Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T04:47:32.088Z Has data issue: false hasContentIssue false

Part I - Approaches to Society within the Brain

Published online by Cambridge University Press:  28 September 2023

Jeanyung Chey
Affiliation:
Seoul National University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Society within the Brain
How Social Networks Interact with Our Brain, Behavior and Health as We Age
, pp. 9 - 116
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Alavanja, M. C., Hoppin, J. A., & Kamel, F. (2004). Health effects of chronic pesticide exposure: Cancer and neurotoxicity. Annu. Rev. Public Health, 25, 155197.CrossRefGoogle ScholarPubMed
Ashby-Mitchell, K., Burns, R., Shaw, J., & Anstey, K. J. (2017). Proportion of dementia in Australia explained by common modifiable risk factors. Alzheimer’s Research & Therapy, 9(1), 18.Google Scholar
Boyle, P. A., Wilson, R. S., Aggarwal, N. T., Tang, Y., & Bennett, D. A. (2006). Mild cognitive impairment: Risk of Alzheimer disease and rate of cognitive decline. Neurology, 67(3), 441445.Google Scholar
Canadian Study of Health and Aging Working Group. (1994). Canadian Study of Health and Aging: Study methods and prevalence of dementia. Can. Med. Assoc. J., 150(6), 899913.Google Scholar
Cao, Q., Tan, C. C., Xu, W., Hu, H., Cao, X. P., Dong, Q., Tan, L., & Yu, J. T. (2020). The prevalence of dementia: A systematic review and meta-analysis. Journal of Alzheimer’s Disease, 73(3), 11571166.Google Scholar
Chang, K. S. (1995). Gender and abortive capitalist social transformation: Semi-proletarianization of South Korean women. International Journal of Comparative Sociology, 36(1), 61.Google Scholar
Chang, K. S. (1999). Compressed modernity and its discontents: South Korean society in transition, Economy and Society, 28(1), 3055.Google Scholar
Chang, K. S. (2010). South Korea under Compressed Modernity: Familial Political Economy in Transition. Routledge.CrossRefGoogle Scholar
Chang, K. S. (2018). The End of Tomorrow: Familial Liberalism and the Crisis of Reproduction. Jipmudang.Google Scholar
Chang, Y. S., Kim, N. Y., Lee, S. Y., & Chin, D. R. (2010). Trends and Projections on Korean Population. Korea Institute for Health and Social Affairs (KIHASA).Google Scholar
Chapko, D., McCormack, R., Black, C., Staff, R., & Murray, A. (2018). Life-course determinants of cognitive reserve (CR) in cognitive aging and dementia – a systematic literature review. Aging & Mental Health, 22(8), 921932.Google Scholar
Chey, J. (1998). Korean-Dementia Rating Scale. Hakjisa.Google Scholar
Chey, J., Kim, M. J., Stern, Y., Shin, M., Byun, H., & Habeck, C. (2016). Neural substrates of reserve observed in a non-demented aging population. Journal of Alzheimer’s Disease & Parkinsonism, 6(7), 294.CrossRefGoogle Scholar
Chey, J., Kim, S. Y., Cho, B., & Park, M. (2002). Normative study of the Computerized Dementia Screening Test (CDST). Korean Journal of Clinical Psychology 21(2), 445460.Google Scholar
Chey, J., Lee, D., Kwak, S., & Lee, J. (2022). Validation study of the Korean version of Harmonized Cognitive Assessment Protocol (K-HCAP). Paper presented at the INS 2022 Meeting in Barcelona Spain.Google Scholar
Chey, J. Lee, S., Park, S., & Park, E. (1998, February). Development of the Norms for the Korean-Dementia Rating Scale [presentation]. International Neuropsychological Society (INS) Meeting, Honolulu, HawaiiGoogle Scholar
Chey, J., Na, D. G., Tae, W. S., Ryoo, J. W., & Hong, S. B. (2006). Medial temporal lobe volume of nondemented elderly individuals with poor cognitive functions. Neurobiology of Aging, 27(9), 12691279.Google Scholar
Chey, J., Na, D. R., Park, S., Park, E., & Lee, S. (1999). Effects of education in dementia assessment: Evidence from standardizing the Korean-Dementia Rating Scale. The Clinical Neuropsychologist, 13(3), 293302.Google Scholar
Chey, J., & Park, H. (2011). Neuropsychology in Korea. In Fuji, D. (ed.), The Neuropsychology of Asian Americans, pp. 247267. Psychology Press.Google Scholar
Chey, J. Y., & Lee, S. A. (1997). Development of the norms for the Korean-Dementia Rating Scale. Korean Journal of Clinical Psychology, 16, 423433.Google Scholar
Chiu, H. F. K., Lam, L. C. W., Chi, I., Leung, T., Li, S. W., Law, W. T., Chung, D. W., Fung, H. H., Kan, P. S., Lum, C. M., Ng, J., & Lau, J. (1998). Prevalence of dementia in Chinese elderly in Hong Kong. Neurology, 50(4), 10021009.CrossRefGoogle ScholarPubMed
Cho, B., Yang, J., Kim, S., Yang, D. W., Park, M., & Chey, J. (2002). The validity and reliability of a Computerized Dementia Screening Test developed in Korea. Journal of the Neurological Sciences, 203, 109114.Google Scholar
Convit, A., De Leon, M. J., Tarshish, C., De Santi, S., Tsui, W., Rusinek, H., & George, A. (1997). Specific hippocampal volume reductions in individuals at risk for Alzheimer’s disease. Neurobiology of Aging, 18(2), 131138.Google Scholar
Cummings, J. L., & Benson, D. F. (1992). Dementia: A Clinical Approach. Butterworth-Heinemann Medical.Google Scholar
Ferini-Strambi, L., Marcone, A., Garancini, P., Danelon, F., Zamboni, M., Massussi, P., Tedesi, B., & Smirne, S. (1997). Dementing disorders in north Italy: Prevalence study in Vescovato, Cremona Province. European Journal of Epidemiology, 13(2), 201204.Google Scholar
Ferri, C. P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M., Hall, K., Hasegawa, K., Hendrie, H., Huang, Y., Jorm, A., Mathers, C., Menezes, P. R., Rimmer, E., & Scazufca, M. (2005). Alzheimer’s Disease International. Global prevalence of dementia: A Delphi consensus study. Lancet, 366(9503), 21122117. https://doi.org/10.1016/s0140-6736(05)67889-0Google Scholar
Folstein, M. F., Bassett, S. S., Anthony, J. C., Romanoski, A. J., & Nestadt, G. R. (1991). Dementia: Case ascertainment in a community survey. Journal of Gerontology, 46(4), M132M138.Google Scholar
Fox, N. C., Warrington, E. K., Freeborough, P. A., Hartikainen, P., Kennedy, A. M., Stevens, J. M., & Rossor, M. N. (1996). Presymptomatic hippocampal atrophy in Alzheimer’s disease: A longitudinal MRI study. Brain, 119(6), 20012007.Google Scholar
Freedman, M., Leach, L., Kaplan, E., Winocur, G., Shulman, K., & Delis, D. C. (1994). Clock Drawing: A Neuropsychological Analysis. Oxford University Press.Google Scholar
Fuh, J. L., & Wang, S. J. (2008). Dementia in Taiwan: Past, present, and future. Acta Neurol Taiwan, 17(3), 153161.Google ScholarPubMed
Gonçalves-Pereira, M., Cardoso, A., Verdelho, A., da Silva, J. A., De Almeida, M. C., Fernandes, A., Raminhos, C., Ferri, C. P., Prina, A. M., Prince, M., & Xavier, M. (2017). The prevalence of dementia in a Portuguese community sample: A 10/66 Dementia Research Group study. BMC geriatrics, 17(1), 111.CrossRefGoogle Scholar
Han, G. S., & Sharp, R. (1997). Economic development in South Korea: By-product of military regimes. Policy, Organisation and Society, 14(1), 2339.Google Scholar
Health Insurance Review & Assessment Service. (2016). Korea’s diseases of most concern http://www.hira.or.kr/bbsDummy.do?brdBltNo=9243&brdScnBltNo=4&pgmid=HIRAA020041000100#noneGoogle Scholar
Higo, M., & Khan, H. T. (2015). Global population aging: Unequal distribution of risks in later life between developed and developing countries. Global Social Policy, 15(2), 146166.Google Scholar
Hung, D. Z., Yang, H. J., Li, Y. F., Lin, C. L., Chang, S. Y., Sung, F. C., & Tai, S. C. (2015). The long-term effects of organophosphates poisoning as a risk factor of CVDs: A nationwide population-based cohort study. PLoS ONE, 10(9), e0137632.Google Scholar
Jack, C. R., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., Petersen, R. C., & Trojanowski, J. Q. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. The Lancet Neurology, 9(1), 119128.Google Scholar
Jang, J. W., Park, J. H., Kim, S., Lee, S. H., Lee, S. H., & Kim, Y. J. (2021). Prevalence and incidence of dementia in South Korea: A nationwide analysis of the National Health Insurance Service senior cohort. Journal of Clinical Neurology, 17(2), 249.Google Scholar
Jeon, J. (2019). Economic efficiency debate on state interventionism: How could Korea in Park Chung Hee regime achieve economic growth despite corruption? Humanities Social Science Research, 20(3), 131.Google Scholar
Kaye, J. A., Swihart, T., Howieson, D., Dame, A., Moore, M. M., Karnos, T., Camicioli, R., Ball, M., Oken, B., & Sexton, G. (1997). Volume loss of the hippocampus and temporal lobe in healthy elderly persons destined to develop dementia. Neurology, 48(5), 12971304.Google Scholar
Killin, L. O., Starr, J. M., Shiue, I. J., & Russ, T. C. (2016). Environmental risk factors for dementia: A systematic review. BMC Geriatrics, 16(1), 128.Google Scholar
Kim, D. H., Na, D. L., Yeon, B. G., Kang, Y., Min, K. B., Lee, S. H., Lee, S. S., Lee, M. R., Pyo, O. J., Park, C. B., Kim, S., & Bae, S. S. (1999). Prevalence of dementia in the elderly of an urban community in Korea. Korean Journal of Preventive Medicine, 32(3), 306316.Google Scholar
Kim, E. (2001). A Normative Study of the Simple Rey Figure Test. Master’s Thesis, Sungshin Women’s University.Google Scholar
Kim, E. M. (1997). Big Business, Strong State: Collusion and Conflict in South Korean Development, 1960–1990. Suny Press.Google Scholar
Kim, H., & Chey, J. (2010). Effects of education, literacy, and dementia on the Clock Drawing Test performance. Journal of the International Neuropsychological Society, 16(6), 11381146.Google Scholar
Kim, I. (2016). Land reform in South Korea under the US military occupation, 1945–1948. Journal of Cold War Studies, 18(2), 97129.Google Scholar
Kim, J., Jeong, I., Chun, J. H., & Lee, S. (2003). The prevalence of dementia in a metropolitan city of South Korea. International Journal of Geriatric Psychiatry, 18(7), 617622.Google Scholar
Kim, K. W., Park, J. H., Kim, M. H., Kim, M. D., Kim, B. J., Kim, S. K., Kim, J. L., Moon, S.W., Bae, J. N., Woo, J. I., Ryu, S. H., Yoon, J. C., Lee, N. J., Lee, D. Y., Lee, S. B., Lee, J. J., Lee, J. Y., Lee, C. U., Chang, S. M., … & Cho, M. J. (2011). A nationwide survey on the prevalence of dementia and mild cognitive impairment in South Korea. Journal of Alzheimer’s Disease, 23(2), 281291.Google Scholar
Kim, M., & Park, J. M. (2017). Factors affecting cognitive function according to gender in community-dwelling elderly individuals. Epidemiology and Health, 39.Google Scholar
Kim, M. S., & Chey, J. (2016). Clinical neuropsychology in South Korea. The Clinical Neuropsychologist, 30(8), 13251334.Google Scholar
Kim, M. S., Won, J. W., Suh, M. H., Kang, B. G., & Lim, Y. K. (2003). Socioeconomic Problems of an Aging Society and Policy Responses: Experience of OECD Member Countries. KIHASA.Google Scholar
Kim, Y. J., Han, J. W., So, Y. S., Seo, J. Y., Kim, K. Y., & Kim, K. W. (2014). Prevalence and trends of dementia in Korea: A systematic review and meta-analysis. Journal of Korean Medical Science, 29(7), 903912.Google Scholar
Ko, J. Y. (2007). The South Korean experience in economic development. Making world development work: Scientific alternatives to neoclassical economic theory, 127–141.Google Scholar
