Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-17T12:22:13.505Z Has data issue: false hasContentIssue false

7 - Comparative fiber-type composition and size in the antigravity muscles of primate limbs

Published online by Cambridge University Press:  10 August 2009

Françoise K. Jouffroy
Affiliation:
CNRS-UMR-8570, Laboratoire d'Anatomie Comparée, Muséum National d'Histoire Naturelle, 55 rue Buffon, F-75005 Paris, France; and Department of Anatomical Sciences, School of Medicine, Health Sciences Center, Stony Brook University, Stony Brook, NY 11794-8081, USA
Monique F. Médina
Affiliation:
CNRS-UMR-8570, Laboratoire d'Anatomie Comparée, Muséum National d'Histoire Naturelle, 55 rue Buffon, F-75005 Paris, France
Fred Anapol
Affiliation:
University of Wisconsin, Milwaukee
Rebecca Z. German
Affiliation:
University of Cincinnati
Nina G. Jablonski
Affiliation:
California Academy of Sciences, San Francisco
Get access

Summary

Gravity: the most compelling factor in the evolution of primate locomotor systems

Inflationary increase in the number of space flights and length of time spent in space stations – likely to become casual trips for wealthy tourists – has brought to light how much the structure and function of the locomotor system depend upon gravitational force. The sort of “swimming” movements of astronauts within space stations have become familiar images on our TV screens. Adaptation to weightlessness for an easy life in space has required scientists to analyze and overcome the alterations generated in muscles by the absence of weight constraints. Astronauts are well aware of the changes occurring within their body in the microgravitational environment, as well as their reversal during the recovery phase following return to earth. Astronauts' sensations are in accordance with experimental results drawn from flown rats and macaques. Changes in muscle structure were reported first in rats, after only two weeks in space (Desplanches et al., 1987; Riley et al., 1990; Desplanches, 1997; Fitts et al., 2001). Significant advances in our understanding of the effect of gravity on the primate muscle system resulted from two series of studies of flown rhesus monkeys (Macaca mulatta) during 14- and 12-day space flights: (1) COSMOS 2044, COSMOS 2229 (Bodine-Fowler et al., 1995; Roy et al., 1996) and (2) BION 11 (Roy et al., 1999, 2000; Belozerova et al., 2000; Mounier et al., 2000; Chopard et al., 2000; Fitts et al., 2000a, 2000b, 2001; Kischel et al., 2001).

Type
Chapter
Information
Shaping Primate Evolution
Form, Function, and Behavior
, pp. 134 - 161
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta, L. and Roy, R. R. (1987). Fiber-type composition of selected hindlimb muscles of a primate (Cynomolgus monkey). Anat. Rec., 218, 136–141CrossRefGoogle Scholar
Albis, A. d', Couteaux, R., Janmot, C., and Roulet, A. (1989). Specific program of myosin expression in the postnatal development of rat muscles. Eur. J. Biochem., 183, 583–590CrossRefGoogle ScholarPubMed
Albis, A. d', Chanoine, C., Janmot, C., Mira, J. C., and Couteaux, R. (1990). Muscle-specific response to thyroid hormone of myosin isoform transitions during rat postnatal development. Eur. J. Biochem., 193, 155–161CrossRefGoogle ScholarPubMed
Alexander, R. McN. (1984). Elastic energy stores in running vertebrates. Amer. Zool., 24, 85–94CrossRefGoogle Scholar
