Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-17T09:38:27.932Z Has data issue: false hasContentIssue false

14 - Small copper complexes for treatment of acquired and inherited copper deficiency syndromes

from SECTION IV - METAL ION THERAPY

Published online by Cambridge University Press:  17 November 2010

Jess G. Thoene
Affiliation:
University of Michigan, Ann Arbor
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kaler, SG. Menkes disease. Barness, L.A., ed. Advances in Pediatrics, Volume 41, C.V. Mosby, 263–304, 1994Google Scholar
Desai, V, Kaler, SG. The role of copper in human neurological disordersAm J Clin Nutr. 2008;88:855S–858SCrossRefGoogle ScholarPubMed
Goodman, BP, Bosch, EP, Ross, MA, Hoffman-Snyder, C, Dodick, DD, Smith, BE. Clinical and electrodiagnostic findings in copper deficiency myeloneuropathy. J Neurol Neurosurg Psychiatry 2009;80:524–527.CrossRefGoogle ScholarPubMed
Kumar, N, Ahlskog, JE, Klein, CJ, Port, JD. Imaging features of copper deficiency myelopathy: A study of 25 cases. Neuroradiology. 2006;48(2):78–83CrossRefGoogle ScholarPubMed
Kelkar, P, Chang, S, Muley, SA. Response to oral supplementation in copper deficiency myeloneuropathy. J Clin Neuromuscul Dis. 2008;10(1):1–3CrossRefGoogle ScholarPubMed
Spain, RI, Leist, TP, Sousa, EA. When metals compete: A case of copper-deficiency myeloneuropathy and anemia. Nat Clin Pract Neurol. 2009;5(2):106–111CrossRefGoogle ScholarPubMed
Zara, G, Grassivaro, F, Brocadello, F, Manara, R, Pesenti, FF. Case of sensory ataxic ganglionopathy-myelopathy in copper deficiency. J Neurol Sci. 2009;277(1–2):184–186CrossRefGoogle ScholarPubMed
Weihl, CC, Lopate, G. Motor neuron disease associated with copper deficiency. Muscle Nerve. 2006;34(6):789–793CrossRefGoogle ScholarPubMed
Kaler, SG, Holmes, CS, Goldstein, DS, Tang, JR, Godwin, SC, Donsante, A, Liew, CJ, Sato, S, Patronas, N. Neonatal diagnosis and treatment of Menkes disease. N Engl J Med. 2008;358:605–614CrossRefGoogle ScholarPubMed
Kaler, SG, Tang, JR, Donsante, A, Kaneski, C. Translational read-through of a nonsense mutation in ATP7A. Ann Neurol. 2009;65:108–113CrossRefGoogle ScholarPubMed
Baerlocher, K, Nadal, D. Das Menkes-syndrom. Ergeb Inn Med Kinderheilkd. 1988;57:77–144Google Scholar
Goldstein, DS, Holmes, CS, Kaler, SG. Relative efficiencies of plasma catechol levels and ratios for neonatal diagnosis of Menkes disease. Neurochem Res. 2009;34:1464–1468CrossRefGoogle ScholarPubMed
Kaler, SG, Goldstein, DS, Holmes, C, Salerno, JA, Gahl, WA. Plasma and cerebrospinal fluid neurochemical pattern in Menkes disease. Ann Neurol. 1993;33:171–175CrossRefGoogle ScholarPubMed
Eipper, BA, Mains, RE, Glembotski, CC. Identification in pituitary tissue of a peptide α-amidation activity that acts on glycine-extended peptides and requires molecular oxygen, copper, and ascorbic acid. Proc Natl Acad Sci USA. 1983;80:5144–5148CrossRefGoogle ScholarPubMed
Rosen, DR, Siddique, T, Patterson, D, Figlewicz, DA, Sapp, P, Hentati, A, Donaldson, D, Goto, J, O'Regan, JP, Deng, HX, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362:59–62CrossRefGoogle ScholarPubMed
Gunn, TR, McFarlane, S, Phillips, LI. Difficulties in the neonatal diagnosis of Menkes' kinky hair syndrome-trichopoliodystrophy. Clin Pediatr. 1984;23:514–516CrossRefGoogle ScholarPubMed
Sartoris, DJ, Luzzatti, L, Weaver, DD, Macfarlane, JD, Hollister, DW, Parker, BR. Type IX Ehlers-Danlos syndrome. A new variant with pathognomonic radiographic features. Radiology. 1984;152:665–670CrossRefGoogle ScholarPubMed
