajectory planning. Curr Opin Neurobiol, 9, 718–727.CrossRefGoogle ScholarPubMed
Lackner, J. R. & DiZio, P. (2005). Motor control and learning in altered dynamic environments. Curr Opin Neurobiol, 15, 653–659.CrossRefGoogle ScholarPubMed
Mah, C. D. & Mussa-Ivaldi, F. A. (2003). Generalization of object manipulation skills learned without limb motion. J Neurosci, 23, 4821–4825.CrossRefGoogle ScholarPubMed
Malfait, N., Shiller, D. M. & Ostry, D. J. (2002). Transfer of motor learning across arm configurations. J Neurosci, 22, 9656–9660.CrossRefGoogle ScholarPubMed
Merritt, K. & Flanagan, J. R. (2004). Internal models of object dynamics in skilled manipulation. Poster presented at the Seventh Annual Meeting For Health Sciences Research Trainees, Queen's University, May 2004.
Milner, A. D. & Goodale, M. A. (1995). The Visual Brain in Action. Oxford, UK: Oxford University Press.Google Scholar
Mon-Williams, M. & Murray, A. H. (2000). The size of the visual size cue used for programming manipulative forces during precision grip. Exp Brain Res, 135, 405–410.CrossRefGoogle ScholarPubMed
Murray, D. J., Ellis, R. R., Bandomir, C. A. & Ross, H. E. (1999). Charpentier (1891) on the size-weight illusion. Percept Psychophys, 61, 1681–1685.CrossRefGoogle ScholarPubMed
Nozaki, D., Kurtzer, I. & Scott, S. H. (2006). Limited transfer of learning between unimanual and bimanual skills within the same limb. Nat Neurosci, 9, 1364–1366.CrossRefGoogle ScholarPubMed
Nyssen, R. & Bourdon, J. (1955). Contribution to the study of the size-weight illusion by the method of P. Koseleff. Acta Psychologia, 11, 467–474.CrossRefGoogle Scholar
Pick, H. L. & Pick, A. D. (1967). A developmental and analytic study of the size-weight illusion. J Exp Child Psychol, 5, 362–371.CrossRefGoogle ScholarPubMed
Pilon, J.-F., Serres, S. J. & Feldman, A. G. (2007). Threshold position control of arm movement with anticipatory increase in grip force. Exp Brain Res, 181, 49–67.CrossRefGoogle ScholarPubMed
Quaney, B. M., Rotella, D. L., Peterson, C. & Cole, K. J. (2003). Sensorimotor memory for fingertip forces: evidence for a task-independent motor memory. J Neurosci, 23, 1981–1986.CrossRefGoogle ScholarPubMed
Quaney, B. M., Nudo, R. J. & Cole, K. J. (2005). Can internal models of objects be utilized for different prehension tasks?J Neurophysiol, 93, 2021–2027.CrossRefGoogle ScholarPubMed
Robinson, H. B. (1964). An experimental examination of the size-weight illusion in young children. Child Develop, 35, 91–107.Google ScholarPubMed
Ross, H. E. (1969). When is a weight not illusory?Quart J Exp Psychol, 21, 346–355.CrossRefGoogle Scholar
Salimi, I., Frazier, W., Reilmann, R. & Gordon, A. M. (2003). Selective use of visual information signaling objects' center of mass for anticipatory control of manipulative fingertip forces. Exp Brain Res, 150, 9–18.CrossRefGoogle ScholarPubMed
Shadmehr, R. & Mussa-Ivaldi, F. A. (1994). Adaptive representation of dynamics during learning of a motor task. J Neurosci, 14, 3208–3224.CrossRefGoogle ScholarPubMed
Shadmehr, R. & Moussavi, Z. M. K. (2000). Spatial generalization from learning dynamics of reaching movements. J Neurosci, 20, 7807–7815.CrossRefGoogle ScholarPubMed
Turrell, Y. N., Li, F.-X. & Wing, A. M. (1999). Grip force dynamics in the approach to a collision. Exp Brain Res, 128, 86–91.CrossRefGoogle ScholarPubMed
Wang, J. & Sainburg, R. L. (2004). Interlimb transfer of novel inertial dynamics is asymmetrical. Exp Brain Res, 92, 349–360.Google ScholarPubMed
Westberg, K.-G., Trulsson, M. & Johansson, R. S. (2001). Oro-manual force coordination in humans. Poster presented at the Neural Control of Movement meeting, March 25–31, 2001, Seville, Spain.
Wing, A. M. & Lederman, S. J. (1998). Anticipating load torques produced by voluntary movements. J Exp Psychol Hum Percept Perform, 24, 1571–1581.CrossRefGoogle ScholarPubMed
Witney, A., Goodbody, S. J., & Wolpert, D. M. (1999). Predictive motor learning of temporal delays. J Neurophysiol, 82, 2039–2048.CrossRefGoogle ScholarPubMed
Wolpert, D. M. & Flanagan, J. R. (2001). Motor prediction. Curr Biol, 11, R729–R732.CrossRefGoogle ScholarPubMed
Wolpert, D. M. & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nat Neurosci, 3 Suppl., 1212–1217.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×