Alexander, R. McN. (1990). The dependence of gait on size, speed and gravity. In: Gravity, Posture, and Locomotion in Primates, ed. F. K. Jouffroy, M. H. Stack, and C. Niemitz. Firenze: Sedicesimo. pp. 79–85
Alexander, R. McN. and Jayes, A. S. (1983). A dynamic similarity hypothesis for the gaits of quadrupedal mammals. J. Zool. Lond., 201, 135–152CrossRefGoogle Scholar
Alexander, R. McN. Dimery, N. J., and Ker, R. F. (1985). Elastic structures in the back and their rôle in galloping in some mammals. J. Zool. Lond. (A), 207, 467–482CrossRefGoogle Scholar
Anapol, F. and Barry, K. (1996). Fiber architecture of the extensors of the hindlimb in semiterrestrial and arboreal guenons. Amer. J. Phys. Anthropol., 99, 429–4473.0.CO;2-R>CrossRefGoogle ScholarPubMed
Anapol, F. and Jungers, W. L. (1986). Architectural and histochemical diversity within the quadriceps femoris of the brown lemur (Lemur fulvus). Amer. J. Phys. Anthropol., 69, 355–375CrossRefGoogle Scholar
Anapol, F. and Jungers, W. L. (1987). Telemetered electromyography of the fast and slow extensors of the leg of the brown lemur (Lemur fulvus). J. Exp. Biol., 130, 341–358Google Scholar
Ariano, M. A., Armstrong, R. B., and Edgerton, V. R. (1973). Hindlimb muscle fiber population of five mammals. J. Histochem. Cytochem., 21, 51–55CrossRefGoogle Scholar
Armstrong, R. B. (1980). Properties and distributions of the fiber types in the locomotory muscles of mammals. In: Comparative Physiology: Primitive Mammals, ed. K. Schmidt-Nielsen and C. R. Taylor. Cambridge: Cambridge University Press. pp. 243–254
Armstrong, R. B., Saubert, C. W., Seeherman, H. J., and Taylor, C. R. (1982). Distribution of fiber types in locomotory muscles of dogs. Amer. J. Anat., 163, 87–98CrossRefGoogle ScholarPubMed
Bär, A. and Pette, D. (1988). Three fast myosin heavy chain in adult rat skeletal muscle. FEBS Lett., 235, 153–155CrossRefGoogle ScholarPubMed
Beatty, C. H., Basinger, G. M., Dully, C. C., and Bocek, R. M. (1966). Comparison of red and white voluntary skeletal muscles of several species of primates. J. Histochem. Cytochem., 14, 590–600CrossRefGoogle Scholar
Beatty, C. H., Basinger, G. M., and Bocek, R. M., (1967). Differentiation of red and white fibers in muscle from fetal, neonatal, and infant rhesus monkey. J. Histochem. Cytochem., 15, 93–103CrossRefGoogle Scholar
Belozerova, I. N., Nemirovskaya, T. L., and Shenkman, B. S. (2000). Structural and metabolic profile of rhesus monkey M. Vastus lateralis after spaceflight. J. Gravit. Physiol., 7, S55–S58Google ScholarPubMed
Bodine-Fowler, S. C., Pierotti, D. J., and Talmadge, R. J. (1995). Function and cellular adaptation to weightlessness in primates. J. Gravit. Physiol., 2, P43–46Google ScholarPubMed
Booth, F. W. (1982). Effect of limb immobilization on skeletal muscle. J. Appl. Physiol., 52, 1113–1118CrossRefGoogle ScholarPubMed
Booth, F. W. and Kelso, J. R. (1973). Effect of hindimb immobilization on contractile and histochemical properties of skeletal muscles. Pflügers Arch., 342, 231–238CrossRefGoogle Scholar
Booth, F. W. and Seider, M. J. (1979). Recovery of skeletal muscle after three months of hindlimb immobilization in rats. J. Appl. Physiol., 47, 435–439CrossRefGoogle Scholar
Bottinelli, R., Betto, R., Schiaffino, S., and Reggiani, C. (1994). Maximum shortening velocity and coexistence of myosin heavy chains isoforms in single skinned fast fibres of rat skeletal muscles. J. Muscle Res. Cell Motil. 15, 413–419CrossRefGoogle Scholar
Brooke, M. H. and Kaiser, K. K. (1970). Muscle fiber types. How many and what kind?Arch. Neurol., 23, 369–379CrossRefGoogle ScholarPubMed