Koller, D., & Bynum, J. P. (2015). Dementia in the USA: State variation in prevalence. Journal of Public Health, 37(4), 597604.Google Scholar
Kontis, V., Bennett, J. E., Mathers, C. D., Li, G., Foreman, K., & Ezzati, M. (2017). Future life expectancy in 35 industrialised countries: Projections with a Bayesian model ensemble. The Lancet, 389(10076), 13231335.Google Scholar
Korean Statistical Information Service (KOSIS). (2006). Statistics of Education. [Data set]. https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1IN0504&conn_path=I3Google Scholar
Korean Statistical Information Service (KOSIS). (2021a). Statistics Korea, Population Projections for Korea. [Data set]. https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1BPA002&conn_path=I2Google Scholar
Korean Statistical Information Service (KOSIS). (2021b). Gross Domestic Product. [Data set]. https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_2KAA904_OECD&conn_path=I2Google Scholar
Korean Statistical Information Service (KOSIS). (2021c). Statistics of Education. [Data set]. https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1PM1501&conn_path=I3Google Scholar
Korean Statistical Information Service. (2021d). Statistics of Birth Rate. https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1B81A21&checkFlag=NGoogle Scholar
Kosmidis, M. H., Vlachos, G. S., Anastasiou, C. A., Yannakoulia, M., Dardiotis, E., Hadjigeorgiou, G., Sakka, P., Ntanasi, E., & Scarmeas, N. (2018). Dementia prevalence in Greece. Alzheimer Disease & Associated Disorders, 32(3), 232239.Google Scholar
Kwak, Y. (2006). Perceived Stress is Associated with Decreased Posterior Cingulate Metabolism and Poor Episodic Memory. Master’s thesis, Seoul National University.Google Scholar
Langa, K. M., Larson, E. B., Crimmins, E. M., Faul, J. D., Levine, D. A., Kabeto, M. U., & Weir, D. R. (2017). A comparison of the prevalence of dementia in the United States in 2000 and 2012. JAMA Internal Medicine, 177(1), 5158.Google Scholar
Langa, K. M., Ryan, L. H., McCammon, R. J., Jones, R. N., Manly, J. J., Levine, D. A., Sonnega, A., Farron, M., & Weir, D. R. (2020). The health and retirement study harmonized cognitive assessment protocol project: Study design and methods. Neuroepidemiology, 54(1), 6474.Google Scholar
Lee, D., Kwak, S., Lee, J., & Chey, J. (2020). Validation of Korean-Harmonized Cognitive Assessment Protocol (K-HCAP): A Pilot Study. Poster presentation, 2020 Annual Conference of the Korean Psychological Association (KPA), Korea.Google Scholar
Lee, D. Y., Lee, J. H., Ju, Y. S., Kang Uk Lee, M. D., Kim, K. W., Jhoo, J. H., Yoon, J. C., Ha, J., & Woo, J. I. (2002). The prevalence of dementia in older people in an urban population of Korea: The Seoul study. Journal of the American Geriatrics Society, 50(7), 12331239.Google Scholar
Lee, J., Banerjee, J., Khobragade, P. Y., Angrisani, M., & Dey, A. B. (2019). LASI-DAD study: A protocol for a prospective cohort study of late-life cognition and dementia in India. BMJ Open, 9(7), e030300.Google Scholar
Lee, J. C. (2003). Health care reform in South Korea: Success or failure? American Journal of Public Health, 93(1), 4851.Google Scholar
Lee, S. (2005). Stress and Cognitive Aging. Master’s thesis, Seoul National University.Google Scholar
Lerro, C. C., Koutros, S., Andreotti, G., Friesen, M. C., Alavanja, M. C., Blair, A., Hoppin, J. A., Sandler, D. P., Lubin, J. H., Ma, X., Zhang, Y., & Freeman, L. E. B. (2015). Organophosphate insecticide use and cancer incidence among spouses of pesticide applicators in the Agricultural Health Study. Occupational and Environmental Medicine, 72(10), 736744.Google Scholar
Li, Y., Li, Y., Li, X., Zhang, S., Zhao, J., Zhu, X., & Tian, G. (2017). Head injury as a risk factor for dementia and Alzheimer’s disease: A systematic review and meta-analysis of 32 observational studies. PLoS ONE, 12(1), e0169650.Google Scholar
Liu, C. C., Li, C. Y., Sun, Y., & Hu, S. C. (2019). Gender and age differences and the trend in the incidence and prevalence of dementia and Alzheimer’s disease in Taiwan: A 7-year national population-based study. Biomed Research International, 2019.Google Scholar
Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C., Burns, A., Cohen-Mansfield, J., Cooper, C., Costafreda, S. G., Dias, A., Fox, N., Gitlin, L. N., Howard, R., Kales, H. C., Kivimäki, M., Larson, E. B., Ogunniyi, A., … & Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet, 396(10248), 413446.CrossRefGoogle ScholarPubMed
Lobo, A., Saz, P., Marcos, G., Dia, J. L., De-la-Camara, C., Ventura, T., Montañes, J. A., Lobo-Escolar, A., Aznar, S., & ZARADEMP Workgroup. (2007). Prevalence of dementia in a southern European population in two different time periods: The ZARADEMP Project. Acta Psychiatrica Scandinavica, 116(4), 299307.Google Scholar
Matthews, F. E., Arthur, A., Barnes, L. E., Bond, J., Jagger, C., Robinson, L., Brayne, C., & Medical Research Council Cognitive Function and Ageing Collaboration. (2013). A two-decade comparison of prevalence of dementia in individuals aged 65 years and older from three geographical areas of England: Results of the Cognitive Function and Ageing Study I and II. The Lancet, 382(9902), 14051412.CrossRefGoogle ScholarPubMed
Matthews, K. A., Xu, W., Gaglioti, A. H., Holt, J. B., Croft, J. B., Mack, D., & McGuire, L. C. (2019). Racial and ethnic estimates of Alzheimer’s disease and related dementias in the United States (2015–2060) in adults aged≥ 65 years. Alzheimer’s & Dementia, 15(1), 1724.Google Scholar
Mattis, S. (1988). Dementia Rating Scale: Professional Manual. Psychological Assessment Resources.Google Scholar
McDowell, I., Hill, G., & Lindsay, J (1994) The Canadian study of health and aging: Risk factors for Alzheimer’s disease in Canada. Neurology, 44(11), 20732080.Google Scholar
Meng, X., & D’Arcy, C. (2012). Education and dementia in the context of the cognitive reserve hypothesis: A systematic review with meta-analyses and qualitative analyses. PLoS ONE, 7(6), e38268.Google Scholar
Ministry of Education, Republic of China. (2021). Educational System. https://english.moe.gov.tw/cp-126-17722-3fb83–1.htmlGoogle Scholar
Ministry of Health & Welfare, Republic of Korea (2021). Policies: Challenges & Tasks Ahead. http://www.mohw.go.kr/eng/pl/pl0103.jsp?PAR_MENU_ID=1003&MENU_ID=100326Google Scholar
Mintun, M. A., Larossa, G. N., Sheline, Y. I., Dence, C. S., Lee, S. Y., Mach, R. H., Klunk, W. E., Mathis, C. A., DeKosky, S. T., & Morris, J. C. (2006). [11C]PIB in a nondemented population: Potential antecedent marker of Alzheimer disease. Neurology, 67(3), 446452.Google Scholar
Mitchell, A. J., & Shiri-Feshki, M. (2009). Rate of progression of mild cognitive impairment to dementia–meta-analysis of 41 robust inception cohort studies. Acta Psychiatrica Scandinavica, 119(4), 252265.Google Scholar
Mori, E., Hirono, N., Yamashita, H., Imamura, T., Ikejiri, Y., Ikeda, M., Kitagaki, H., Shimomura, T., & Yoneda, Y. (1997). Premorbid brain size as a determinant of reserve capacity against intellectual decline in Alzheimer’s disease. American Journal of Psychiatry, 154(1), 1824.Google Scholar
Mortimer, J. A., Snowdon, D. A., & Markesbery, W. R. (2003). Head circumference, education and risk of dementia: Findings from the Nun Study. Journal of Clinical and Experimental Neuropsychology, 25(5), 671679.Google Scholar
National Archives of Korea. (2021). Population Policies: Yesterday and Today. https://theme.archives.go.kr/next/populationPolicy/policy1980.doGoogle Scholar
Ninomiya, T., Nakaji, S., Maeda, T., Yamada, M., Mimura, M., Nakashima, K., Mori, T., Takebayashi, M., Ohara, T., Hata, J., Kokubo, Y., Uchida, K., Taki, Y., Kumagai, S., Yonemoto, K., Yoshida, H., Muto, K., Momozawa, Y., Akiyama, M., & Kiyohara, Y. (2020). Study design and baseline characteristics of a population-based prospective cohort study of dementia in Japan: The Japan Prospective Studies Collaboration for Aging and Dementia (JPSC-AD). Environmental Health and Preventive Medicine, 25(1), 112.Google Scholar
Norton, S., Matthews, F. E., Barnes, D. E., Yaffe, K., & Brayne, C. (2014). Potential for primary prevention of Alzheimer’s disease: An analysis of population-based data. The Lancet Neurology, 13(8), 788794.Google Scholar
Nunes, B., Silva, R. D., Cruz, V. T., Roriz, J. M., Pais, J., & Silva, M. C. (2010). Prevalence and pattern of cognitive impairment in rural and urban populations from Northern Portugal. BMC Neurology, 10(1), 112.Google Scholar
Ogawa, N., & Matsukura, R. (2007). Ageing in Japan: The health and wealth of older persons. United Nations Expert Group Meeting on Social and Economic Implications of Changing Population Age Structure, 31, 199220.Google Scholar
Ohara, T., Hata, J., Yoshida, D., Mukai, N., Nagata, M., Iwaki, T., Kitazono, T., Kanba, S., Kiyohara, Y., & Ninomiya, T. (2017). Trends in dementia prevalence, incidence, and survival rate in a Japanese community. Neurology, 88(20), 19251932.Google Scholar
Okamura, H., Ishii, S., Ishii, T., & Eboshida, A. (2013). Prevalence of dementia in Japan: A systematic review. Dementia and Geriatric Cognitive Disorders, 36(1–2), 111118.Google Scholar
Organisation for Economic Co-operation and Development. (2021), Lack of social support (indicator). https://doi.org/10.1787/1c4df204-enCrossRefGoogle Scholar
Park, H., Chey, J., & Kim, S.E. (2014). Basal cortisol level and functional level and asymmetry of the hippocampus. Journal of Psychology: General, 33(4), 815834.Google Scholar
Park, J., Ko, H. J., Park, Y. N., & Chul-Ho, J. (1994). Dementia among the elderly in a rural Korean community. The British Journal of Psychiatry, 164(6), 796801.Google Scholar
Park, J. G. (2009). Primary Economic Policy of Administrations in South Korea. Korea Economic Research Institute (KERI).Google Scholar
Park, K. A. (1993). Women and development: The case of South Korea. Comparative Politics, 25(2), 127145.Google Scholar
Park, S., Kim, E., Kim, H., & Chey, J. (2011). Effects of age and education on the Simple Rey Figure Test in elderly Koreans. Korean J. Psychol. Gen, 30, 99115.Google Scholar
Patterson, C. (2018). The State of the Art of Dementia Research: New Frontiers. World Alzheimer Report 2018. Alzheimer’s Disease International.Google Scholar
Peiris-John, R. J., Ruberu, D. K., Wickremasinghe, A. R., & van-der-Hoek, W. (2005). Low-level exposure to organophosphate pesticides leads to restrictive lung dysfunction. Respiratory Medicine, 99(10), 13191324.Google Scholar
Peters, R., Ee, N., Peters, J., Booth, A., Mudway, I., & Anstey, K. J. (2019). Air pollution and dementia: A systematic review. Journal of Alzheimer’s Disease, 70(s1), S145S163.Google Scholar
Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56(3), 303308.Google Scholar
Pi, J., Olivé, J. M., Roca, J., & Masana, L. (1996). Prevalence of dementia in a semi-rural population of Catalunya, Spain. Neuroepidemiology, 15(1), 3341.Google Scholar
Pietschnig, J., Penke, L., Wicherts, J. M., Zeiler, M., & Voracek, M. (2015). Meta-analysis of associations between human brain volume and intelligence differences: How strong are they and what do they mean? Neuroscience & Biobehavioral Reviews, 57, 411432.Google Scholar
