Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-06T23:59:23.803Z Has data issue: false hasContentIssue false

Chapter 11 - Origins of Individual Differences in Social Behavior and the Social Brain

from Part III - An Individual’s Cognitive Aging with Others: Key Findings, Issues, and Implications

Published online by Cambridge University Press:  28 September 2023

Jeanyung Chey
Affiliation:
Seoul National University
Get access

Summary

Humans are all different in how they behave and how their brains work in social contexts. This chapter reviews evidence regarding the origins of individual differences in social behavior and the social brain. It explores questions such as: How are genetic variations related to individual differences in social behavior and the social brain? How are environmental factors, such as socioeconomic status and early childhood experience, associated with individual differences in social behavior and the social brain? It also reviews how gene–environment interactions shape one’s social behavior and brain. Lastly, it highlights the critical role of adulthood experiences in social behavior and well-being in later life.

Type
Chapter
Information
Society within the Brain
How Social Networks Interact with Our Brain, Behavior and Health as We Age
, pp. 231 - 268
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, N. E., Epel, E. S., Castellazzo, G., & Ickovics, J. R. (2000). Relationship of subjective and objective social status with psychological and physiological functioning: Preliminary data in healthy white women. Health Psychology, 19(6), 586592.CrossRefGoogle ScholarPubMed
Ajrouch, K. J., Blandon, A. Y., & Antonucci, T. C. (2005). Social networks among men and women: The effects of age and socioeconomic status. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 60(6), S311S317.Google Scholar
Algoe, S. B., & Way, B. M. (2014). Evidence for a role of the oxytocin system, indexed by genetic variation in CD38, in the social bonding effects of expressed gratitude. Social Cognitive and Affective Neuroscience, 9(12), 18551861.CrossRefGoogle ScholarPubMed
Anderson, C., Kraus, M. W., Galinsky, A. D., & Keltner, D. (2012). The local-ladder effect: Social status and subjective well-being. Psychological Science, 23(7), 764771.Google Scholar
Andersson, L., & Stevens, N. (1993). Associations between early experiences with parents and well-being in old age. Journal of Gerontology, 48(3), P109P116.Google Scholar
Arias, N., Calvo, M. D., Benítez-Andrades, J. A., Álvarez, M. J., Alonso-Cortés, B., & Benavides, C. (2018). Socioeconomic status in adolescents: A study of its relationship with overweight and obesity and influence on social network configuration. International Journal of Environmental Research and Public Health, 15(9), 2014.CrossRefGoogle ScholarPubMed
Avinun, R., Ebstein, R. P., & Knafo, A. (2012). Human maternal behaviour is associated with arginine vasopressin receptor 1A gene. Biology Letters, 8(5), 894896.Google Scholar
Avinun, R., Israel, S., Shalev, I., Gritsenko, I., Bornstein, G., Ebstein, R. P., & Knafo, A. (2011). AVPR1A variant associated with preschoolers’ lower altruistic behavior. PLoS ONE, 6(9), e25274.Google Scholar
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2008). Oxytocin receptor (OXTR) and serotonin transporter (5-HTT) genes associated with observed parenting. Social Cognitive and Affective Neuroscience, 3(2), 128134.Google Scholar
Bandura, A. (1993). Perceived self-efficacy in cognitive development and functioning. Educational Psychologist, 28(2), 117148.Google Scholar
Bartz, J., Simeon, D., Hamilton, H., Kim, S., Crystal, S., Braun, A., Vicens, V., & Hollander, E. (2011). Oxytocin can hinder trust and cooperation in borderline personality disorder. Social Cognitive and Affective Neuroscience, 6(5), 556563.Google Scholar
Bartz, J. A., Zaki, J., Bolger, N., & Ochsner, K. N. (2011). Social effects of oxytocin in humans: Context and person matter. Trends in Cognitive Sciences, 15(7), 301309.Google Scholar
Baum, A., Garofalo, J. P., & Yali, A. M. (1999). Socioeconomic status and chronic stress: Does stress account for SES effects on health? Annals of the New York Academy of Sciences, 896(1), 131144.Google Scholar
Ben-Shlomo, Y., & Kuh, D. (2002). A life course approach to chronic disease epidemiology: Conceptual models, empirical challenges and interdisciplinary perspectives. International Journal of Epidemiology, 31(2), 285293.CrossRefGoogle ScholarPubMed
Bernhard, R. M., Chaponis, J., Siburian, R., Gallagher, P., Ransohoff, K., Wikler, D., Perlis, R. H., & Greene, J. D. (2016). Variation in the oxytocin receptor gene (OXTR) is associated with differences in moral judgment. Social Cognitive and Affective Neuroscience, 11(12), 18721881.Google Scholar
Bielderman, A., de Greef, M. H., Krijnen, W. P., & van der Schans, C. P. (2015). Relationship between socioeconomic status and quality of life in older adults: A path analysis. Quality of Life Research, 24(7), 16971705.Google Scholar