Burke, R. E. (1975). A comment on the existence of motor unit types. In: The Nervous System. The Basic Neuroscience, ed. R. O. Brady. New York, NY: Raven. Vol. I, pp. 611–619
Burke, R. E. (1981). Motor units: anatomy, physiology, and functional organization. In: Motor Control. Handbook of Physiology. Sec. I, the Nervous System, ed. V. B. Brooks. Washington, DC: American Physiological Society. Vol. II, part 1, pp. 345–422
Burke, R. E. (1986). Physiology of motor units. In: Myology, ed. A. G. Engel and Q. B. Banker. New York, NY: McGraw-Hill. pp. 419–443
Burke, R. E. and Tsairis, P. (1974). The correlation of physiological properties with histochemical characteristics in single muscle units. Ann. N. Y. Acad. Sci., 228, 145–159CrossRefGoogle ScholarPubMed
Burke, R. E. and Tsairis, P. (1977). Histochemical and physiological profile of a skeletofusimotor (β) unit in cat soleus muscle. Brain Res., 129, 341–345CrossRefGoogle ScholarPubMed
Burke, R. E., Levine, D. N., and Zajac, F. E. (1971). Mammalian motor units: physiological–histochemical correlation in three types of cat gastrocnemius. Science, 174, 709–712CrossRefGoogle ScholarPubMed
Burke, R. E., Levine, D. N., Tsairis, P., and Zajac, F. E. (1973). Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J. Physiol., 234, 723–748CrossRefGoogle ScholarPubMed
Burke, R. E., Reymer, W. Z., and Walsh, J. V. (1976). Relative strength of synaptic input from short-latency pathways to motor units of defined type in cat medial gastrocnemius. J. Neurophysiol., 39, 447–458CrossRefGoogle ScholarPubMed
Charles-Dominique, P. (1971). Eco-éthologie des Prosimiens du Gabon. Biologia Gabonica, 7, 121–228Google Scholar
Chopard, A., Lecler, L., Pons, F., Leger, J. J., and Marini, J. F. (2000). Effects of 14-day spaceflight on myosin heavy chain expression in biceps and triceps muscles of the rhesus monkey. J. Gravit. Physiol., 7, S47–S49Google ScholarPubMed
Desplanches, D. (1997). Structural and functional adaptation of skeletal muscles to weightlessness. Int. J. Sports Med., 18, 259–264CrossRefGoogle ScholarPubMed
Desplanches, D., Sempore, B., and Flandrois, R. (1987). Structural and functional responses to prolonged hindlimb suspension in rat muscle. J. Appl. Physiol., 63, 558–563CrossRefGoogle ScholarPubMed
Desplanches, D., Mayet, M. H., Ilyina-Kakueva, E. I., Sempore, B., and Flandrois, R. (1990). Skeletal muscles adaptation in rats flown on Cosmos 1667. J. Appl. Physiol., 68, 48–52CrossRefGoogle ScholarPubMed
Dhoot, G. K. and Perry, S. V. (1979). Distribution of polymorphic forms of troponin components and tropomyosin in skeletal muscle. Nature, 278, 714–718CrossRefGoogle ScholarPubMed
Dimery, N. J. and Alexander, R. McN. (1985). Elastic properties of the hind foot of the donkey, Equus asimus. J. Zool. A, 207, 9–20CrossRefGoogle Scholar
Dimery, N. J., Alexander, R. McN., and Deyst, K. A. (1985). Mechanics of the ligamentum nuchae of some artiodactyls. J. Zool. Lond. (A), 206, 3341–3351Google Scholar
Dubowitz, V. and Pearse, A. G. E. (1960). A comparative histochemical study of oxidative enzyme and phosphorylase activity in skeletal muscle. Histochemie, 2, 105–117CrossRefGoogle ScholarPubMed
Dum, R. P. and Kennedy, T. T. (1980). Physiological and histochemical characteristics of motor units in cat tibialis anterior and extensor digitorum longus muscles. J. Neurophysiol., 43, 1615–1630CrossRefGoogle ScholarPubMed