Plassman, B. L., Havlik, R. J., Steffens, D. C., Helms, M. J., Newman, T. N., Drosdick, D., Phillips, C., Gau, B. A., Welsh-Bohmer, K. A., Burke, J. R., Guralnik, J. M., & Breitner, J. C. S. (2000). Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. Neurology, 55(8), 11581166.Google Scholar
Prencipe, M., Casini, A. R., Ferretti, C., Lattanzio, M. T., Fiorelli, M., & Culasso, F. (1996). Prevalence of dementia in an elderly rural population: Effects of age, sex, and education. Journal of Neurology, Neurosurgery & Psychiatry, 60(6), 628633.Google Scholar
Prina, A. M., Mayston, R., Wu, Y. T., & Prince, M. (2019). A review of the 10/66 dementia research group. Soc. Psychiatry Psychiatr. Epidemiol., 54, 110. https://doi.org/10.1007/s00127-018-1626-7Google Scholar
Prince, M., Graham, N., Brodaty, H., Rimmer, E., Varghese, M., Chiu, H., Acosta, D., & Scazufca, M. (2004). Alzheimer Disease International’s 10/66 Dementia Research Group – One model for action research in developing countries. International Journal of Geriatric Psychiatry, 19(2), 178181.Google Scholar
Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W., & Ferri, C. P. (2013). The global prevalence of dementia: A systematic review and metaanalysis. Alzheimer’s & Dementia, 9(1), 6375.Google Scholar
Public Health Agency of Canada. (2017). Dementia in Canada, including Alzheimer’s disease: Highlights from the Canadian chronic disease surveillance system [Fact sheet]. https://www.canada.ca/content/dam/phac-aspc/documents/services/publications/diseases-conditions/dementia-highlights-canadian-chronic-disease-surveillance/dementia-highlights-canadian-chronic-disease-surveillance.pdfGoogle Scholar
Rentería, M. A., Vonk, J. M., Felix, G., Avila, J. F., Zahodne, L. B., Dalchand, E., Frazer, K. M., Martinez, M. N., Shouel, H. L., & Manly, J. J. (2019). Illiteracy, dementia risk, and cognitive trajectories among older adults with low education. Neurology, 93(24), e2247e2256.Google Scholar
Rizzi, L., Rosset, I., & Roriz-Cruz, M. (2014). Global epidemiology of dementia: Alzheimer’s and vascular types. BioMed Research International, 2014.Google Scholar
Roser, M., & Ortiz-Ospina, E. (2016). Literacy. Our World in Data. https://ourworldindata.org/Google Scholar
Ruano, L., Araújo, N., Branco, M., Barreto, R., Moreira, S., Pais, R., Cruz, V. T., Lunet, N., & Barros, H. (2019). Prevalence and causes of cognitive impairment and dementia in a population-based cohort from northern Portugal. American Journal of Alzheimer’s Disease & Other Dementias®, 34(1), 4956.CrossRefGoogle Scholar
Russ, T. C. (2018). Intelligence, cognitive reserve, and dementia: Time for intervention? JAMA Network Open, 1(5), e181724e181724.Google Scholar
Schmidt, R., Freidl, W., Fazekas, F., Reinhart, B., Grieshofer, P., Koch, M., Eber, B., Schumacher, M., Polmin, K., & Lechner, H. (1994). The Mattis Dementia Rating Scale: Normative data from 1,001 healthy volunteers. Neurology, 44(5), 964964.Google Scholar
Schneider, A. L., Selvin, E., Latour, L., Turtzo, L. C., Coresh, J., Mosley, T., Ling, G., & Gottesman, R. F. (2021). Head injury and 25‐year risk of dementia. Alzheimer’s & Dementia, 17(9), 14321441.Google Scholar
Seth, M. J. (2002). Education Fever. University of Hawaii Press.Google Scholar
Seth, M. J. (2017). South Korea’s economic development, 1948–1996. Oxford Research Encyclopedia of Asian History.Google Scholar
Shibayama, H., Kasahara, Y., & Kobayashi, H. (1986). Prevalence of dementia in a Japanese elderly population. Acta Psychiatrica Scandinavica, 74(2), 144151.Google Scholar
Shin, I. S., Kim, J. M., Yoon, J. S., Kim, S. J., Yang, S. J., Kim, W. J., Lee, S. H., Kwak, J. Y., & Lee, H. Y. (2002). Prevalence rate and risk factors of dementia compared between urban and rural communities of the metropolitan Kwangju area. Journal of Korean Neuropsychiatric Association, 41(6), 11651173.Google Scholar
Shin, M. (2017). Risk for Cognitive Aging and Dementia in the Elderly Korean Population with Baseline Low Cognitive Performance. Doctoral dissertation, Seoul National University.Google Scholar
Shively, S., Scher, A. I., Perl, D. P., & Diaz-Arrastia, R. (2012). Dementia resulting from traumatic brain injury: What is the pathology? Archives of Neurology, 69(10), 12451251.Google Scholar
Shulman, K. I. (2000). Clock‐drawing: Is it the ideal cognitive screening test? International Journal of Geriatric Psychiatry, 15(6), 548561.Google Scholar
Spada, R. S., Stella, G., Calabrese, S., Bosco, P., Anello, G., Guéant-Rodriguez, R. M., Romano, A., Benamghar, L., & Guéant, J. L. (2009). Prevalence of dementia in mountainous village of Sicily. Journal of the Neurological Sciences, 283(1–2), 6265.CrossRefGoogle ScholarPubMed
Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. The Lancet Neurology, 11(11), 10061012.Google Scholar
Suh, G. H., Kim, J. K., & Cho, M. J. (2003). Community study of dementia in the older Korean rural population. Australian and New Zealand Journal of Psychiatry, 37(5), 606612.Google Scholar
Suh, S. W., Kim, Y. J., Kwak, K. P., Kim, K., Kim, M. D., Kim, B. S., Kim, B. J., Kim, S. G., Kim, J. L., Kim, T. H., Moon, S. W., Park, K. W., Park, J. I., Park, J. H., Bae, J. N., Seo, J., Seong, S. J., Son, S. J., Shin, I. S., … & Kim, K. W. (2021). A 9-Year Comparison of Dementia Prevalence in Korea: Results of NaSDEK 2008 and 2017. Journal of Alzheimer’s Disease, 81(2), 821831.Google Scholar
Suk, J. S., Chey, J. Y., & Kim, H. Y. (2010). An additional normative study of the Korean-dementia rating scale. Korean J Clin Psychol, 29(2), 559572.Google Scholar
Sun, Y., Lee, H. J., Yang, S. C., Chen, T. F., Lin, K. N., Lin, C. C., Wang, P. N., Tang, L. Y., & Chiu, M. J. (2014). A nationwide survey of mild cognitive impairment and dementia, including very mild dementia, in Taiwan. PLoS ONE, 9(6), e100303.Google Scholar
Sung, S. (2003). Women reconciling paid and unpaid work in a Confucian welfare state: The case of South Korea. Social Policy & Administration, 37(4), 342360.Google Scholar
Tola-Arribas, M. A., Yugueros, M. I., Garea, M. J., Ortega-Valín, F., Cerón-Fernández, A., Fernández-Malvido, B., San José-Gallegos, A., González-Touya, M., Botrán-Velicia, A., Iglesias-Rodríguez, V., & Díaz-Gómez, B. (2013). Prevalence of dementia and subtypes in Valladolid, northwestern Spain: The DEMINVALL study. PLoS ONE, 8(10), e77688.Google Scholar
Tsolaki, M., Fountoulakis, C., Pavlopoulos, I., Chatzi, E., & Kazis, A. (1999). Prevalence and incidence of Alzheimers disease and other dementing disorders in Pylea, Greece. American Journal of Alzheimer’s Disease, 14(3), 138148.Google Scholar
United Nations, Department of Economic and Social Affairs, Population Division (2017). World Population Aging 2017.Google Scholar
United Nations, Department of Economic and Social Affairs, Population Division (2019a). World Population Ageing 2019: Highlights (ST/ESA/SER.A/430).Google Scholar
United Nations, Department of Economic and Social Affairs, Population Division (2019b). World Population Prospects 2019, Volume I: Comprehensive Tables (ST/ESA/SER.A/426).Google Scholar
Valenzuela, M. J., & Sachdev, P. (2006). Brain reserve and dementia: A systematic review. Psychological Medicine, 36(4), 441454.Google Scholar
Varangis, E. & Stern, Y. (2020). Cognitive Reserve. In Thomas, A. K. & Gutchess, A., (eds.), The Cambridge Handbook of Cognitive Aging: A Life Course Perspective (Cambridge Handbooks in Psychology), pp.3246. Cambridge University Press. https://doi.org/10.1017/9781108552684Google Scholar
Vemuri, P., Wiste, H. J., Weigand, S. D., Shaw, L. M., Trojanowski, J. Q., Weiner, M. W., Knopman, D. S., Petersen, R. C., & Jack, C. R.; Alzheimer’s Disease Neuroimaging Initiative (2009). MRI and CSF biomarkers in normal, MCI, and AD subjects: Diagnostic discrimination and cognitive correlations. Neurology, 73(4), 287293.Google Scholar
Virués‐Ortega, J., de Pedro‐Cuesta, J., Vega, S., Seijo‐Martínez, M., Saz, P., Rodríguez, F., Rodríguez-Laso, A., Reñé, R., de las Heras, S. P., Mateos, R., Martínez-Martín, P., Mahillo-Fernandéz, M., López-Pousa, S., Lobo, A., Reglà, J. L., Gascón, J., García, F. J., Fernandéz-Martínez, M., Boix, R.,... & del Barrio, J. L.; Spanish Epidemiological Studies on Ageing Group. (2011). Prevalence and European comparison of dementia in a ≥75‐year‐old composite population in Spain. Acta Neurologica Scandinavica, 123(5), 316324.Google Scholar
Vogel, E. F. (1991). The Four Little Dragons: The Spread of Industrialization in East Asia, vol. 3. Harvard University Press.Google Scholar
Vygotsky, L. S. (1978). Mind in Society: The Development of Higher Psychological Processes. Harvard University Press.Google Scholar
Wang, Y. Q., Jia, R. X., Liang, J. H., Li, J., Qian, S., Li, J. Y., & Xu, Y. (2019). Dementia in China (2015–2050) estimated using the 1% population sampling survey in 2015. Geriatrics & Gerontology International, 19(11), 10961100.Google Scholar
Willerman, L., Schultz, R., Rutledge, J. N., & Bigler, E. D. (1991). In vivo brain size and intelligence. Intelligence, 15(2), 223228.CrossRefGoogle Scholar
Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L. O., Nordberg, A., Bäckman, L., Albert, M., Almkvist, O., Arai, H., Basun, H., Blennow, K., de Leon, M., DeCarli, C., Erkinjuntti, J., Giacobini, E., Graff, C., Hardy, J., … & Petersen, R. C. (2004). Mild cognitive impairment–beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256(3), 240246.Google Scholar
Witelson, S. F., Beresh, H., & Kigar, D. L. (2006). Intelligence and brain size in 100 postmortem brains: Sex, lateralization and age factors. Brain, 129(2), 386398.Google Scholar
Wolf, H., Hensel, A., Kruggel, F., Riedel-Heller, S. G., Arendt, T., Wahlund, L. O., & Gertz, H. J. (2004). Structural correlates of mild cognitive impairment. Neurobiology of aging, 25(7), 913924.Google Scholar
Wolf, M. J, Emerson, J. W., Esty, D. C., de Sherbinin, A., Wendling, Z. A., et al. (2022). 2022 Environmental Performance Index. New Haven, CT: Yale Center for Environmental Law & Policy. epi.yale.eduGoogle Scholar
Woo, J. I., Lee, J. H., Yoo, K. Y., Kim, C. Y., Kim, Y. I., & Shin, Y. S. (1998). Prevalence estimation of dementia in a rural area of Korea. Journal of the American Geriatrics Society, 46(8), 983987.Google Scholar
World Bank (2021a). Gross National Income, Republic of Korea. https://data.worldbank.org/indicator/NY.GNP.MKTP.CD?locations=KRGoogle Scholar
World Bank (2021b). Life expectancy, Republic of Korea. https://data.worldbank.org/indicator/SP.DYN.LE00.IN?locations=KRGoogle Scholar
World Health Organization. (2017). Global action plan on the public health response to dementia 2017–2025.Google Scholar
Wu, Y. T., Ali, G. C., Guerchet, M., Prina, A. M., Chan, K. Y., Prince, M., & Brayne, C. (2018). Prevalence of dementia in mainland China, Hong Kong and Taiwan: An updated systematic review and meta-analysis. International Journal of Epidemiology, 47(3), 709719.Google Scholar