Bost, K. K., Vaughn, B. E., Washington, W. N., Cielinski, K. L., & Bradbard, M. R. (1998). Social competence, social support, and attachment: Demarcation of construct domains, measurement, and paths of influence for preschool children attending Head Start. Child Development, 69(1), 192218.Google Scholar
Bradley, B., Davis, T. A., Wingo, A. P., Mercer, K. B., & Ressler, K. J. (2013). Family environment and adult resilience: Contributions of positive parenting and the oxytocin receptor gene. European Journal of Psychotraumatology, 4(1), 21659.Google Scholar
Brewster, P. W., Melrose, R. J., Marquine, M. J., Johnson, J. K., Napoles, A., MacKay-Brandt, A., Farias, S., Reed, B., Mungas, D. (2014). Life experience and demographic influences on cognitive function in older adults. Neuropsychology, 28(6), 846858.Google Scholar
Brito, N. H., & Noble, K. G. (2014). Socioeconomic status and structural brain development. Frontiers in Neuroscience, 8, 276.Google Scholar
Butterworth, P., Cherbuin, N., Sachdev, P., & Anstey, K. J. (2012). The association between financial hardship and amygdala and hippocampal volumes: Results from the PATH through life project. Social Cognitive and Affective Neuroscience, 7(5), 548556.CrossRefGoogle ScholarPubMed
Calkins, S. D., Smith, C. L., Gill, K. L., & Johnson, M. C. (1998). Maternal interactive style across contexts: Relations to emotional, behavioral and physiological regulation during toddlerhood. Social Development, 7(3), 350369.Google Scholar
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., McClay, J., Mill, J., Martin, J., Braithwaite, A., & Poulton, R. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301(5631), 386389.Google Scholar
Chen, F. S., Barth, M., Johnson, S. L., Gotlib, I. H., & Johnson, S. C. (2011). Oxytocin receptor (OXTR) polymorphisms and attachment in human infants. Frontiers in Psychology, 2, 200.Google Scholar
Cohen, S., Janicki‐Deverts, D., Chen, E., & Matthews, K. A. (2010). Childhood socioeconomic status and adult health. Annals of the New York Academy of Sciences, 1186(1), 3755.Google Scholar
Cohn, D. A. (1990). Child‐mother attachment of six‐year‐olds and social competence at school. Child Development, 61(1), 152162.Google Scholar
Cohodes, E. M., Kitt, E. R., Baskin‐Sommers, A., & Gee, D. G. (2021). Influences of early‐life stress on frontolimbic circuitry: Harnessing a dimensional approach to elucidate the effects of heterogeneity in stress exposure. Developmental Psychobiology, 63(2), 153172.CrossRefGoogle ScholarPubMed
Coleman, P. K. (2003). Perceptions of parent‐child attachment, social self‐efficacy, and peer relationships in middle childhood. Infant and Child Development: An International Journal of Research and Practice, 12(4), 351368.Google Scholar
Conger, R. D., & Donnellan, M. B. (2007). An interactionist perspective on the socioeconomic context of human development. Annual Review of Psychology, 58, 175199.Google Scholar
Conger, R. D., Wallace, L. E., Sun, Y., Simons, R. L., McLoyd, V. C., & Brody, G. H. (2002). Economic pressure in African American families: A replication and extension of the family stress model. Developmental Psychology, 38(2), 179193.Google Scholar
Corcoran, M., & McNulty, M. (2018). Examining the role of attachment in the relationship between childhood adversity, psychological distress and subjective well-being. Child Abuse & Neglect, 76, 297309.Google Scholar
Crandall, A., Magnusson, B. M., Novilla, M. L. B., Novilla, L. K. B., & Dyer, W. J. (2017). Family financial stress and adolescent sexual risk-taking: The role of self-regulation. Journal of Youth and Adolescence, 46(1), 4562.CrossRefGoogle ScholarPubMed
Crawford, K. M., Choi, K., Davis, K. A., Zhu, Y., Soare, T. W., Smith, A. D. A. C., Germine, L., & Dunn, E. C. (2022). Exposure to early childhood maltreatment and its effect over time on social cognition. Development and Psychopathology, 34(1), 409419.Google Scholar
Cummings, E. M., & Zahn-Waxler, C. (1992). Emotions and the socialization of aggression: Adults’ angry behavior and children’s arousal and aggression. In Socialization and Aggression, pp. 6184. Springer.Google Scholar
Cutting, A. L., & Dunn, J. (1999). Theory of mind, emotion understanding, language, and family background: Individual differences and interrelations. Child Development, 70(4), 853865.CrossRefGoogle ScholarPubMed
Dannlowski, U., Kugel, H., Grotegerd, D., Redlich, R., Opel, N., Dohm, K., Zaremba, D., Grögler, A., Schwieren, J., Suslow, T., Ohrmann, P., Bauer, J., Krug, A., Kircher, T., Jansen, A., Domschke, K., Hohoff, C., Zwitserlood, P., Heinrichs, M., … Baune, B. T. (2016). Disadvantage of social sensitivity: Interaction of oxytocin receptor genotype and child maltreatment on brain structure. Biological Psychiatry, 80(5), 398405.CrossRefGoogle ScholarPubMed