Edgerton, V. R., Barnard, R. J., Peter, J. B., Gillepsie, C. A., and Simpson, D. R. (1972). Overloaded skeletal muscles of a nonhuman primate, Galago senegalensis. Exp. Neurol., 37, 322–339CrossRefGoogle Scholar
Edgerton, V. R., Barnard, R. J., Peter, J. B., Maier, P. A., and Simpson, D. R. (1975). Properties of immobilized hindlimb muscles of the Galago senegalensis. Exp. Neurol., 46, 115–131CrossRefGoogle ScholarPubMed
Edström, L. and Kugelberg, E. (1968). Histochemical composition, distribution of fibres, and fatigability of single motor units. Anterior tibial muscle of the rat. J. Neurol. Neurosurg. Psychiatry, 31, 424–433CrossRefGoogle Scholar
Ehrlich, P. (1885). Das Sauerstoff-Bedürfniss des Organismus. Berlin: Hirschwald
Emerson, S. B. (1985). Jumping and leaping. In: Functional Vertebrate Morphology, ed. M. Hildebrand, D. M. Bramble, K. F. Liem, and D. B. Wake. Cambridge, MA: Harvard University Press. pp. 58–72
Engel, W. K. (1962). The essentiality of histo- and cytochemical studies of skeletal muscles in the investigation of neuromuscular disease. Neurology, 12, 778–794CrossRefGoogle Scholar
Fitts, R. H., Desplanches, D., Romatowski, J. G., and Widrick, J. J. (2000a). Spaceflight effects on single skeletal muscle fiber function in the rhesus monkey. Amer. J. Physiol. Regulatory Integrative Comp. Physiol., 279, R1546–R1557CrossRefGoogle Scholar
Fitts, R. H., Romatowski, J. G., Cruz, L., Widrick, J. J., and Desplanches, D. (2000b). Effect of spaceflight on the maximal shortening velocity, morphology, and enzyme profile of fast- and slow-twitch skeletal muscle fibers in rhesus monkeys. J. Gravit. Physiol., 7, S37–S38Google Scholar
Fitts, R. H., Reiley, D. R., and Widrick, J. J. (2001). Functional and structural adaptations of skeletal muscle to microgravity. J. Exp. Biol., 204, 3201–3208Google ScholarPubMed
Gauthier, G. F. (1986). Skeletal muscle fiber types. In: Myology, ed. A. G. Engel and C. Franzini-Armstrong. New York, NY: McGraw-Hill. pp. 255–283
Gauthier, G. F. and Lowey, S. (1977). Polymorphism of myosin among skeletal muscle fiber types. J. Cell Biol., 74, 760–779CrossRefGoogle ScholarPubMed
Gauthier, G. F. and Lowey, S. (1979). Distribution of myosin isoenzymes among skeletal muscle fiber types. J. Cell Biol., 81, 10–25CrossRefGoogle ScholarPubMed
Gorza, L. (1990). Identification of a novel type 2 fiber population in mammalian skeletal muscle by combined use of histochemical myosin ATPase and anti-myosin monoclonal antibodies. J. Histochem. Cytochem., 38, 257–265CrossRefGoogle ScholarPubMed
Graziotti, G. H., Rios, C. M., and Rivero, J. L. (2001). Evidence for three fast myosin heavy chain isoforms in type II skeletal muscle fibers in the adult llama (Lama glama). J. Histochem. Cytochem., 49, 1033–1044CrossRefGoogle Scholar
Hall-Craggs, E. C. B. (1974). Physiological and histochemical parameters in comparative locomotor studies. In: Prosimian Biology, ed. R. D. Martin, G. A. Doyle, and A. C. Walker. London: Duckworth. pp. 829–845
Hämäläinen, N. and Pette, D. (1993). The histochemical profiles of fast fiber IIB, IID and IIA in skeletal muscle of mouse, rat, and rabbit. J. Histochem. Cytochem., 41, 733–743CrossRefGoogle Scholar
Hämäläinen, N. and Pette, D. (1995). Patterns of myosin isoforms in mammalian skeletal muscles fibres. Micros. Res. Tech. 30, 381–389CrossRefGoogle Scholar
Hildebrand, M. (1985). Walking and running. In: Functional Vertebrate Morphology, ed. M. Hildebrand, D. M. Bramble, K. F. Liem, and D. B. Wake. Cambridge, MA: Harvard University Press. pp. 38–57