Kaler, SG, Gallo, LK, Proud, VK, Percy, AK, Mark, Y, Segal, NA, Goldstein, DS, Holmes, CS, Gahl, WA. Occipital horn syndrome and a mild Menkes phenotype associated with splice site mutations at the MNK locus. Nat Genet. 1994;8:195–202CrossRefGoogle Scholar
Tang, J, Robertson, SP, Lem, KE, Godwin, SC, Kaler, SG. Functional copper transport explains neurologic sparing in occipital horn syndrome. Genet Med. 2006;8(11):711–718CrossRefGoogle ScholarPubMed
Kennerson, ML, Nicholson, GA, Kaler, SG, Kowalski, B, Mercer, JF, Tang, J, Llanos, RM, Chu, S, Takata, RI, Speck-Martins, CE, Baets, J, Almeida-Souza, L, Fischer, D, Timmerman, V, Taylor, PE, Scherer, SS, Ferguson, TA, Bird, TD, De Jonghe, P, Feely, SM, Shy, ME, Garbern, JY: Missense mutations in the copper transporter gene ATP7A cause X-linked distal hereditary motor neuropathy. Am J Hum Genet. 2010; 86:343–352CrossRefGoogle ScholarPubMed
Fraser, AS, Sobey, S, Spicer, CC. Mottled, a sex-modified lethal in the house mouse. J Genet. 1953;51:217–221CrossRefGoogle Scholar
Hunt, DM. Primary defect in copper transport underlies mottled mutants in the mouse. Nature. 1974;249:852–854CrossRefGoogle ScholarPubMed
Hunt, DM. A study of copper treatment and tissue copper levels in the murine congenital copper deficiency, mottled. Life Sci. 1976;19(12):1913–1919CrossRefGoogle ScholarPubMed
Linder, CC. Genetic variables that influence phenotype. ILAR J. 2006;47:132–140CrossRefGoogle ScholarPubMed
Kaler, SG, Donsante, A, Tang, J, Goldstein, D, Holmes, C, Sullivan, P, Centeno, J. Brain-directed AAV5 gene therapy, in combination with copper, rescues a murine model of severe Menkes disease. Session 42/Abstract 143, Annual Meeting of the American Society of Human Genetics. Available at: http://www.ashg.org/2009meeting/
Baute, D, Arieli, D, Neese, F, Zimmermann, H, Weckhuysen, BM, Goldfarb, D.Carboxylate binding in copper histidine complexes in solution and in zeolite. Y: X- and W-band pulsed EPR/ENDOR combined with DFT calculations. J Am Chem Soc. 2004; 126:11733–11745.CrossRefGoogle ScholarPubMed
Kim, BE, Nevitt, T, Thiele, DJ. Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol. 2008;4:176–185CrossRefGoogle ScholarPubMed
McArdle, HJ, Gross, SM, Danks, DM, Wedd, AG. Role of albumin's copper binding site in copper uptake by mouse hepatocytes. Am J Physiol. 1990;258(6 Pt 1):G988–G991Google ScholarPubMed
Greenough, M, Pase, L, Voskoboinik, I, Petris, MJ, O'Brien, AW, Camakaris, J. Signals regulating trafficking of Menkes (MNK; ATP7A) copper-translocating P-type ATPase in polarized MDCK cells. Am J Physiol Cell Physiol. 2004;287:C1463–C1471CrossRefGoogle ScholarPubMed
Aoki, I, Wu, YJ, Silva, AC, Lynch, RM, Koretsky, AP. In vivo detection of neuroarchitecture in the rodent brain using manganese-enhanced MRI. Neuroimage. 2004;22:1046–1059CrossRefGoogle ScholarPubMed
Choi, BS, Zheng, W. Copper transport to the brain by the blood-brain barrier and blood-CSF barrier. Brain Res. 2009;1248:14–21CrossRefGoogle ScholarPubMed
Quinton, PM, Wright, EM, Tormey, JM. Localization of sodium pumps in the choroid plexus epithelium. J Cell Biol. 1973;58:724–730CrossRefGoogle ScholarPubMed
Alper, SL, Stuart-Tilley, A, Simmons, CF, Brown, D, Drenckhahn, D. The fodrin-ankyrin cytoskeleton of choroid plexus preferentially colocalizes with apical Na+K+-ATPase rather than with basolateral anion exchanger AE2. J Clin Invest. 1994;93:1430–1438CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×