Dawson, G., Frey, K., Panagiotides, H., Yamada, E., Hessl, D., & Osterling, J. (1999). Infants of depressed mothers exhibit atypical frontal electrical brain activity during interactions with mother and with a familiar, nondepressed adult. Child Development, 70(5), 10581066.Google Scholar
Dawson, G., Klinger, L. G., Panagiotides, H., Hill, D., & Spieker, S. (1992). Frontal lobe activity and affective behavior of infants of mothers with depressive symptoms. Child Development, 63(3), 725737.Google Scholar
De Dreu, C. K., Greer, L. L., Handgraaf, M. J., Shalvi, S., Van Kleef, G. A., Baas, M., Ten Velden, F. S., Van Dijk, E., & Feith, S. W. (2010). The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among humans. Science, 328(5984), 14081411.Google Scholar
Dunn, J., Brown, J., & Beardsall, L. (1991). Family talk about feeling states and children’s later understanding of others’ emotions. Developmental Psychology, 27(3), 448455.Google Scholar
Ebert, S., Peterson, C., Slaughter, V., & Weinert, S. (2017). Links among parents’ mental state language, family socioeconomic status, and preschoolers’ theory of mind development. Cognitive Development, 44, 3248.Google Scholar
Ebner, N. C., Lin, T., Muradoglu, M., Weir, D. H., Plasencia, G. M., Lillard, T. S., Pournajafi-Nazarloo, H., Cohen, R. A., Sue Carter, C., & Connelly, J. J. (2019). Associations between oxytocin receptor gene (OXTR) methylation, plasma oxytocin, and attachment across adulthood. International Journal of Psychophysiology, 136, 2232.CrossRefGoogle ScholarPubMed
Ein-Dor, T., Verbeke, W. J., Mokry, M., & Vrtička, P. (2018). Epigenetic modification of the oxytocin and glucocorticoid receptor genes is linked to attachment avoidance in young adults. Attachment & Human Development, 20(4), 439454.CrossRefGoogle Scholar
Enge, S., Mothes, H., Fleischhauer, M., Reif, A., & Strobel, A. (2017). Genetic variation of dopamine and serotonin function modulates the feedback-related negativity during altruistic punishment. Scientific Reports, 7(1), 112.CrossRefGoogle ScholarPubMed
Ensminger, M.E., & Fothergill, K.E. (2003). A decade of measuring SES: What it tells us and where to go from here. In Bornstein, M.H. & Bradley, R.H. (eds.), Socioeconomic Status, Parenting and Child Development, pp. 13–2). Lawrence Erlbaum Associates.Google Scholar
Ensor, R., & Hughes, C. (2008). Content or connectedness? Mother–child talk and early social understanding. Child Development, 79(1), 201216.Google Scholar
Ensor, R., Spencer, D., & Hughes, C. (2011). “You feel sad?” Emotion understanding mediates effects of verbal ability and mother–child mutuality on prosocial behaviors: Findings from 2 years to 4 years. Social Development, 20(1), 93110.Google Scholar
Fagot, B. I. (1997). Attachment, parenting, and peer interactions of toddler children. Developmental Psychology, 33(3), 489499.Google Scholar
Fan, Y., Herrera‐Melendez, A. L., Pestke, K., Feeser, M., Aust, S., Otte, C., Pruessner, J. C., Böker, H., Bajbouj, M., & Grimm, S. (2014). Early life stress modulates amygdala‐prefrontal functional connectivity: Implications for oxytocin effects. Human Brain Mapping, 35(10), 53285339.Google Scholar
Farber, M. J., Romer, A. L., Kim, M. J., Knodt, A. R., Elsayed, N. M., Williamson, D. E., & Hariri, A. R. (2018). Paradoxical associations between familial affective responsiveness, stress, and amygdala reactivity. Emotion, 19(4), 645654.Google Scholar
Farley, J. P., & Kim-Spoon, J. (2017). Parenting and adolescent self-regulation mediate between family socioeconomic status and adolescent adjustment. The Journal of Early Adolescence, 37(4), 502524.Google Scholar
Finger, B., Eiden, R. D., Edwards, E. P., Leonard, K. E., & Kachadourian, L. (2010). Marital aggression and child peer competence: A comparison of three conceptual models. Personal Relationships, 17(3), 357376.Google Scholar
Fischer, C. S. (1982). To Dwell Among Friends: Personal Networks in Town and City. University of Chicago Press.Google Scholar
Ford, E., Clark, C., & Stansfeld, S. A. (2011). The influence of childhood adversity on social relations and mental health at mid-life. Journal of Affective Disorders, 133(1–2), 320327.Google Scholar
Fujisawa, T. X., Nishitani, S., Takiguchi, S., Shimada, K., Smith, A. K., & Tomoda, A. (2019). Oxytocin receptor DNA methylation and alterations of brain volumes in maltreated children. Neuropsychopharmacology, 44(12), 20452053.Google Scholar
Furman, D. J., Chen, M. C., & Gotlib, I. H. (2011). Variant in oxytocin receptor gene is associated with amygdala volume. Psychoneuroendocrinology, 36(6), 891897.Google Scholar
Gallo, L. C., Bogart, L. M., Vranceanu, A. M., & Matthews, K. A. (2005). Socioeconomic status, resources, psychological experiences, and emotional responses: A test of the reserve capacity model. Journal of Personality and Social Psychology, 88(2), 386399.Google Scholar