Hodgson, S. A., Bodine-Fowler, S. C., Roy, R. R., et al. (1991). Changes in recruitment of Rhesus soleus and gastrocnemius muscles following a 14 day spaceflight. Physiologist, 34 (suppl.), S102–S103Google ScholarPubMed
Ishida, H., Jouffroy, F. K., and Nakano, Y. (1990). Comparative dynamics of pronograde and upside down horizontal quadrupedalism in the slow loris (Nycticebus coucang). In: Gravity, Posture, and Locomotion in Primates, ed. F. K. Jouffroy, M. H. Stack, and C. Niemitz. Firenze: Sedicesimo. pp. 209–220
Jenkins, F. A., Jr. (ed.) (1974). Primate Locomotion. New York, NY: Academic Press
Jouffroy, F. K. (1968). Musculature épisomatique. In: Traité de Zoologie, Mammifères, XVI, 2, ed. P.-P. Grassé. Paris: Masson. pp. 479–548
Jouffroy, F. K. (1971). Musculature des membres. In Traité de Zoologie, Mammifères, XVI, 3, ed. P.-P. Grassé. Paris: Masson. pp. 1–475
Jouffroy, F. K. (1989). Quantitative and experimental approaches to primate locomotion. A review or recent advances. In: Perspectives in Primate Biology, Vol. 2, ed. P. K. Seth and S. Seth. New Delhi: Today and Tomorrow. pp. 47–108
Jouffroy, F. K. (1992). Evolution of the dorsal muscles of the spine in light of their adaptation to gravity effects. In: The Head–Neck Sensory Motor System, ed. A. Berthoz, W. Graf, and P. P. Vidal. Oxford: Oxford University Press. pp. 22–35CrossRef
Jouffroy, F. K. and Gasc, J. P. (1974). A cineradiographical analysis of leaping in an African prosimian (Galago alleni). In: Primate Locomotion, ed. F. A. Jenkins, Jr. New York, NY: Academic Press. pp. 117–142
Jouffroy, F. K. and Médina, M. F. (1996). Developmental changes in the fibre composition of elbow, knee, and ankle extensor muscles in cercopithecid monkeys. Folia Primatol., 66, 55–67CrossRefGoogle ScholarPubMed
Jouffroy, F. K. and Stern, J. T., Jr. (1990). Telemetered EMG study of the antigravity versus propulsive actions of knee and elbow muscles in the slow loris (Nycticebus coucang). In: Gravity, Posture, and Locomotion in Primates, ed. F. K. Jouffroy, M. H. Stack, and C. Niemitz. Firenze: Sedicesimo. pp. 221–236
Jouffroy, F. K., Jungers, W. L., and Stern, J. T. Jr (1979). Télé-électromyographie des divers faisceaux du muscle quadriceps femoris au cours de la locomotion chez un Lémurien de Madagascar (Lemur fulvus). C.R. Acad. Sci. Paris, ser. D, 288, 1627–1630Google Scholar
Jouffroy, F. K., Stack M. H., and Niemitz, C. (1990). Nonhuman primates as a model to study the effect of gravity on human and nonhuman locomotor systems. In: Gravity, Posture, and Locomotion in Primates, ed. F. K. Jouffroy, M. H. Stack, and C. Niemitz. Firenze: Sedicesimo. pp. 11–18
Jouffroy, F. K., Stern, J. T. Jr., Médina, F. M., and Larson, S. G. (1999). Function and cytochemical characteristics of postural limb muscles of the rhesus monkey: a telemetered EMG and imunofluorescence study. Folia Primatol. 70, 235–253CrossRefGoogle Scholar
Jouffroy, F. K., Médina, M. F., Renous, S., and Gasc, J. P. (2003). Immunocytochemical characteristics of elbow, knee, and ankle muscles of the five-toed jerboa (Allactaga elater). J. Anat., 202, 373–386CrossRefGoogle Scholar
Jungers, W. L., Jouffroy, F. K., and Stern, J. T. Jr. (1980). Gross structure and function of the quadriceps femoris in Lemur fulvus. An analysis based in telemetered electromyography. J. Morphol., 164, 287–299CrossRefGoogle ScholarPubMed