Yang, S. S., Gong, B. H., & Kim, H. J. (2010). A Research on the World Trend in Compulsory Education and its Development Strategies. Korean Educational Development Institute (KEDI).Google Scholar
Youn, J. C., Lee, D. Y., Kim, K. W., & Woo, J. I. (2005). Epidemiology of dementia. Psychiatr. Invest., 2(1), 2839.Google Scholar
Zhang, M. Y., Katzman, R., Salmon, D., Jin, H., Cai, G. J., Wang, Z. Y., Qu, G. Y., Grant, I., Yu, E., Levy, P., Klauber, M. R., & Liu, W. T. (1990). The prevalence of dementia and Alzheimer’s disease in Shanghai, China: Impact of age, gender, and education. Annals of Neurology, 27(4), 428437.Google Scholar

References

Bang, M., Kim, J., An, S. K., Youm, Y., Chey, J., Kim, H.C., Park, K., Namkoong, , K., & Lee, E. (2019). Associations of systemic inflammation with frontotemporal functional network connectivity and out-degree social-network size in community-dwelling older adults. Brain, Behavior, and Immunity, 79, 309313.Google Scholar
Berkman, L. F., & Glass, T. (2000). Social integration, social networks, social support, and health. Social Epidemiology, 1, 137173.Google Scholar
Berkman, L. F., Glass, T., Brissette, I., & Seeman, T. E. (2000). From social integration to health: Durkheim in the new millennium. Social Science & Medicine, 51, 843857.Google Scholar
Berkman, L. F., & Syme, S. L. (1979). Social networks, host resistance, and mortality: A nine-year follow-up study of Alameda County residents. American Journal of Epidemiology, 109, 186204.Google Scholar
Blazer, D. G. (1982). Social support and mortality in an elderly community population. American Journal of Epidemiology, 115, 684694.Google Scholar
Burt, R. S. (2000). The network structure of social capital. Research in Organizational Behavior, 22, 345423.Google Scholar
Burt, R. S. (2001). Structural holes versus network closure as social capital. In Lin, N., Cook, K., & Burt, R. S (eds.), Social Capital: Theory and Research, pp. 3156. Routledge.Google Scholar
Burt, R. S. (2002). Bridge decay. Social Networks, 24, 333363.Google Scholar
Burt, R. S. (2009). Structural Holes: The Social Structure of Competition. Harvard University Press.Google Scholar
Burt, R. S., Bartkus, V. O., & Davis, J. H. (2009). Network duality of social capital. In Bartkus, V. O. & Davis, J. H. (eds.), Social Capital. Reaching Out, Reaching pp. 3965. Edward Elgar.Google Scholar
Cacioppo, J. T., & Hawkley, L. C. (2003). Social isolation and health, with an emphasis on underlying mechanisms. Perspectives in Biology and Medicine, 46, S39S52.Google Scholar
Cacioppo, J. T., Hawkley, L. C., Ernst, J. M., Burleson, M., Berntson, G.G., Nouriani, B., & Spiegel, D. (2006). Loneliness within a nomological net: An evolutionary perspective. Journal of Research in Personality, 40, 10541085.Google Scholar
Cassel, J. (1976). The contribution of the social environment to host resistance: The Fourth Wade Hampton Frost Lecture. American Journal of Epidemiology, 104, 107123.Google Scholar
Cobb, S. (1976). Social support as a moderator of life stress. Psychosomatic Medicine, 38(5), 300314.Google Scholar
Coleman, J. S. (1988). Social capital in the creation of human capital. American Journal of Sociology, 94, S95S120.Google Scholar
Cornwell, B. (2009a). Good health and the bridging of structural holes. Social Networks, 31, 92103.Google Scholar
Cornwell, B. (2009b). Network bridging potential in later life: Life-course experiences and social network position. Journal of Aging and Health, 21, 129154.Google Scholar
Cornwell, B., & Laumann, E. O. (2011). Network position and sexual dysfunction: Implications of partner betweenness for men. American Journal of Sociology, 117, 172208.Google Scholar
Cornwell, B., & Laumann, E. O. (2015). The health benefits of network growth: New evidence from a national survey of older adults. Social Science & Medicine, 125, 94106.Google Scholar
Cornwell, B., Schumm, L. P., Laumann, E. O., & Graber, J. (2009). Social networks in the NSHAP study: Rationale, measurement, and preliminary findings. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 64, i47i55.Google Scholar
Cornwell, E. Y., & Waite, L. J. (2012). Social network resources and management of hypertension. Journal of Health and Social Behavior, 53, 215231.Google Scholar
Festinger, L., Schachter, S., & Back, K. (1950). Social Pressures in Informal Groups: A Study of Human Factors in Housing. Harper.Google Scholar
Haber, M. G., Cohen, J. L., Lucas, T., & Baltes, B. B. (2007). The relationship between self-reported received and perceived social support: A meta-analytic review. American Journal of Community Psychology, 39, 133144.Google Scholar
House, J. S. (2001). Social isolation kills, but how and why? Psychosomatic Medicine, 63, 273274.Google Scholar
House, J. S., Landis, K. R., & Umberson, D. (1988). Social relationships and health. Science, 241, 540545.Google Scholar
House, J. S., Robbins, C., & Metzner, H. L. (1982). The association of social relationships and activities with mortality: Prospective evidence from the Tecumseh Community Health Study. American Journal of Epidemiology, 116, 123140.Google Scholar
Jeon, G.-S., Jang, S.-N., Rhee, S.-J., Kawachi, I., & Cho, S.-I. (2007). Gender differences in correlates of mental health among elderly Koreans. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 62, S323S329.Google Scholar
Joo, W.-t., Kwak, S., Youm, Y., & Chey, J. (2017). Brain functional connectivity difference in the complete network of an entire village: The role of social network size and embeddedness. Scientific Reports, 7, 112.Google Scholar
Joo, W.-t., Lee, C. J., Oh, J., Kim, I.-C., Lee, S.-H., Kang, S.-M., Kim, H. C., Park, S., & Youm, Y. (2017). The association between social network betweenness and coronary calcium: A baseline study of patients with a high risk of cardiovascular disease. Journal of Atherosclerosis and Thrombosis, 40469.Google Scholar
Kim, H., Kwak, S., Kim, J., Youm, Y., & Chey, J. (2019). Social network position moderates the relationship between late-life depressive symptoms and memory differently in men and women. Scientific Reports, 9, 110.Google Scholar
Lee, J.-M., Lee, W. J., Kim, H. C., Choi, W., Lee, J., Sung, K., Chu, S. H., Park, Y.-R., & Youm, Y. (2014). The Korean Social Life, Health, and Aging Project: Health examination cohort. Epidemiology and Health, 36, e2014003.Google Scholar
Lichtenberg, P. A. (2014). Sexuality and physical intimacy in long-term care. Occupational Therapy in Health Care, 28, 4250.Google Scholar
Litwin, H. (2011). The association between social network relationships and depressive symptoms among older Americans: What matters most? International Psychogeriatrics, 23, 930.Google Scholar
Sabin, E. P. (1993). Social relationships and mortality among the elderly. Journal of Applied Gerontology, 12, 4460.Google Scholar
Schafer, M. H. (2011). Health and network centrality in a continuing care retirement community. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 66, 795803.Google Scholar
Seeman, T. E., Berkman, L. F., Kohout, F., Lacroix, A., Glynn, R., & Blazer, D. (1993). Intercommunity variations in the association between social ties and mortality in the elderly: A comparative analysis of three communities. Annals of Epidemiology, 3, 325335.Google Scholar
Smith, K. P., & Christakis, N. A. (2008). Social networks and health. Annual Review of Sociology, 34, 405429.Google Scholar
Van Tilburg, T. (1998). Losing and gaining in old age: Changes in personal network size and social support in a four-year longitudinal study. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 53, S313S323.Google Scholar
Waite, L., & Cornwell, E. (2009). Social disconnectedness, perceived isolation, and health among older adults. Journal of Health and Social Behavior, 50, 3148.Google Scholar
Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge University Press.Google Scholar
Wei-Ming, T. (1996). Confucian traditions in East Asian modernity. Bulletin of the American Academy of Arts and Sciences, 12–39.Google Scholar
Welin, L., Svärdsudd, K., Ander-Peciva, S., Tibblin, G., Tibblin, B., Larsson, B., & Wilhelmsen, L. (1985). Prospective study of social influences on mortality: The study of men born in 1913 and 1923. The Lancet, 325, 915918.Google Scholar
Youm, Y., Baldina, E., & Baek, J. (2021). All-cause mortality and three aspects of social relationships: An eight-year follow-up of older adults from one entire Korean village. Scientific Reports, 11, 111.Google Scholar
Youm, Y., Laumann, E. O., Ferraro, K. F., Waite, L. J., Kim, H. C., Park, Y.-R., Chu, S. H., Joo, W.-t., & Lee, J. A. (2014). Social network properties and self-rated health in later life: Comparisons from the Korean Social Life, Health, and Aging Project and the National Social Life, Health, and Aging Project. BMC Geriatrics, 14, 115.Google Scholar

References

Adler, A. (1928/2014). Understanding Human Nature: The Psychology of Personality. Oneworld Publications.Google Scholar
Adolphs, R. (2009). The social brain: Neural basis of social knowledge. Annual Review of Psychology, 60, 693716.Google Scholar
Aknin, L. B., Hamlin, J. K., & Dunn, E. W. (2012). Giving leads to happiness in young children. PLoS ONE, 7(6), e39211.Google Scholar
Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7(4), 268277.Google Scholar
Ashton, B. J., Thornton, A., & Ridley, A. R. (2018). An intraspecific appraisal of the social intelligence hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1756), 20170288.Google Scholar
Atzil, S., Gao, W., Fradkin, I., & Barrett, L. F. (2018). Growing a social brain. Nature Human Behaviour, 2(9), 624636.Google Scholar
Bachorowski, J. A., & Owren, M. J. (2001). Not all laughs are alike: Voiced but not unvoiced laughter readily elicits positive affect. Psychological Science, 12(3), 252257.Google Scholar
Bailey, P. E., Brady, B., Ebner, N. C., & Ruffman, T. (2020). Effects of age on emotion regulation, emotional empathy, and prosocial behavior. The Journals of Gerontology: Series B, 75(4), 802810.Google Scholar
Barton, R. A., & Dunbar, R. I. M. (1997). Evolution of the social brain. In Whiten, A. & Byrne, R. W. (eds.), Machiavellian Intelligence II, pp. 240263. Cambridge University Press.Google Scholar
Batson, C. D. (2011) Altruism In Humans. Oxford University Press.Google Scholar
Baumeister, R. F., & Leary, M. R. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117(3), 497529.Google Scholar
Baumgartner, T., Nash, K., Hill, C., & Knoch, D. (2015). Neuroanatomy of intergroup bias: A white matter microstructure study of individual differences. NeuroImage, 122, 345354.Google Scholar
Baron-Cohen, S., & Wheelwright, S. (2004). The empathy quotient: An investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. Journal of Autism and Developmental Disorders, 34(2), 163175.Google Scholar
Bartels, A., & Zeki, S. (2000). The neural basis of romantic love. Neuroreport, 11(17), 38293834.Google Scholar
Bartolo, P. (2019). Belong and Flourish – Drop Out and Perish, in Vella, S., Falzon, R., & Azzopardi, A. (eds.), Perspectives on Wellbeing. Brill.Google Scholar