Gartland, D., Riggs, E., Muyeen, S., Giallo, R., Afifi, T. O., MacMillan, H., Herrman, H., Bulford, E., & Brown, S. J. (2019). What factors are associated with resilient outcomes in children exposed to social adversity? A systematic review. BMJ Open, 9(4), e024870.CrossRefGoogle ScholarPubMed
Gärtner, A., Strobel, A., Reif, A., Lesch, K. P., & Enge, S. (2018). Genetic variation in serotonin function impacts on altruistic punishment in the ultimatum game: A longitudinal approach. Brain and Cognition, 125, 3744.Google Scholar
Gee, D. G. (2016). Sensitive periods of emotion regulation: Influences of parental care on frontoamygdala circuitry and plasticity. In Rutherford, H. J. V. & Mayes, L. C. (eds.), Maternal Brain Plasticity: Preclinical and Human Research and Implications for Intervention, pp. 87110. Jossey-Bass/Wiley.Google Scholar
Gee, D. G., Gabard-Durnam, L. J., Flannery, J., Goff, B., Humphreys, K. L., Telzer, E. H., Hare, T. A., Bookheimer, S. Y., & Tottenham, N. (2013). Early developmental emergence of human amygdala–prefrontal connectivity after maternal deprivation. Proceedings of the National Academy of Sciences, 110(39), 1563815643.Google Scholar
Gee, D. G., Humphreys, K. L., Flannery, J., Goff, B., Telzer, E. H., Shapiro, M., Hare, T. A., Bookheimer, S. Y., & Tottenham, N. (2013). A developmental shift from positive to negative connectivity in human amygdala–prefrontal circuitry. Journal of Neuroscience, 33(10), 45844593.Google Scholar
Germine, L., Dunn, E. C., McLaughlin, K. A., & Smoller, J. W. (2015). Childhood adversity is associated with adult theory of mind and social affiliation, but not face processing. PLoS ONE, 10(6), e0129612.Google Scholar
Gianaros, P. J., Horenstein, J. A., Cohen, S., Matthews, K. A., Brown, S. M., Flory, J. D., Critchley, H. D., Manuck, S. B., & Hariri, A. R. (2007). Perigenual anterior cingulate morphology covaries with perceived social standing. Social Cognitive and Affective Neuroscience, 2(3), 161173.Google Scholar
Gianaros, P. J., Horenstein, J. A., Hariri, A. R., Sheu, L. K., Manuck, S. B., Matthews, K. A., & Cohen, S. (2008). Potential neural embedding of parental social standing. Social Cognitive and Affective Neuroscience, 3(2), 9196.Google Scholar
Greenfield, E. A., & Moorman, S. M. (2019). Childhood socioeconomic status and later life cognition: Evidence from the Wisconsin Longitudinal Study. Journal of Aging and Health, 31(9), 15891615.Google Scholar
Gunnar, M. R. (2000). Early adversity and the development of stress reactivity and regulation. In Nelson, C. A. (ed.), The Minnesota Symposia on Child Psychology, Vol. 31. The Effects of Early Adversity on Neurobehavioral Development (pp. 163200). Lawrence Erlbaum Associates.Google Scholar
Haas, B. W., Filkowski, M. M., Cochran, R. N., Denison, L., Ishak, A., Nishitani, S., & Smith, A. K. (2016). Epigenetic modification of OXT and human sociability. Proceedings of the National Academy of Sciences, 113(27), E3816E3823.Google Scholar
Hanson, J. L., Chandra, A., Wolfe, B. L., & Pollak, S. D. (2011). Association between income and the hippocampus. PLoS ONE, 6(5), e18712.CrossRefGoogle ScholarPubMed
Hanson, J. L., Hair, N., Shen, D. G., Shi, F., Gilmore, J. H., Wolfe, B. L., & Pollak, S. D. (2013). Family poverty affects the rate of human infant brain growth. PLoS ONE, 8(12), e80954.Google Scholar
Hanson, J. L., Nacewicz, B. M., Sutterer, M. J., Cayo, A. A., Schaefer, S. M., Rudolph, K. D., Shirtcliff, E. A., Pollak, S. D., & Davidson, R. J. (2015). Behavioral problems after early life stress: Contributions of the hippocampus and amygdala. Biological Psychiatry, 77(4), 314323.Google Scholar
Hardy, D. F., Power, T. G., & Jaedicke, S. (1993). Examining the relation of parenting to children’s coping with everyday stress. Child Development, 64(6), 18291841.Google Scholar
Hariri, A. R., & Holmes, A. (2006). Genetics of emotional regulation: The role of the serotonin transporter in neural function. Trends in Cognitive Sciences, 10(4), 182191.Google Scholar
Hariri, A. R., Mattay, V. S., Tessitore, A., Kolachana, B., Fera, F., Goldman, D., Egan, M. F., & Weinberger, D. R. (2002). Serotonin transporter genetic variation and the response of the human amygdala. Science, 297(5580), 400403.Google Scholar
Heinz, A., Braus, D. F., Smolka, M. N., Wrase, J., Puls, I., Hermann, D., Klein, S., Grüsser, S. M., Flor, H., Schumann, G., Mann, K., & Büchel, C. (2005). Amygdala–prefrontal coupling depends on a genetic variation of the serotonin transporter. Nature Neuroscience, 8(1), 2021.Google Scholar
Herd, T., King-Casas, B., & Kim-Spoon, J. (2020). Developmental changes in emotion regulation during adolescence: Associations with socioeconomic risk and family emotional context. Journal of Youth and Adolescence, 49(7), 15451557.CrossRefGoogle ScholarPubMed