Jungers, W. L., Stern, J. T. Jr., and Jouffroy, F. K. (1983). Functional morphology of the quadriceps femoris in primates: a comparative anatomical and experimental analysis. Ann. Sc. Nat. Zool. Biol. Anim., 5, 101–116Google Scholar
Ker, R. F., Dimery, N. J., and Alexander, R. McN. (1986). The role of tendon elasticity in hopping in a wallaby (Macropus rufogriseus). J. Zool., Lond., 208, 417–428CrossRefGoogle Scholar
Kischel, P., Stevens, V., Montel, F., Picquet, F., and Mounier, Y. (2001). Plasticity of monkey triceps muscles fibers in microgravity conditions. J. Appl. Physiol., 90, 1825–1832CrossRefGoogle ScholarPubMed
Kimura, T. and Inokuchi, S. (1985). Distribution pattern of muscle fiber type in muscles biceps brachii of white-handed gibbon. J. Anthrop. Soc. Nippon, 93, 371–380CrossRefGoogle Scholar
Kimura, T., Kumakura, H., Inokuchi, S., and Ishida, H. (1987). Composition of muscle fibers in the slow loris, using the biceps brachii as an example. Primates, 28, 525–532CrossRefGoogle Scholar
Kojima, R. and Okada, M. (1996). Distribution of muscle fibre types in thoracic and lumbar epaxial muscles of Japanese macaques (Macaca fuscata). Folia Primatol., 66, 38–43CrossRefGoogle Scholar
Kugelberg, E. (1976). Adaptative transformation of rat soleus motor units during growth. J. Neurol. Sci., 27, 269–289CrossRefGoogle Scholar
Kugelberg, E. and Edström, L. (1968). Differential histochemical effects of muscle contractions on phosphorylase and glycogen in various types of fibres: relation to fatigue. J. Neurol. Neurosurg. Psychiatry, 31, 415–423CrossRefGoogle Scholar
Larson, S. G. and Stern, J. T. Jr. (1989). The rôle of propulsive muscles of the shoulder during quadrupedalism in vervet monkeys (Cercopithecus aethiops). J. Mot. Behav., 21, 457–472CrossRefGoogle Scholar
Marechal, G., Goffart, M., Reznik, M., and Gerebtzoff, M. A. (1976). The striated muscles in a slow-mover Perodicticus potto (Prosimii, Lorisidae, Lorisinae). Comp. Biochem. Physiol., 54A, 81–93CrossRefGoogle Scholar
McDonagh, J. C., Binder, M. D., Reinking, R. M., and Stuart, D. G. (1980a). Tetrapartite classification of motor units of cat tibialis posterior. J. Neurophysiol., 44, 696–712CrossRefGoogle Scholar
McDonagh, J. C., Binder, M. D., Reinking, R. M., and Stuart, D. G. (1980b). A commentary on muscle unit properties in cat hindlimb muscles. J. Morphol., 166, 217–230CrossRefGoogle Scholar
McIntosh, J. S., Ringqvist, M., and Schmidt, E. M. (1985). Fiber type composition of monkey fore arm muscle. Anat. Rec., 211, 403–409CrossRefGoogle Scholar
Médina, M. F. and Jouffroy, F. K. (1998). Immunocytochemical approach to the study of postural limb muscles in reptiles. Biona Rep., 13, 252–253Google Scholar
Moriyama, K. (1983). Functional differentiation of fore- and hindlimb muscles in Macaca fuscata determined on the basis of enzymatic activity. Primates, 24, 94–108CrossRefGoogle Scholar
Mounier, Y., Stevens, L., Shenkman, B. S., et al. (2000). Effect of spaceflight on single fiber function of triceps and biceps muscles in rhesus monkeys. J. Gravit. Physiol., 7, S51–S52Google ScholarPubMed
Ogata, T. and Mori, M. (1964). Histochemical study of oxidative enzymes in vertebrate muscles. J. Histochem. Cytochem., 12, 171–182CrossRefGoogle ScholarPubMed
Peter, J. B., Barnard, R. J., Edgerton, V. R., Gillepsie, C. A., and Stempel, K. E. (1972). Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry, 11, 2627–2633CrossRefGoogle ScholarPubMed