Beadle, J. N., Sheehan, A. H., Dahlben, B., & Gutchess, A. H. (2015). Aging, empathy, and prosociality. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 70(2), 213222.CrossRefGoogle ScholarPubMed
Behrens, T. E., Hunt, L. T., Woolrich, M. W., & Rushworth, M. F. (2008). Associative learning of social value. Nature, 456(7219), 245249.Google Scholar
Berridge, K. C., & Kringelbach, M. L. (2011). Building a neuroscience of pleasure and well-being. Psychology of Well-Being: Theory, Research and Practice, 1(1), 126.Google Scholar
Bickart, K. C., Hollenbeck, M. C., Barrett, L. F., & Dickerson, B. C. (2012). Intrinsic amygdala–cortical functional connectivity predicts social network size in humans. Journal of Neuroscience, 32(42), 1472914741.Google Scholar
Blair, R. J. R. (2005). Responding to the emotions of others: Dissociating forms of empathy through the study of typical and psychiatric populations. Consciousness and Cognition, 14(4), 698718.Google Scholar
Blakemore, S. J. (2008). The social brain in adolescence. Nature Reviews Neuroscience, 9(4), 267277.Google Scholar
Bowlby, J. (1969). Attachment and Loss, vol. I: Loss. Basic Books.Google Scholar
Byrne, R., & Whiten, A. (eds.) (1988). Machiavellian Intelligence. Oxford University Press.Google Scholar
Byrne, R. W., & Corp, N. (2004). Neocortex size predicts deception rate in primates. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1549), 16931699.Google Scholar
Cacioppo, S., Frum, C., Asp, E., Weiss, R. M., Lewis, J. W., & Cacioppo, J. T. (2013). A quantitative meta-analysis of functional imaging studies of social rejection. Scientific Reports, 3(1), 13.Google Scholar
Call, J., & Tomasello, M. (2011). Does the chimpanzee have a theory of mind? 30 years later. Human Nature and Self Design, 83–96.Google Scholar
Campbell-Sills, L., & Barlow, D. H. (2007). Incorporating emotion regulation into conceptualizations and treatments of anxiety and mood disorders. Handbook of Emotion Regulation, 2, 542559.Google Scholar
Caputi, M., Lecce, S., Pagnin, A., & Banerjee, R. (2012). Longitudinal effects of theory of mind on later peer relations: The role of prosocial behavior. Developmental Psychology, 48(1), 257270.Google Scholar
Carstensen, L. L. (1992). Social and emotional patterns in adulthood: Support for socioemotional selectivity theory. Psychology and Aging, 7(3), 331338.Google Scholar
Carter, C. S. (1998). Neuroendocrine perspectives on social attachment and love. Psychoneuroendocrinology, 23(8), 779818.Google Scholar
Carter, R. M., Bowling, D. L., Reeck, C., & Huettel, S. A. (2012). A distinct role of the temporal-parietal junction in predicting socially guided decisions. Science, 337(6090), 109111.Google Scholar
Carter, R. M., & Huettel, S. A. (2013). A nexus model of the temporal–parietal junction. Trends in Cognitive Sciences, 17(7), 328336.Google Scholar
Castelli, I., Baglio, F., Blasi, V., Alberoni, M., Falini, A., Liverta-Sempio, O., Nemni, R., & Marchetti, A. (2010). Effects of aging on mindreading ability through the eyes: An fMRI study. Neuropsychologia, 48(9), 25862594.Google Scholar
Charlton, R. A., Barrick, T. R., Markus, H. S., & Morris, R. G. (2009). Theory of mind associations with other cognitive functions and brain imaging in normal aging. Psychology and Aging, 24(2), 338348.Google Scholar
Chen, Y. C., Chen, C. C., Decety, J., & Cheng, Y. (2014). Aging is associated with changes in the neural circuits underlying empathy. Neurobiology of Aging, 35(4), 827836.Google Scholar
Cho, I., & Cohen, A. S. (2019). Explaining age-related decline in theory of mind: Evidence for intact competence but compromised executive function. PLoS ONE, 14(9), e0222890.CrossRefGoogle ScholarPubMed
Cho, I., Song, H. J., Kim, H., & Sul, S. (2020). Older adults consider others’ intentions less but allocentric outcomes more than young adults during an ultimatum game. Psychology and Aging, 35(7), 974980.Google Scholar
Choi, D., Minote, N., Sekiya, T., & Watanuki, S. (2016). Relationships between trait empathy and psychological well-being in Japanese university students. Psychology, 7(09), 12401247.Google Scholar
Cohen, S. (2004). Social relationships and health. American Psychologist, 59(8), 676684.Google Scholar
Cohen, S., & Wills, T. A. (1985). Stress, social support, and the buffering hypothesis. Psychological Bulletin, 98(2), 310357.Google Scholar
Corradi-Dell’Acqua, C., Ronchi, R., Thomasson, M., Bernati, T., Saj, A., & Vuilleumier, P. (2020). Deficits in cognitive and affective theory of mind relate to dissociated lesion patterns in prefrontal and insular cortex. Cortex, 128, 218233.Google Scholar
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201215.Google Scholar
Coricelli, G., & Nagel, R. (2009). Neural correlates of depth of strategic reasoning in medial prefrontal cortex. Proceedings of the National Academy of Sciences, 106(23), 91639168.Google Scholar
Courtney, A. L., & Meyer, M. L. (2020). Self-other representation in the social brain reflects social connection. Journal of Neuroscience, 40(29), 56165627.Google Scholar
Dambrun, M., & Ricard, M. (2011). Self-centeredness and selflessness: A theory of self-based psychological functioning and its consequences for happiness. Review of General Psychology, 15(2), 138157.Google Scholar
Davey, C. G., Allen, N. B., Harrison, B. J., Dwyer, D. B., & Yücel, M. (2010). Being liked activates primary reward and midline self‐related brain regions. Human Brain Mapping, 31(4), 660668.Google Scholar
Davis, M. (1980). A multidimensional approach to individual differences in empathy. Catalog of Selected Documents in Psychology, 10, 117.Google Scholar
De Waal, F. B., & Tyack, P. L. (eds.) (2009). Animal Social Complexity: Intelligence, Culture, and Individualized Societies. Harvard University Press.Google Scholar
DeWall, C. N., MacDonald, G., Webster, G. D., Masten, C. L., Baumeister, R. F., Powell, C., Combs, D., Schurtz, D. R., Stillman, T. F., Tice, D. M., & Eisenberger, N. I. (2010). Acetaminophen reduces social pain: Behavioral and neural evidence. Psychological Science, 21(7), 931937.Google Scholar
Denny, B. T., Kober, H., Wager, T. D., & Ochsner, K. N. (2012). A meta-analysis of functional neuroimaging studies of self-and other judgments reveals a spatial gradient for mentalizing in medial prefrontal cortex. Journal of Cognitive Neuroscience, 24(8), 17421752.Google Scholar
Diener, E., & Seligman, M. E. (2002). Very happy people. Psychological Science, 13(1), 8184.Google Scholar
Dunbar, R. I. (1998). The social brain hypothesis. Evolutionary Anthropology: Issues, News, and Reviews, 6(5), 178190.Google Scholar
Dunbar, R. I., & Shultz, S. (2007). Evolution in the social brain. Science, 317(5843), 13441347.Google Scholar
Dunn, E. W., Aknin, L. B., & Norton, M. I. (2008). Spending money on others promotes happiness. Science, 319(5870), 16871688.Google Scholar
Dunn, E. W., Aknin, L. B., & Norton, M. I. (2014). Prosocial spending and happiness: Using money to benefit others pays off. Current Directions in Psychological Science, 23(1), 4147.Google Scholar
Eisenberger, N. I., Inagaki, T. K., Muscatell, K. A., Byrne Haltom, K. E., & Leary, M. R. (2011). The neural sociometer: Brain mechanisms underlying state self-esteem. Journal of Cognitive Neuroscience, 23(11), 34483455.Google Scholar
Eisenberger, N. I., Lieberman, M. D., & Williams, K. D. (2003). Does rejection hurt? An fMRI study of social exclusion. Science, 302(5643), 290292.Google Scholar
Engen, H. G., & Singer, T. (2013). Empathy circuits. Current Opinion in Neurobiology, 23(2), 275282.Google Scholar
English, T., & Carstensen, L. L. (2014). Selective narrowing of social networks across adulthood is associated with improved emotional experience in daily life. International Journal of Behavioral Development, 38(2), 195202.Google Scholar
Fallon, N., Roberts, C., & Stancak, A. (2020). Shared and distinct functional networks for empathy and pain processing: A systematic review and meta-analysis of fMRI studies. Social Cognitive and Affective Neuroscience, 15(7), 709723.Google Scholar
Fan, Y., Duncan, N. W., de Greck, M., & Northoff, G. (2011). Is there a core neural network in empathy? An fMRI based quantitative meta-analysis. Neuroscience & Biobehavioral Reviews, 35(3), 903911.Google Scholar
Fareri, D. S., & Delgado, M. R. (2014). Social rewards and social networks in the human brain. The Neuroscientist, 20(4), 387402.Google Scholar
Ferrari, P. F., Gallese, V., Rizzolatti, G., & Fogassi, L. (2003). Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex. European Journal of Neuroscience, 17(8), 17031714.Google Scholar
Fiddick, L., Cosmides, L., & Tooby, J. (2000). No interpretation without representation: The role of domain-specific representations and inferences in the Wason selection task. Cognition, 77(1), 179.Google Scholar
Fink, E., Begeer, S., Peterson, C. C., Slaughter, V., & de Rosnay, M. (2015). Friendlessness and theory of mind: A prospective longitudinal study. British Journal of Developmental Psychology, 33(1), 117.Google Scholar
Freund, A. M., & Blanchard-Fields, F. (2014). Age-related differences in altruism across adulthood: Making personal financial gain versus contributing to the public good. Developmental Psychology, 50(4), 11251136.Google Scholar
Frith, C. D. (2007). The social brain? Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1480), 671678.Google Scholar
Frith, C. D., & Frith, U. (2006). The neural basis of mentalizing. Neuron, 50(4), 531534.Google Scholar
Fung, H. H., Carstensen, L. L., & Lang, F. R. (2001). Age-related patterns in social networks among European Americans and African Americans: Implications for socioemotional selectivity across the life span. The International Journal of Aging and Human Development, 52(3), 185206.Google Scholar
German, T. P., & Hehman, J. A. (2006). Representational and executive selection resources in “theory of mind”: Evidence from compromised belief-desire reasoning in old age. Cognition, 101(1), 129152.Google Scholar
Gowlett, J., Gamble, C., & Dunbar, R. (2012). Human evolution and the archaeology of the social brain. Current Anthropology, 53(6), 693722.Google Scholar
Harbaugh, W. T., Mayr, U., & Burghart, D. R. (2007). Neural responses to taxation and voluntary giving reveal motives for charitable donations. Science, 316(5831), 16221625.Google Scholar
Harvey, P. H., Martin, R. D. & Clutton-Brock, T. H. (1987). Life histories in comparative perspective. In Smuts, B. B., Cheney, D. L., Seyfarth, R. M., Wrangham, R. W., & Struhsaker, T. T. (eds.), Primate Societies, pp. 181196. University of Chicago Press.Google Scholar
Haxby, J. V., & Gobbini, M. I. (2011). Distributed neural systems for face perception. In Calder, A. J., Rhodes, G., Johnson, M. H., & Haxby, J. V. (eds.), Handbook of Face Perception, pp. 93110. Oxford University Press.Google Scholar
Healey, M. L., & Grossman, M. (2018). Cognitive and affective perspective-taking: Evidence for shared and dissociable anatomical substrates. Frontiers in Neurology, 9, 491.Google Scholar
Hein, G., Silani, G., Preuschoff, K., Batson, C. D., & Singer, T. (2010). Neural responses to ingroup and outgroup members’ suffering predict individual differences in costly helping. Neuron, 68(1), 149160.Google Scholar