Hiraoka, D., Nishitani, S., Shimada, K., Kasaba, R., Fujisawa, T. X., & Tomoda, A. (2021). Epigenetic modification of the oxytocin gene is associated with gray matter volume and trait empathy in mothers. Psychoneuroendocrinology, 123, 105026.Google Scholar
Hostinar, C. E., Cicchetti, D., & Rogosch, F. A. (2014). Oxytocin receptor gene polymorphism, perceived social support, and psychological symptoms in maltreated adolescents. Development and Psychopathology, 26(2), 465477.Google Scholar
House, J. S., Landis, K. R., & Umberson, D. (1988). Social relationships and health. Science, 241(4865), 540545.Google Scholar
Huth‐Bocks, A. C., Levendosky, A. A., Bogat, G. A., & Von Eye, A. (2004). The impact of maternal characteristics and contextual variables on infant–mother attachment. Child Development, 75(2), 480496.CrossRefGoogle ScholarPubMed
Huxhold, O., Miche, M., & Schüz, B. (2014). Benefits of having friends in older ages: Differential effects of informal social activities on well-being in middle-aged and older adults. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 69(3), 366375.Google Scholar
Inoue, H., Yamasue, H., Tochigi, M., Abe, O., Liu, X., Kawamura, Y., Takei, K., Suga, M., Yamada, H., Rogers, M. A., Aoki, S., Sasaki, T., & Kasai, K. (2010). Association between the oxytocin receptor gene and amygdalar volume in healthy adults. Biological Psychiatry, 68(11), 10661072.Google Scholar
Israel, S., Lerer, E., Shalev, I., Uzefovsky, F., Riebold, M., Laiba, E., Bachner-Melman, R., Maril, A., Bornstein, G., Knafo, A., & Ebstein, R. P. (2009). The oxytocin receptor (OXTR) contributes to prosocial fund allocations in the dictator game and the social value orientations task. PLoS ONE, 4(5), e5535.Google Scholar
Javanbakht, A., King, A. P., Evans, G. W., Swain, J. E., Angstadt, M., Phan, K. L., & Liberzon, I. (2015). Childhood poverty predicts adult amygdala and frontal activity and connectivity in response to emotional faces. Frontiers in Behavioral Neuroscience, 9, 154.Google Scholar
Kaufman, J., Yang, B. Z., Douglas-Palumberi, H., Houshyar, S., Lipschitz, D., Krystal, J. H., & Gelernter, J. (2004). Social supports and serotonin transporter gene moderate depression in maltreated children. Proceedings of the National Academy of Sciences, 101(49), 1731617321.Google Scholar
Kelly, P. A., Viding, E., Wallace, G. L., Schaer, M., De Brito, S. A., Robustelli, B., & McCrory, E. J. (2013). Cortical thickness, surface area, and gyrification abnormalities in children exposed to maltreatment: Neural markers of vulnerability? Biological Psychiatry, 74(11), 845852.Google Scholar
Kim, P., Evans, G. W., Angstadt, M., Ho, S. S., Sripada, C. S., Swain, J. E., Liberzon, I., & Phan, K. L. (2013). Effects of childhood poverty and chronic stress on emotion regulatory brain function in adulthood. Proceedings of the National Academy of Sciences, 110(46), 1844218447.Google Scholar
Kim, H. S., Sherman, D. K., Sasaki, J. Y., Xu, J., Chu, T. Q., Ryu, C., Suh, E. M., Graham, K., & Taylor, S. E. (2010). Culture, distress, and oxytocin receptor polymorphism (OXTR) interact to influence emotional support seeking. Proceedings of the National Academy of Sciences, 107(36), 1571715721.Google Scholar
Knafo, A., Israel, S., Darvasi, A., Bachner‐Melman, R., Uzefovsky, F., Cohen, L., Feldman, E., Lerer, E., Laiba, E., Raz, Y., Nemanov, L., Gritsenko, I., Dina, C., Agam, G., Dean, B., Bornstein, G., & Ebstein, R. P. (2008). Individual differences in allocation of funds in the dictator game associated with length of the arginine vasopressin 1a receptor RS3 promoter region and correlation between RS3 length and hippocampal mRNA. Genes, Brain and Behavior, 7(3), 266275.Google Scholar
Kobayashi, L. C., Glymour, M. M., Kahn, K., Payne, C. F., Wagner, R. G., Montana, L., Mateen, F. J., Tollman, S. M., & Berkman, L. F. (2017). Childhood deprivation and later-life cognitive function in a population-based study of older rural South Africans. Social Science & Medicine, 190, 2028.Google Scholar
Kogan, A., Saslow, L. R., Impett, E. A., Oveis, C., Keltner, D., & Saturn, S. R. (2011). Thin-slicing study of the oxytocin receptor (OXTR) gene and the evaluation and expression of the prosocial disposition. Proceedings of the National Academy of Sciences, 108(48), 1918919192.Google Scholar
Kok, R., Thijssen, S., Bakermans-Kranenburg, M. J., Jaddoe, V. W., Verhulst, F. C., White, T., van IJzendoorn, M. H., & Tiemeier, H. (2015). Normal variation in early parental sensitivity predicts child structural brain development. Journal of the American Academy of Child & Adolescent Psychiatry, 54(10), 824831.Google Scholar
Kopala‐Sibley, D. C., Cyr, M., Finsaas, M. C., Orawe, J., Huang, A., Tottenham, N., & Klein, D. N. (2020). Early childhood parenting predicts late childhood brain functional connectivity during emotion perception and reward processing. Child Development, 91(1), 110128.Google Scholar
Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435(7042), 673676.Google Scholar