Peters, S. E. (1989). Structure and function in vertebrate skeletal muscle. Amer. Zool., 29, 221–234CrossRefGoogle Scholar
Pette, D. and Staron, R. S. (1997). Mammalian skeletal muscle fiber type transitions. Int. Rev. Cytol., 170, 143–223CrossRefGoogle ScholarPubMed
Pette, D. and Staron, R. S. (2000). Myosin isoforms, muscle fiber types, and transitions. Microsc. Res. Tech., 50, 500–5093.0.CO;2-7>CrossRefGoogle ScholarPubMed
Pette, D. and Staron, R. S. (2001). Transitions of muscle fiber phenotypic profiles. Histochem. and Cell Biol. 115, 359–372Google ScholarPubMed
Petter, A. and Jouffroy, F. K. (1993). Fiber type population in limb muscles of Microcebus murinus. Primates, 34, 181–196CrossRefGoogle Scholar
Plaghki, L., Goffart, M., Beckers-Bleukx, G., and Moureau-Lebbe, A. (1981). Some characteristics of the hindlimb muscles in the leaping night monkey: Aotus trivirgatus (Primates, Anthropoidea, Cebidae). Comp. Biochem. Physiol., 70A, 341–349CrossRefGoogle Scholar
Preuschoft, H. (1990). Gravity in primates and its relation to body shape and locomotion. In: Gravity, Posture, and Locomotion in Primates, ed. F. K. Jouffroy, M. H. Stack, and C. Niemitz. Firenze: Sedicesimo. pp. 109–127
Preuschoft, H. and Demes, B. (1984). Biomechanics of brachiation. In: The Lesser Apes: Evolution and Behavioural Biology, ed. H. Preuschoft, D. Chivers, W. Y. Brockelman, and N. Creel. Edinburgh: Edinburgh University Press. pp. 96–118
Preuschoft, H., Fritz, M., and Niemitz, C. (1979). Biomechanics of the trunk in primates and problems of leaping in Tarsius. In: Environment, Behaviour and Morphology: Dynamic Interactions in Primates, ed. M. E. Morbeck, H. Preuschoft, and N. Gomberg. New York and Stuttgart: Gustav Fischer. pp. 327–345
Ranvier, L. (1873). Propriétés et structures différentes des muscles rouges et des muscles blancs, chez les lapins et chez les raies. Pr. Verb. S. Hebd. Ac. Sc. Paris, 77, 1030–1034Google Scholar
Ranvier, L. (1874). De quelques faits relatifs à l'histologie et à la physiologie des muscles striés. Arch. Physiol. Norm. Pathol., 1, 5–15Google Scholar
Reynolds, T. R. (1985). Mechanics of increased support of weight by hindlimbs in primates. Amer. J. Phys. Anthrop., 67, 335–349CrossRefGoogle ScholarPubMed
Riley, D. A., Ilyina-Kakueva, E. I., Ellis, S., Bain, J. L. W., Slocum, G. R., and Sedlak, F. R. (1990). Skeletal muscle fiber, nerve, and blood vessel breakdown in space flown rats. FASEB J., 4, 84–91CrossRefGoogle ScholarPubMed
Romer, A. S. (1964). The Vertebrate Body. 3rd edn. Philadelphia, PA: Saunders
Roy, R. R., Powell, P., Kanim, P., and Simpson, D. R. (1984). Architectural design and fiber-type distribution of the major elbow flexors and extensors of the monkey (Cynomolgus). Amer. J. Anat., 171, 285–293CrossRefGoogle Scholar
Roy, R. R., Bodine-Fowler, F. C., Kim, J., et al. (1991). Architectural and fiber type distribution properties of selected Rhesus leg muscles: feasibility of multiple independent biopsies. Acta Anat., 140, 350–356CrossRefGoogle ScholarPubMed
Roy, R. R., Hodgson, J. A., Aragon, J., Kathleen Day, M., Kozlovskaya, I., and Edgerton, V. R. (1996). Recruitment of the rhesus soleus and medial gastrocnemius before, during and after spaceflight. J. Gravit. Physiol., 3, 11–15Google ScholarPubMed
Roy, R. R., Bodine, S. C., Pierotti, D. J., et al. (1999). Fiber size and myosin phenotypes of selected rhesus hindlimb muscles after a 14-day spaceflight. J. Gravit. Physiol., 6, 55–62Google ScholarPubMed