Hein, G., & Singer, T. (2008). I feel how you feel but not always: The empathic brain and its modulation. Current Opinion in Neurobiology, 18, 153158.Google Scholar
Heller, A. S., van Reekum, C. M., Schaefer, S. M., Lapate, R. C., Radler, B. T., Ryff, C. D., & Davidson, R. J. (2013). Sustained striatal activity predicts eudaimonic well-being and cortisol output. Psychological Science, 24(11), 21912200.Google Scholar
Herrmann, E., Call, J., Hernández-Lloreda, M. V., Hare, B., & Tomasello, M. (2007). Humans have evolved specialized skills of social cognition: The cultural intelligence hypothesis. Science, 317(5843), 13601366.Google Scholar
Herrmann, E., Hernández-Lloreda, M. V., Call, J., Hare, B., & Tomasello, M. (2010). The structure of individual differences in the cognitive abilities of children and chimpanzees. Psychological Science, 21(1), 102110.Google Scholar
Heyes, C., & Catmur, C. (2021). What Happened to Mirror Neurons? Perspectives on Psychological Science, 17(1), 153168. https://doi.org/10.1177/1745691621990638Google Scholar
Hill, R. A., & Dunbar, R. I. (2003). Social network size in humans. Human Nature, 14(1), 5372.Google Scholar
Holekamp, K. E. (2007). Questioning the social intelligence hypothesis. Trends in Cognitive Sciences, 11(2), 6569.Google Scholar
House, J. S., Landis, K. R., & Umberson, D. (1988). Social relationships and health. Science, 241(4865), 540545.Google Scholar
Humphrey, N. K. (1976) The social function of intellect. In Bateson, P. & Hinde, R. (eds.), Growing Points in Ethology, pp. 303317. Cambridge University Press.Google Scholar
Hynes, C. A., Baird, A. A., & Grafton, S. T. (2006). Differential role of the orbital frontal lobe in emotional versus cognitive perspective-taking. Neuropsychologia, 44(3), 374383.Google Scholar
Iacoboni, M., & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neuroscience, 7(12), 942951.Google Scholar
Insel, T. R., & Fernald, R. D. (2004). How the brain processes social information: searching for the social brain. Annual Review of Neuroscience, 27, 697722.Google Scholar
Izuma, K., Saito, D. N., & Sadato, N. (2008). Processing of social and monetary rewards in the human striatum. Neuron, 58(2), 284294.Google Scholar
Izuma, K., Saito, D. N., & Sadato, N. (2010). Processing of the incentive for social approval in the ventral striatum during charitable donation. Journal of Cognitive Neuroscience, 22(4), 621631.Google Scholar
Jackson, P., Meltzoff, A., & Decety, J. (2005). How do we perceive the pain of others? A window into the neural processes involved in empathy. NeuroImage, 24, 771779.Google Scholar
Johnson-Ulrich, L. (2017). The Social Intelligence Hypothesis. In Shackelford, T. & Weekes-Shackelford, V. (eds.), Encyclopedia of Evolutionary Psychological Science, pp. 1–7.Google Scholar
Kamil, A. C. (2004). Sociality and the evolution of intelligence. Trends in Cognitive Sciences, 8(5), 195197.Google Scholar
Kang, P., Lee, J., Sul, S., & Kim, H. (2013). Dorsomedial prefrontal cortex activity predicts the accuracy in estimating others’ preferences. Frontiers in Human Neuroscience, 7, 686.Google Scholar
Kanwisher, N., & Yovel, G. (2006). The fusiform face area: A cortical region specialized for the perception of faces. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1476), 21092128.Google Scholar
Kim, S. A., Hamann, S., & Kim, S. H. (2021). Neurocognitive mechanisms underlying improvement of prosocial responses by a novel implicit compassion promotion task. NeuroImage, 240, 118333.Google Scholar
Kingsbury, L., & Hong, W. (2020). A multi-brain framework for social interaction. Trends in Neurosciences, 43(9), 651666.Google Scholar
Kliemann, D., & Adolphs, R. (2018). The social neuroscience of mentalizing: Challenges and recommendations. Current Opinion in Psychology, 24, 16.Google Scholar
Klucharev, V., Hytönen, K., Rijpkema, M., Smidts, A., & Fernández, G. (2009). Reinforcement learning signal predicts social conformity. Neuron, 61(1), 140151.Google Scholar
Kross, E., Berman, M. G., Mischel, W., Smith, E. E., & Wager, T. D. (2011). Social rejection shares somatosensory representations with physical pain. Proceedings of the National Academy of Sciences, 108(15), 62706275.Google Scholar
Kross, E., Egner, T., Ochsner, K., Hirsch, J., & Downey, G. (2007). Neural dynamics of rejection sensitivity. Journal of Cognitive Neuroscience, 19(6), 945956.Google Scholar
Kudo, H., & Dunbar, R. I. (2001). Neocortex size and social network size in primates. Animal Behaviour, 62(4), 711722.Google Scholar
Kudo, H., Lowen, S., & Dunbar, R. (1999). Neocortex size as a constraint on grooming clique size in primates. Behaviour.Google Scholar
Kwak, S., Joo, W. T., Youm, Y., & Chey, J. (2018). Social brain volume is associated with in-degree social network size among older adults. Proceedings of the Royal Society B: Biological Sciences, 285(1871), 20172708.Google Scholar
Lamm, C., Batson, C. D., & Decety, J. (2007). The neural substrate of human empathy: Effects of perspective-taking and cognitive appraisal. Journal of Cognitive Neuroscience, 19(1), 4258.Google Scholar
Lamm, C., Rütgen, M., & Wagner, I. C. (2019). Imaging empathy and prosocial emotions. Neuroscience Letters, 693, 4953.Google Scholar
Lansford, J. E., Sherman, A. M., & Antonucci, T. C. (1998). Satisfaction with social networks: An examination of socioemotional selectivity theory across cohorts. Psychology and Aging, 13(4), 544552.Google Scholar
Leary, M. R. (2003). Commentary on self-esteem as an interpersonal monitor: The sociometer hypothesis (1995). Psychological Inquiry, 14(3–4), 270274.Google Scholar
Lecce, S., Ceccato, I., Bianco, F., Rosi, A., Bottiroli, S., & Cavallini, E. (2017). Theory of Mind and social relationships in older adults: The role of social motivation. Aging & Mental Health, 21(3), 253258.Google Scholar
Lewis, K. P. (2000). A comparative study of primate play behaviour: Implications for the study of cognition. Folia Primatologica, 71(6), 417421.Google Scholar
Lewis, P. A., Rezaie, R., Brown, R., Roberts, N., & Dunbar, R. I. (2011). Ventromedial prefrontal volume predicts understanding of others and social network size. Neuroimage, 57(4), 16241629.Google Scholar
Lieberman, M. D., Straccia, M. A., Meyer, M. L., Du, M., & Tan, K. M. (2019). Social, self, (situational), and affective processes in medial prefrontal cortex (MPFC): Causal, multivariate, and reverse inference evidence. Neuroscience & Biobehavioral Reviews, 99, 311328.Google Scholar
Lockwood, P. L., Apps, M. A., Valton, V., Viding, E., & Roiser, J. P. (2016). Neurocomputational mechanisms of prosocial learning and links to empathy. Proceedings of the National Academy of Sciences, 113(35), 97639768.Google Scholar
Lucas, R. E., & Diener, E. (2001). Understanding extraverts’ enjoyment of social situations: The importance of pleasantness. Journal of Personality and Social Psychology, 81(2), 343356.Google Scholar
Luo, Y., Qi, S., Chen, X., You, X., Huang, X., & Yang, Z. (2017). Pleasure attainment or self-realization: The balance between two forms of well-beings are encoded in default mode network. Social Cognitive and Affective Neuroscience, 12(10), 16781686.Google Scholar
Luyten, P., Campbell, C., Allison, E., & Fonagy, P. (2020). The mentalizing approach to psychopathology: State of the art and future directions. Annual Review of Clinical Psychology, 16, 297325.Google Scholar
Maslow, A. H. (1968). Toward a Psychology of Being, 2nd ed. D. Van Nostrand.Google Scholar
Masten, C. L., Morelli, S. A., & Eisenberger, N. I. (2011). An fMRI investigation of empathy for “social pain” and subsequent prosocial behavior. Neuroimage, 55(1), 381388.Google Scholar
Mather, M., & Carstensen, L. L. (2005). Aging and motivated cognition: The positivity effect in attention and memory. Trends in Cognitive Sciences, 9(10), 496502.Google Scholar
Mende-Siedlecki, P., Said, C. P., & Todorov, A. (2013). The social evaluation of faces: A meta-analysis of functional neuroimaging studies. Social Cognitive and Affective Neuroscience, 8(3), 285299.Google Scholar
Mennin, D. S., Holaway, R. M., Fresco, D. M., Moore, M. T., & Heimberg, R. G. (2007). Delineating components of emotion and its dysregulation in anxiety and mood psychopathology. Behavior Therapy, 38(3), 284302.Google Scholar
Meyer-Lindenberg, A., Mervis, C. B., & Berman, K. F. (2006). Neural mechanisms in Williams syndrome: A unique window to genetic influences on cognition and behaviour. Nature Reviews Neuroscience, 7(5), 380393.Google Scholar
Mitchell, J. P., Macrae, C. N., & Banaji, M. R. (2006). Dissociable medial prefrontal contributions to judgments of similar and dissimilar others. Neuron, 50(4), 655663.Google Scholar
Molapour, T., Hagan, C. C., Silston, B., Wu, H., Ramstead, M., Friston, K., & Mobbs, D. (2021). Seven computations of the social brain. Social Cognitive and Affective Neuroscience, 16(8), 745760.Google Scholar
Moll, H. (2018). The transformative cultural intelligence hypothesis: Evidence from young children’s problem-solving. Review of Philosophy and Psychology, 9(1), 161175.Google Scholar
Moran, J. M., Jolly, E., & Mitchell, J. P. (2012). Social-cognitive deficits in normal aging. Journal of Neuroscience, 32(16), 55535561.Google Scholar
Morelli, S. A., Sacchet, M. D., & Zaki, J. (2015). Common and distinct neural correlates of personal and vicarious reward: A quantitative meta-analysis. NeuroImage, 112, 244253.Google Scholar
Morris, J. S., Frith, C. D., Perrett, D. I., Rowland, D., Young, A. W., Calder, A. J., & Dolan, R. J. (1996). A differential neural response in the human amygdala to fearful and happy facial expressions. Nature, 383(6603), 812815.Google Scholar
Moynihan, D. P., DeLeire, T., & Enami, K. (2015). A life worth living: Evidence on the relationship between prosocial values and happiness. The American Review of Public Administration, 45(3), 311326.Google Scholar
Nashiro, K., Sakaki, M., & Mather, M. (2012). Age differences in brain activity during emotion processing: Reflections of age-related decline or increased emotion regulation. Gerontology, 58(2), 156163.Google Scholar
Noonan, M. P., Mars, R. B., Sallet, J., Dunbar, R. I. M., & Fellows, L. K. (2018). The structural and functional brain networks that support human social networks. Behavioural Brain Research, 355, 1223.Google Scholar
Novembre, G., Zanon, M., & Silani, G. (2015). Empathy for social exclusion involves the sensory-discriminative component of pain: A within-subject fMRI study. Social Cognitive and Affective Neuroscience, 10(2), 153164.Google Scholar
Ochsner, K. N., Knierim, K., Ludlow, D. H., Hanelin, J., Ramachandran, T., Glover, G., & Mackey, S. C. (2004). Reflecting upon feelings: An fMRI study of neural systems supporting the attribution of emotion to self and other. Journal of Cognitive Neuroscience, 16(10), 17461772.Google Scholar
Onoda, K., Okamoto, Y., Nakashima, K. I., Nittono, H., Yoshimura, S., Yamawaki, S., Yamaguchi, S., & Ura, M. (2010). Does low self-esteem enhance social pain? The relationship between trait self-esteem and anterior cingulate cortex activation induced by ostracism. Social Cognitive and Affective Neuroscience, 5(4), 385391.Google Scholar