Kraus, M. W., Côté, S., & Keltner, D. (2010). Social class, contextualism, and empathic accuracy. Psychological Science, 21(11), 17161723.CrossRefGoogle ScholarPubMed
Kraus, M. W., Piff, P. K., Mendoza-Denton, R., Rheinschmidt, M. L., & Keltner, D. (2012). Social class, solipsism, and contextualism: How the rich are different from the poor. Psychological Review, 119(3), 546572.Google Scholar
Krause, N., & Borawski-Clark, E. (1995). Social class differences in social support among older adults. The Gerontologist, 35(4), 498508.Google Scholar
Krol, K. M., Puglia, M. H., Morris, J. P., Connelly, J. J., & Grossmann, T. (2019). Epigenetic modification of the oxytocin receptor gene is associated with emotion processing in the infant brain. Developmental Cognitive Neuroscience, 37, 100648.Google Scholar
Ladd, G. W., & Pettit, G. S. (2002). Parenting and the development of children’s peer relationships. In Bornstein, M. H. (ed.), Handbook of Parenting: Practical Issues in Parenting, pp. 269309. Lawrence Erlbaum Associates.Google Scholar
Laursen, H. R., Siebner, H. R., Haren, T., Madsen, K., Grønlund, R., Hulme, O., & Henningsson, S. (2014). Variation in the oxytocin receptor gene is associated with behavioral and neural correlates of empathic accuracy. Frontiers in Behavioral Neuroscience, 8, 423.Google Scholar
Lawson, G. M., Camins, J. S., Wisse, L., Wu, J., Duda, J. T., Cook, P. A., Gee, J. C., & Farah, M. J. (2017). Childhood socioeconomic status and childhood maltreatment: Distinct associations with brain structure. PLoS ONE, 12(4), e0175690.Google Scholar
Leerkes, E. M., Su, J., Calkins, S., Henrich, V. C., & Smolen, A. (2017). Variation in mothers’ arginine vasopressin receptor 1a and dopamine receptor D4 genes predicts maternal sensitivity via social cognition. Genes, Brain and Behavior, 16(2), 233240.CrossRefGoogle ScholarPubMed
Li, J., Zhao, Y., Li, R., Broster, L. S., Zhou, C., & Yang, S. (2015). Association of oxytocin receptor gene (OXTR) rs53576 polymorphism with sociality: A meta-analysis. PLoS ONE, 10(6), e0131820.Google Scholar
Liberzon, I., Ma, S. T., Okada, G., Shaun Ho, S., Swain, J. E., & Evans, G. W. (2015). Childhood poverty and recruitment of adult emotion regulatory neurocircuitry. Social Cognitive and Affective Neuroscience, 10(11), 15961606.Google Scholar
Liu, Y., & Lachman, M. E. (2019). Socioeconomic status and parenting style from childhood: Long-term effects on cognitive function in middle and later adulthood. The Journals of Gerontology: Series B, 74(6), e13e24.Google Scholar
Liu, J. J., Lou, F., Lavebratt, C., & Forsell, Y. (2015). Impact of childhood adversity and vasopressin receptor 1a variation on social interaction in adulthood: A cross-sectional study. PLoS ONE, 10(8), e0136436.Google Scholar
Luby, J., Belden, A., Botteron, K., Marrus, N., Harms, M. P., Babb, C., Nishino, T., & Barch, D. (2013). The effects of poverty on childhood brain development: The mediating effect of caregiving and stressful life events. JAMA pediatrics, 167(12), 11351142.Google Scholar
Luke, N., & Banerjee, R. (2013). Differentiated associations between childhood maltreatment experiences and social understanding: A meta-analysis and systematic review. Developmental Review, 33(1), 128.Google Scholar
Lyu, J., & Burr, J. A. (2016). Socioeconomic status across the life course and cognitive function among older adults: An examination of the latency, pathways, and accumulation hypotheses. Journal of Aging and Health, 28(1), 4067.CrossRefGoogle ScholarPubMed
Main, M., & Weston, D. R. (1981). The quality of the toddler’s relationship to mother and to father: Related to conflict behavior and the readiness to establish new relationships. Child Development, 52(3), 932940.Google Scholar
Manstead, A. S. (2018). The psychology of social class: How socioeconomic status impacts thought, feelings, and behaviour. British Journal of Social Psychology, 57(2), 267291.CrossRefGoogle ScholarPubMed
Matsudaira, I., Yokota, S., Hashimoto, T., Takeuchi, H., Asano, K., Asano, M., Sassa, Y., Taki, Y., & Kawashima, R. (2016). Parental praise correlates with posterior insular cortex gray matter volume in children and adolescents. PLoS ONE, 11(4), e0154220.Google Scholar
Mazur, J., Malkowska-Szkutnik, A., & Tabak, I. (2014). Changes in family socio-economic status as predictors of self-efficacy in 13-year-old Polish adolescents. International Journal of Public Health, 59(1), 107115.Google Scholar
McCrory, C., Dooley, C., Layte, R., & Kenny, R. A. (2015). The lasting legacy of childhood adversity for disease risk in later life. Health Psychology, 34(7), 687696.Google Scholar
McLaughlin, K. A., Peverill, M., Gold, A. L., Alves, S., & Sheridan, M. A. (2015). Child maltreatment and neural systems underlying emotion regulation. Journal of the American Academy of Child & Adolescent Psychiatry, 54(9), 753762.Google Scholar