Roy, R. R., Zhong, H., Bodine, S. C., et al. (2000). Fiber size and myosin phenotypes of selected rhesus lower limb muscles after a 14-day spaceflight. J. Gravit. Physiol., 7, S-45Google ScholarPubMed
Salmons, S. and Henriksson, J. (1981). The adaptive response of skeletal muscle to increased use. Muscle Nerve, 4, 94–105CrossRefGoogle ScholarPubMed
Sartorius, C. A., Lu, B. D., Acakpo-Satchivi, L., Jacobsen, R. P., Byrnes, W. C., and Leinwand, L. A. (1998). Myosin heavy chains IIa and IId are functionally distinct in the mouse. J. Cell Biol. 141, 943–953CrossRefGoogle ScholarPubMed
Schiaffino, S., Gorza, L., Sartore, S., et al. (1989). Three myosin heavy chain in type 2 skeletal muscle fibers. J. Musc. Res. Cell Motil., 10, 197–205CrossRefGoogle Scholar
Serrano, A. L., Perez, M., Lucia, A., Chicharro, J. L., Quiroz-Roth, E., and Rivero, J. L. (2001). Immunolabeling, histochemistry and in situ hybridization in human skeletal muscle fibres to detect myosin heavy chain expression at the protein and mRNA level. J. Anat. 199, 329–337CrossRefGoogle Scholar
Sickles, D. W. and Pinkstaff, C. A. (1980). Are fast glycolytic fibers present in slow loris Nycticebus coucang hindlimb muscles?J. Histochem. Cytochem., 28, 57–59CrossRefGoogle ScholarPubMed
Sickles, D. W. and Pinkstaff, C. A. (1981). Comparative histochemical study of prosimian primate muscles. Amer. J. Anat., 160, 175–194CrossRefGoogle Scholar
Staron, R. S. and Pette, D. (1986). Correlation between myofibrillar ATPase activity and myosin heay chain composition in rabbit muscle fibers. Histochemistry, 86, 19–23CrossRefGoogle ScholarPubMed
Staron, R. S. and Pette, D. (1993). The continuum of pure and hybrid myosin heavy chain-based fiber types in rat skeletal muscle. Histochemistry, 100, 149–153CrossRefGoogle Scholar
Stein, J. M. and Padykula, H. A. (1962). Histochemical classification of individual skeletal muscle fibers of the rat. Amer. J. Anat., 110, 103–123CrossRefGoogle ScholarPubMed
Stephens, J. A. and Stuart, D. G. (1974). Proceedings: the classification of motor units in cat medial gastrocnemius muscle. J. Physiol., 240, 43P–44PGoogle ScholarPubMed
Stern, J. T. Jr., Wells, J. P., Vangor, A. K., and Fleagle, J. G. (1977) An electromyographic study of the pectoralis major in Ateles and Lagothrix. Yearbk. Phys. Anthropol., 20, 498–507Google Scholar
Stern, J. T. Jr., Wells, J. P., Jungers, W. L., and Vangor, A. K. (1980). An electromyographic study of serratus anterior in atelines and Alouatta: implications for hominoid evolution. Amer. J. Phys. Anthropol., 52, 323–334CrossRefGoogle Scholar
Streter, F. A., Gergely, J., Salmons, S., and Romanul, F. (1973). Synthesis by fast muscle of myosin light chain characteristic of slow muscle in response to long-term stimulation. Nature, 241, 17–19Google ScholarPubMed
Suzuki, A. and Hayama, S. (1991). Histochemical classification of myofiber types in the triceps surae and flexor digitorum superficialis of Japanese macaques. Acta Histochem. Cytochem., 24, 323–328CrossRefGoogle Scholar
Suzuki, A. and Hayama, S. (1994). Individual variation in myofiber type composition in the triceps surae and flexor digitorium superficialis muscles of Japanese macaques. Anthropol. Sci., 102, 127–138CrossRefGoogle Scholar
Whalen, R. G., Sell, S. M., Butler-Browne, G. S., Schwartz, K., Bouveret, P., and Pinset-Harmström, I. (1981). Three myosin heavy-chains appear sequentially in rat muscle development. Nature, 292, 805–809CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×