Park, S. A., Sestito, M., Boorman, E. D., & Dreher, J. C. (2019). Neural computations underlying strategic social decision-making in groups. Nature Communications, 10(1), 112.Google Scholar
Park, S. Q., Kahnt, T., Dogan, A., Strang, S., Fehr, E., & Tobler, P. N. (2017). A neural link between generosity and happiness. Nature Communications, 8(1), 110.Google Scholar
Parkinson, C., & Wheatley, T. (2015). The repurposed social brain. Trends in Cognitive Sciences, 19(3), 133141.Google Scholar
Perini, I., Gustafsson, P. A., Hamilton, J. P., Kämpe, R., Zetterqvist, M., & Heilig, M. (2018). The salience of self, not social pain, is encoded by dorsal anterior cingulate and insula. Scientific Reports, 8(1), 19.Google Scholar
Perry, A., & Shamay-Tsoory, S. (2013). Understanding emotional and cognitive empathy: A neuropsychological perspective. In Baron-Cohen, S., Tager-Flusberg, H., & Lombardo, M. V. (eds.), Understanding Other Minds: Perspectives from Developmental Social Neuroscience, pp. 178194. Oxford University Press.Google Scholar
Phillips, L. H., Bull, R., Allen, R., Insch, P., Burr, K., & Ogg, W. (2011). Lifespan aging and belief reasoning: Influences of executive function and social cue decoding. Cognition, 120(2), 236247.Google Scholar
Pitcher, D., & Ungerleider, L. G. (2021). Evidence for a third visual pathway specialized for social perception. Trends in Cognitive Sciences, 25(2), 100110.Google Scholar
Post, S. G. (2005). Altruism, happiness, and health: It’s good to be good. International Journal of Behavioral Medicine, 12(2), 6677.Google Scholar
Powell, J., Lewis, P. A., Roberts, N., Garcia-Finana, M., & Dunbar, R. I. (2012). Orbital prefrontal cortex volume predicts social network size: An imaging study of individual differences in humans. Proceedings of the Royal Society B: Biological Sciences, 279(1736), 21572162.Google Scholar
Reader, S. M., & Laland, K. N. (2002). Social intelligence, innovation, and enhanced brain size in primates. Proceedings of the National Academy of Sciences, 99(7), 44364441.Google Scholar
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3(2), 131141.Google Scholar
Roberts, S. G., Dunbar, R. I., Pollet, T. V., & Kuppens, T. (2009). Exploring variation in active network size: Constraints and ego characteristics. Social Networks, 31(2), 138146.Google Scholar
Rosati, A. G. (2017). Foraging cognition: Reviving the ecological intelligence hypothesis. Trends in Cognitive Sciences, 21(9), 691702.Google Scholar
Sawaguchi, T., & Kudo, H. (1990). Neocortical development and social structure in primates. Primates, 31(2), 283289.Google Scholar
Saxe, R., & Kanwisher, N. (2003). People thinking about thinking people: The role of the temporo-parietal junction in “theory of mind”. Neuroimage, 19(4), 18351842.Google Scholar
Saxe, R., & Powell, L. J. (2006). It’s the thought that counts: Specific brain regions for one component of theory of mind. Psychological Science, 17(8), 692699.Google Scholar
Schmidt, S. N., Fenske, S. C., Kirsch, P., & Mier, D. (2019). Nucleus accumbens activation is linked to salience in social decision making. European Archives of Psychiatry and Clinical Neuroscience, 269(6), 701712.Google Scholar
Schurz, M., Radua, J., Aichhorn, M., Richlan, F., & Perner, J. (2014). Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neuroscience & Biobehavioral Reviews, 42, 934.Google Scholar
Seyfarth, R. M., & Cheney, D. L. (2015). Social cognition. Animal Behaviour, 103, 191202.Google Scholar
Shanafelt, T. D., West, C., Zhao, X., Novotny, P., Kolars, J., Habermann, T., & Sloan, J. (2005). Relationship between increased personal well-being and enhanced empathy among internal medicine residents. Journal of General Internal Medicine, 20(7), 559564.Google Scholar
Singer, T., Seymour, B., O’doherty, J., Kaube, H., Dolan, R. J., & Frith, C. D. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303(5661), 11571162.Google Scholar
Singer, T., Seymour, B., O’Doherty, J. P., Stephan, K. E., Dolan, R. J., & Frith, C. D. (2006). Empathic neural responses are modulated by the perceived fairness of others. Nature, 439(7075), 466469.Google Scholar
Slaughter, V., Imuta, K., Peterson, C. C., & Henry, J. D. (2015). Meta‐analysis of theory of mind and peer popularity in the preschool and early school years. Child Development, 86(4), 11591174.Google Scholar
Somerville, L. H., Heatherton, T. F., & Kelley, W. M. (2006). Anterior cingulate cortex responds differentially to expectancy violation and social rejection. Nature Neuroscience, 9(8), 10071008.Google Scholar
Sparrow, E. P., Swirsky, L. T., Kudus, F., & Spaniol, J. (2021). Aging and altruism: A meta-analysis. Psychology and Aging, 36(1), 4956.Google Scholar
Sul, S., Kim, J., & Choi, I. (2013). Subjective well-being and hedonic editing: How happy people maximize joint outcomes of loss and gain. Journal of Happiness Studies, 14(4), 14091430.Google Scholar
Sul, S., Kim, J., & Choi, I. (2016). Subjective well-being, social buffering and hedonic editing in the quotidian. Cognition and Emotion, 30(6), 10631080.Google Scholar
Sul, S., Tobler, P. N., Hein, G., Leiberg, S., Jung, D., Fehr, E., & Kim, H. (2015). Spatial gradient in value representation along the medial prefrontal cortex reflects individual differences in prosociality. Proceedings of the National Academy of Sciences, 112(25), 78517856.Google Scholar
Sullivan, S., & Ruffman, T. (2004). Social understanding: How does it fare with advancing years? British Journal of Psychology, 95(1), 118.Google Scholar
Sutcliffe, A., Dunbar, R., Binder, J., & Arrow, H. (2012). Relationships and the social brain: Integrating psychological and evolutionary perspectives. British Journal of Psychology, 103(2), 149168.Google Scholar
Takeuchi, H., Taki, Y., Nouchi, R., Hashizume, H., Sassa, Y., Sekiguchi, A., Kotozaki, Y., Nakagawa, S., Nagase, T., Miyauchi, C. M., & Kawashima, R. (2014). Anatomical correlates of quality of life: Evidence from voxel‐based morphometry. Human Brain Mapping, 35(5), 18341846.Google Scholar
Thornton, M. A., Weaverdyck, M. E., & Tamir, D. I. (2019). The social brain automatically predicts others’ future mental states. Journal of Neuroscience, 39(1), 140148.Google Scholar
Todorov, A., & Engell, A. D. (2008). The role of the amygdala in implicit evaluation of emotionally neutral faces. Social Cognitive and Affective Neuroscience, 3(4), 303312.Google Scholar
Tomasello, M., & Moll, H. (2013). Why don’t apes understand false beliefs?. In Banaji, M. R. & Gelman, S. A. (eds.), Navigating the Social World: What Infants, Children, and Other Species Can Teach Us, pp. 8188. Oxford University Press.Google Scholar
Tusche, A., Böckler, A., Kanske, P., Trautwein, F. M., & Singer, T. (2016). Decoding the charitable brain: Empathy, perspective taking, and attention shifts differentially predict altruistic giving. Journal of Neuroscience, 36(17), 47194732.Google Scholar
Van Overwalle, F. (2011). A dissociation between social mentalizing and general reasoning. Neuroimage, 54(2), 15891599.Google Scholar
van Reekum, C. M., Urry, H. L., Johnstone, T., Thurow, M. E., Frye, C. J., Jackson, C. A., Schaefer, H. S., Alexander, A. L., & Davidson, R. J. (2007). Individual differences in amygdala and ventromedial prefrontal cortex activity are associated with evaluation speed and psychological well-being. Journal of Cognitive Neuroscience, 19(2), 237248.Google Scholar
Vinayak, S., & Judge, J. (2018). Resilience and empathy as predictors of psychological wellbeing among adolescents. International Journal of Health Sciences and Research, 8(4), 192200.Google Scholar
Von Der Heide, R., Vyas, G., & Olson, I. R. (2014). The social network-network: Size is predicted by brain structure and function in the amygdala and paralimbic regions. Social Cognitive and Affective Neuroscience, 9(12), 19621972.Google Scholar
Wang, Y., Metoki, A., Xia, Y., Zang, Y., He, Y., & Olson, I. R. (2021). A large-scale structural and functional connectome of social mentalizing. NeuroImage, 236, 118115.Google Scholar
Wei, M., Liao, K. Y. H., Ku, T. Y., & Shaffer, P. A. (2011). Attachment, self‐compassion, empathy, and subjective well‐being among college students and community adults. Journal of Personality, 79(1), 191221.Google Scholar
Weinstein, N., & Ryan, R. M. (2010). When helping helps: Autonomous motivation for prosocial behavior and its influence on well-being for the helper and recipient. Journal of Personality and Social Psychology, 98(2), 222244.Google Scholar
Wheeler, J. A., Gorey, K. M., & Greenblatt, B. (1998). The beneficial effects of volunteering for older volunteers and the people they serve: A meta-analysis. The International Journal of Aging and Human Development, 47(1), 6979.Google Scholar
Whiten, A., & Byrne, R. W. (1988). The Machiavellian intelligence hypotheses: Editorial. In Byrne, R. W. & Whiten, A. (eds.), Machiavellian intelligence: Social Expertise and the Evolution of Intellect in Monkeys, Apes, and Humans, pp. 19. Clarendon Press/Oxford University Press.Google Scholar
Woo, C. W., Koban, L., Kross, E., Lindquist, M. A., Banich, M. T., Ruzic, L., Andrews-Hanna, J. R., & Wager, T. D. (2014). Separate neural representations for physical pain and social rejection. Nature Communications, 5(1), 112.Google Scholar
Wrzus, C., Hänel, M., Wagner, J., & Neyer, F. J. (2013). Social network changes and life events across the life span: A meta-analysis. Psychological Bulletin, 139(1), 5380.Google Scholar
Wu, H., Luo, Y., & Feng, C. (2016). Neural signatures of social conformity: A coordinate-based activation likelihood estimation meta-analysis of functional brain imaging studies. Neuroscience & Biobehavioral Reviews, 71, 101111.Google Scholar
Xie, H., Karipidis, I. I., Howell, A., Schreier, M., Sheau, K. E., Manchanda, M. K., Ayub, R., Glover, G. H., Jung, M., Reiss, A. L., & Saggar, M. (2020). Finding the neural correlates of collaboration using a three-person fMRI hyperscanning paradigm. Proceedings of the National Academy of Sciences, 117(37), 2306623072.Google Scholar
Younger, J., Aron, A., Parke, S., Chatterjee, N., & Mackey, S. (2010). Viewing pictures of a romantic partner reduces experimental pain: Involvement of neural reward systems. PLoS ONE, 5(10), e13309.Google Scholar
Zink, C. F., Tong, Y., Chen, Q., Bassett, D. S., Stein, J. L., & Meyer-Lindenberg, A. (2008). Know your place: Neural processing of social hierarchy in humans. Neuron, 58(2), 273283.Google Scholar

References

Abdellaoui, A., Nivard, M. G., Hottenga, J. J., Fedko, I., Verweij, K. J. H., Baselmans, B. M. L., Ehli, E. A., Davies, G. E., Bartels, M., Boomsma, D. I., & Cacioppo, J. T. (2018). Predicting loneliness with polygenic scores of social, psychological and psychiatric traits. Genes, Brain and Behavior, 17(6). https://doi.org/10.1111/gbb.12472Google Scholar