McLaughlin, K. A., Sheridan, M. A., Winter, W., Fox, N. A., Zeanah, C. H., & Nelson, C. A. (2014). Widespread reductions in cortical thickness following severe early-life deprivation: A neurodevelopmental pathway to attention-deficit/hyperactivity disorder. Biological Psychiatry, 76(8), 629638.Google Scholar
McQuaid, R. J., McInnis, O. A., Stead, J. D., Matheson, K., & Anisman, H. (2013). A paradoxical association of an oxytocin receptor gene polymorphism: Early-life adversity and vulnerability to depression. Frontiers in Neuroscience, 7, 128.Google Scholar
Mehta, M. A., Golembo, N. I., Nosarti, C., Colvert, E., Mota, A., Williams, S. C., Rutter, M., & Sonuga‐Barke, E. J. (2009). Amygdala, hippocampal and corpus callosum size following severe early institutional deprivation: The English and Romanian Adoptees study pilot. Journal of Child Psychology and Psychiatry, 50(8), 943951.Google Scholar
Meins, E., Fernyhough, C., Russell, J., & Clark‐Carter, D. (1998). Security of attachment as a predictor of symbolic and mentalising abilities: A longitudinal study. Social Development, 7(1), 124.Google Scholar
Meins, E., Fernyhough, C., Wainwright, R., Das Gupta, M., Fradley, E., & Tuckey, M. (2002). Maternal mind–mindedness and attachment security as predictors of theory of mind understanding. Child Development, 73(6), 17151726.Google Scholar
Melkman, E. P. (2017). Childhood adversity, social support networks and well-being among youth aging out of care: An exploratory study of mediation. Child Abuse & Neglect, 72, 8597.Google Scholar
Meyer-Lindenberg, A., Kolachana, B., Gold, B., Olsh, A., Nicodemus, K. K., Mattay, V., Dean, M., & Weinberger, D. R. (2009). Genetic variants in AVPR1A linked to autism predict amygdala activation and personality traits in healthy humans. Molecular Psychiatry, 14(10), 968975.Google Scholar
Miller, J. G., Kahle, S., & Hastings, P. D. (2015). Roots and benefits of costly giving: Children who are more altruistic have greater autonomic flexibility and less family wealth. Psychological Science, 26(7), 10381045.Google Scholar
Montagrin, A., Saiote, C., & Schiller, D. (2018). The social hippocampus. Hippocampus, 28(9), 672679.Google Scholar
Moons, W. G., Way, B. M., & Taylor, S. E. (2014). Oxytocin and vasopressin receptor polymorphisms interact with circulating neuropeptides to predict human emotional reactions to stress. Emotion, 14(3), 562572.Google Scholar
Morris, A. S., Silk, J. S., Steinberg, L., Myers, S. S., & Robinson, L. R. (2007). The role of the family context in the development of emotion regulation. Social Development, 16(2), 361388.CrossRefGoogle ScholarPubMed
Moulson, M. C., Fox, N. A., Zeanah, C. H., & Nelson, C. A. (2009). Early adverse experiences and the neurobiology of facial emotion processing. Developmental Psychology, 45(1), 1730.Google Scholar
Muscatell, K. A., Morelli, S. A., Falk, E. B., Way, B. M., Pfeifer, J. H., Galinsky, A. D., Lieberman, M. D., Dapretto, M., & Eisenberger, N. I. (2012). Social status modulates neural activity in the mentalizing network. Neuroimage, 60(3), 17711777.Google Scholar
Nishina, K., Takagishi, H., Takahashi, H., Sakagami, M., & Inoue-Murayama, M. (2019). Association of polymorphism of arginine-vasopressin receptor 1A (AVPR1a) gene with trust and reciprocity. Frontiers in Human Neuroscience, 13, 230.Google Scholar
Nishitani, S., Ikematsu, K., Takamura, T., Honda, S., Yoshiura, K. I., & Shinohara, K. (2017). Genetic variants in oxytocin receptor and arginine-vasopressin receptor 1A are associated with the neural correlates of maternal and paternal affection towards their child. Hormones and Behavior, 87, 4756.Google Scholar
Noble, K. G., Houston, S. M., Kan, E., & Sowell, E. R. (2012). Neural correlates of socioeconomic status in the developing human brain. Developmental Science, 15(4), 516527.Google Scholar
Oshio, T., Umeda, M., & Kawakami, N. (2013). Childhood adversity and adulthood subjective well-being: Evidence from Japan. Journal of Happiness Studies, 14(3), 843860.Google Scholar
Owens, M., Goodyer, I. M., Wilkinson, P., Bhardwaj, A., Abbott, R., Croudace, T., Dunn, V., Jones, P. B., Walsh, N. D., Ban, M., & Sahakian, B. J. (2012). 5-HTTLPR and early childhood adversities moderate cognitive and emotional processing in adolescence. PLoS ONE, 7(11), e48482.Google Scholar
Pavela, G., & Latham, K. (2016). Childhood conditions and multimorbidity among older adults. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 71(5), 889901.Google Scholar
Pears, K. C., & Moses, L. J. (2003). Demographics, parenting, and theory of mind in preschool children. Social Development, 12(1), 120.Google Scholar
Pérez-Edgar, K., Bar-Haim, Y., McDermott, J. M., Gorodetsky, E., Hodgkinson, C. A., Goldman, D., Ernst, M., Pine, D. S., & Fox, N. A. (2010). Variations in the serotonin-transporter gene are associated with attention bias patterns to positive and negative emotion faces. Biological Psychology, 83(3), 269271.Google Scholar