Abdellaoui, A., Sanchez-Roige, S., Sealock, J., Treur, J. L., Dennis, J., Fontanillas, P., Elson, S., The 23andme Research Team, Nivard, M. G., Ip, H. F., van der Zee, M., Baselmans, B. M. L., Hottenga, J. J., Willemsen, G., Mosing, M., Lu, Y., Pedersen, N. L., Denys, D., Amin, N., … Boomsma, D. I. (2019). Phenome-wide investigation of health outcomes associated with genetic predisposition to loneliness. Human Molecular Genetics, 28(22), 38533865. https://doi:10.1093/hmg/ddz219Google Scholar
Apostolova, L. G., Risacher, S. L., Duran, T., Stage, E. C., Goukasian, N., West, J. D., Do, T. M., Grotts, J., Wilhalme, H., Nho, K., Phillips, M., Elashoff, D., & Saykin, A. J. (2018). Associations of the top 20 Alzheimer disease risk variants with brain amyloidosis. JAMA Neurology, 75(3), 328341. https://doi.org/10.1001/jamaneurol.2017.4198Google Scholar
Boomsma, D. I., Willemsen, G., Dolan, C. V., Hawkley, L. C., & Cacioppo, J. T. (2005). Genetic and environmental contributions to loneliness in adults: The Netherlands Twin Register study. Behavior Genetics, 35(6), 745752. https://doi.org/10.1007/s10519–005-6040-8Google Scholar
Boyle, P. A., Buchman, A. S., Barnes, L. L., & Bennett, D. A. (2010). Effect of a purpose in life on risk of incident Alzheimer disease and mild cognitive impairment in community-dwelling older persons. Archives of General Psychiatry, 67(3), 304310.Google Scholar
Branigan, A. R., McCallum, K. J., & Freese, J. (2013). Variation in the heritability of educational attainment: An international meta-analysis. Social Forces, 92(1), 109140. https://doi.org/10.1093/sf/sot076Google Scholar
Christakis, N. A., & Fowler, J. H. (2014). Friendship and natural selection. PNAS, 111 (supplement_3), 1079610801.Google Scholar
Chung, J., Wang, X., Maruyama, T., Ma, Y., Zhang, X., Mez, J., Sherva, R., Takeyama, H., Lunetta, K. L., Farrer, L. A., & Jun, G. R. (2018). Genome-wide association study of Alzheimer’s disease endophenotypes at prediagnosis stages. Alzheimer’s and Dementia, 14(5), 623633. https://doi.org/10.1016/j.jalz.2017.11.006Google Scholar
Cole, S. W. (2014). Human Social Genomics. PLoS Genetics, 10(8). https://doi.org/10.1371/journal.pgen.1004601Google Scholar
Cole, S. W. (2019). The Conserved transcriptional response to adversity. Current Opinion in Behavioral Sciences, 28, 3137. https://doi.org/10.1016/j.cobeha.2019.01.008Google Scholar
Cole, S. W., Hawkley, L. C., Arevalo, J. M., Sung, C. Y., Rose, R. M., & Cacioppo, J. T. (2007). Social regulation of gene expression in human leukocytes. Genome Biology, 8(9), R189. https://doi.org/10.1186/gb-2007-8-9-r189Google Scholar
Cole, S. W., Levine, M. E., Arevalo, J. M. G., Ma, J., Weir, D. R., & Crimmins, E. M. (2015). Loneliness, eudaimonia, and the human conserved transcriptional response to adversity. Psychoneuroendocrinology, 62, 1117. https://doi.org/10.1016/j.psyneuen.2015.07.001Google Scholar
Deary, I. J., & Johnson, W. (2010). Intelligence and education: Causal perceptions drive analytic processes and therefore conclusions. International Journal of Epidemiology, 39(5), 13621369. https://doi.org/10.1093/ije/dyq072Google Scholar
Desikan, R. S., Fan, C.-C., Wang, Y., Schork, A. J., Cabral, H. J., Cupples, L. A., Thompson, W. K., Besser, L., Kukull, W. A., Holland, D., Chen, C.-H., Brewer, J. B., Karow, D. S., Kauppi, K., Witoelar, A., Karch, C. M., Bonham, L. W., Yokoyama, J. S., Rosen, H. J., … Dale, A. M. (2017). Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score. PLoS Medicine, 14(3), e1002258.Google Scholar
Ferencz, B., Laukka, E. J., Welmer, A. K., Kalpouzos, G., Angleman, S., Keller, L., Graff, C., Lövdén, M., & Bäckman, L. (2014). The benefits of staying active in old age: Physical activity counteracts the negative influence of PICALM, BIN1, and CLU risk alleles on episodic memory functioning. Psychology and Aging, 29(2), 440449. https://doi.org/10.1037/a0035465Google Scholar
Fowler, J. H., Dawes, C. T., & Christakis, N. A. (2009). Model of genetic variation in human social networks. Proceedings of the National Academy of Sciences, 106(6), 17201724. https://doi.org/10.1073/pnas.0806746106Google Scholar
Fowler, J. H., Settle, J. E., & Christakis, N. A. (2011). Correlated genotypes in friendship networks. Proceedings of the National Academy of Sciences, 108(5), 19931997. https://doi.org/10.1073/pnas.1011687108Google Scholar
Fredrickson, B. L., Grewen, K. M., Coffey, K. A., Algoe, S. B., Firestine, A. M., Arevalo, J. M. G., & Cole, S. W. (2013). A functional genomic perspective on human well-being. Proceedings of the National Academy of Sciences, 110 (33), 1368413689. https://doi.org/10.1073/pnas.1305419110Google Scholar
Gao, J., Davis, L. K., Hart, A. B., Sanchez-Roige, S., Han, L., Cacioppo, J. T., & Palmer, A. A. (2017). Genome-wide association study of loneliness demonstrates a role for common variation. Neuropsychopharmacology, 42(4), 811821. https://doi.org/10.1038/npp.2016.197Google Scholar
Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., Holtzman, D. M., Jagust, W., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J. L., Montine, T., Phelps, C., Rankin, K. P., Rowe, C. C., Scheltens, P., Siemers, E., Snyder, H. M., … Silverberg, N. (2018). NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s and Dementia, 14(4), 535562. https://doi.org/10.1016/j.jalz.2018.02.018Google Scholar
Jiang, Y., Cui, M., Tian, W., Zhu, S., Chen, J., Suo, C., Liu, Z., Lu, M., Xu, K., Fan, M., Wang, J., Dong, Q., Ye, W., Jin, L., & Chen, X. (2021). Lifestyle, multi-omics features, and preclinical dementia among Chinese: The Taizhou Imaging Study. Alzheimer’s and Dementia. https://doi.org/10.1002/alz.12171Google Scholar
Kandel, D. B. (1978). Homophily, selection, and socialization in adolescent friendships. American Journal of Sociology, 84(2), 427436. https://doi.org/10.1086/226792Google Scholar
Kim, Y., Cole, S. W., Carver, C. S., Antoni, M. H., & Penedo, F. J. (2021). Only the lonely: Expression of proinflammatory genes through family cancer caregiving experiences. Psychosomatic Medicine, 83(2), 149156. https://doi.org/10.1097/PSY.0000000000000897Google Scholar
Kohrt, B. A., Worthman, C. M., Adhikari, R. P., Luitel, N. P., Arevalo, J. M. G., Ma, J., McCreath, H., Seeman, T. E., Crimmins, E. M., & Cole, S. W. (2016). Psychological resilience and the gene regulatory impact of posttraumatic stress in Nepali child soldiers. Proceedings of the National Academy of Sciences, 113(29), 81568161. https://doi.org/10.1073/pnas.1601301113Google Scholar
Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., Nguyen-Viet, T. A., Bowers, P., Sidorenko, J., Karlsson Linnér, R., Fontana, M. A., Kundu, T., Lee, C., Li, H., Li, R., Royer, R., Timshel, P. N., Walters, R. K., Willoughby, E. A., … Cesarini, D. (2018). Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nature Genetics, 50(8), 11121121.Google Scholar
Lee, S. H., Choi, I., Choi, E., Lee, M., Kwon, Y., Oh, B., & Cole, S. W. (2020). Psychological well-being and gene expression in Korean adults: The role of age. Psychoneuroendocrinology, 120, 104785. https://doi.org/10.1016/j.psyneuen.2020.104785Google Scholar
Lin, C.-H., Lin, E., and Lane, H.-Y., (2017) Genetic Biomarkers on age-related cognitive decline. Frontiers in Psychiatry 8. https://doi.org/10.3389/fpsyt.2017.00247Google Scholar
Martin, A. R., Gignoux, C. R., Walters, R. K., Wojcik, G. L., Neale, B. M., Gravel, S., Daly, M. J., Bustamante, C. D., & Kenny, E. E. (2017). Human demographic history impacts genetic risk prediction across diverse populations. American Journal of Human Genetics, 100(4), 635649. https://doi.org/10.1016/j.ajhg.2017.03.004Google Scholar
McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415444.Google Scholar
Mostafavi, H., Harpak, A., Agarwal, I., Conley, D., Pritchard, J. K., & Przeworski, M. (2020). Variable prediction accuracy of polygenic scores within an ancestry group. ELife, 9, e48376 https://doi.org/10.7554/eLife.48376Google Scholar
Mukherjee, S., Mez, J., Trittschuh, E., Saykin, A. J., Gibbons, L. E., Fardon, D. W., Wessels, M., Bauman, J., Moore, M., Choi, S.-E., Gross, A. L., Rich, J., Louden, D. K. N., Sanders, R. E., Grabowski, T. J., Bird, T. J., McCurry, S. M., Snitz, B. E., Kamboh, M. I., … Crane, P. K. (2020). Genetic data and cognitively defined late-onset Alzheimer’s disease subgroups. Molecular Psychiatry 25, 29422951. https://doi.org/10.1038/s41380-018-0298-8Google Scholar
Murray, D. R., Haselton, M. G., Fales, M., & Cole, S. W. (2019). Subjective social status and inflammatory gene expression. Health Psychology, 38(2), 182186. https://doi.org/10.1037/hea0000705Google Scholar
Nelson-Coffey, S. K., Fritz, M. M., Lyubomirsky, S., & Cole, S. W. (2017). Kindness in the blood: A randomized controlled trial of the gene regulatory impact of prosocial behavior. Psychoneuroendocrinology, 81, 813.Google Scholar
Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. A., Turley, P., Chen, G. B., Emilsson, V., Meddens, S. F. W., Oskarsson, S., Pickrell, J. K., Thom, K., Timshel, P., De Vlaming, R., Abdellaoui, A., Ahluwalia, T. S., Bacelis, J., Baumbach, C., … Benjamin, D. J. (2016). Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 533, 539542. https://doi.org/10.1038/nature17671Google Scholar
Raz, N., & Lustig, C. (2014). Genetic variants and cognitive aging: Destiny or a nudge? Psychology and Aging, 29(2), 359362. https://doi.org/10.1037/a0036893Google Scholar
Seeman, T., Merkin, S. S., Goldwater, D., & Cole, S. W. (2019). Intergenerational mentoring, eudaimonic well-being and gene regulation in older adults: A pilot study. Psychoneuroendocrinology, 111, 104468.Google Scholar
Slavich, G. M., & Cole, S. W. (2013). The emerging field of human social genomics. Clinical Psychological Science, 1(3), 331348. https://doi.org/10.1177/2167702613478594Google Scholar
Sloan, E. K., Capitanio, J. P., Tarara, R. P., Mendoza, S. P., Mason, W. A., & Cole, S. W. (2007). Social stress enhances sympathetic innervation of primate lymph nodes: Mechanisms and implications for viral pathogenesis. Journal of Neuroscience, 27(33), 88578865. https://doi.org/10.1523/JNEUROSCI.1247-07.2007Google Scholar
Thames, A. D., Irwin, M. R., Breen, E. C., & Cole, S. W. (2019). Experienced discrimination and racial differences in leukocyte gene expression. Psychoneuroendocrinology, 106, 277283. https://doi.org/10.1016/j.psyneuen.2019.04.016Google Scholar
Turkheimer, E., Haley, A., Waldron, M., D’Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14(6), 623628. https://doi.org/10.1046/j.0956-7976.2003.psci_1475.xGoogle Scholar
Uchida, Y., Kitayama, S., Akutsu, S., Park, J., & Cole, S. W. (2018). Optimism and the conserved transcriptional response to adversity. Health Psychology, 37(11), 10771080.Google Scholar
Waaktaar, T., & Torgersen, S. (2012). Genetic and environmental causes of variation in perceived loneliness in young people. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics, 159B(5), 580588. https://doi.org/10.1002/ajmg.b.32064Google Scholar
Wingo, T. S., Lah, J. J., Levey, A. I., & Cutler, D. J. (2012). Autosomal recessive causes likely in early-onset Alzheimer disease. Archives of Neurology, 69(1), 5964. https://doi.org/10.1001/archneurol.2011.221Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×