Pergamin-Hight, L., Bakermans-Kranenburg, M. J., Van Ijzendoorn, M. H., & Bar-Haim, Y. (2012). Variations in the promoter region of the serotonin transporter gene and biased attention for emotional information: A meta-analysis. Biological Psychiatry, 71(4), 373379.CrossRefGoogle ScholarPubMed
Piff, P. K., Kraus, M. W., Côté, S., Cheng, B. H., & Keltner, D. (2010). Having less, giving more: The influence of social class on prosocial behavior. Journal of Personality and Social Psychology, 99(5), 771784.Google Scholar
Piff, P. K., Stancato, D. M., Côté, S., Mendoza-Denton, R., & Keltner, D. (2012). Higher social class predicts increased unethical behavior. Proceedings of the National Academy of Sciences, 109(11), 40864091.Google Scholar
Prinstein, M. J., & La Greca, A. M. (1999). Links between mothers’ and children’s social competence and associations with maternal adjustment. Journal of Clinical Child Psychology, 28(2), 197210.Google Scholar
Raizada, R. D., Richards, T. L., Meltzoff, A., & Kuhl, P. K. (2008). Socioeconomic status predicts hemispheric specialisation of the left inferior frontal gyrus in young children. Neuroimage, 40(3), 13921401.Google Scholar
Raver, C. C. (2004). Placing emotional self‐regulation in sociocultural and socioeconomic contexts. Child Development, 75(2), 346353.Google Scholar
Repetti, R. L., Taylor, S. E., & Seeman, T. E. (2002). Risky families: Family social environments and the mental and physical health of offspring. Psychological Bulletin, 128(2), 330366.Google Scholar
Rivizzigno, A. S., Brendgen, M., Feng, B., Vitaro, F., Dionne, G., Tremblay, R. E., & Boivin, M. (2014). Gene–environment interplay between number of friends and prosocial leadership behavior in children. Merrill-Palmer Quarterly, 60(2), 110141.Google Scholar
Rodrigues, S. M., Saslow, L. R., Garcia, N., John, O. P., & Keltner, D. (2009). Oxytocin receptor genetic variation relates to empathy and stress reactivity in humans. Proceedings of the National Academy of Sciences, 106(50), 2143721441.Google Scholar
Romund, L., Raufelder, D., Flemming, E., Lorenz, R. C., Pelz, P., Gleich, T., Heinz, A., & Beck, A. (2016). Maternal parenting behavior and emotion processing in adolescents – An fMRI study. Biological Psychology, 120, 120125.Google Scholar
Saegert, S. C., Adler, N. E., Bullock, H. E., Cauce, A. M., Liu, W. M., & Wyche, K. F. (2006). Report of the APA Task Force on Socioeconomic Status. http://www.apa.org/pi/ses/resources/publications/task-force-2006.pdfGoogle Scholar
Salzinger, S., Feldman, R. S., Hammer, M., & Rosario, M. (1993). The effects of physical abuse on children’s social relationships. Child Development, 64(1), 169187.Google Scholar
Samuelsson, M. A. (1997). Social networks of children in single-parent families: Differences according to sex, age, socioeconomic status and housing-type and their associations with behavioural disturbances. Social Networks, 19(2), 113127.Google Scholar
Sandi, C., & Haller, J. (2015). Stress and the social brain: Behavioural effects and neurobiological mechanisms. Nature Reviews Neuroscience, 16(5), 290304.Google Scholar
Seibert, A., & Kerns, K. (2015). Early mother–child attachment: Longitudinal prediction to the quality of peer relationships in middle childhood. International Journal of Behavioral Development, 39(2), 130138.Google Scholar
Shatz, M., Diesendruck, G., Martinez-Beck, I., & Akar, D. (2003). The influence of language and socioeconomic status on children’s understanding of false belief. Developmental Psychology, 39(4), 717729.Google Scholar
Shavers, V. L. (2007). Measurement of socioeconomic status in health disparities research. Journal of the National Medical Association, 99(9), 10131023.Google Scholar
Sheikh, M. A. (2018). The potential protective effect of friendship on the association between childhood adversity and psychological distress in adulthood: A retrospective, preliminary, three-wave population-based study. Journal of Affective Disorders, 226, 2127.Google Scholar
Sheikh, M. A., Abelsen, B., & Olsen, J. A. (2016). Clarifying associations between childhood adversity, social support, behavioral factors, and mental health, health, and well-being in adulthood: A population-based study. Frontiers in Psychology, 7, 727.Google Scholar
Skuse, D. (2006). Genetic influences on the neural basis of social cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1476), 21292141.Google Scholar
Smith, K. E., Porges, E. C., Norman, G. J., Connelly, J. J., & Decety, J. (2014). Oxytocin receptor gene variation predicts empathic concern and autonomic arousal while perceiving harm to others. Social Neuroscience, 9(1), 19.Google Scholar
Stein, M. B., Campbell‐Sills, L., & Gelernter, J. (2009). Genetic variation in 5HTTLPR is associated with emotional resilience. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 150(7), 900906.Google Scholar
Stellar, J. E., Manzo, V. M., Kraus, M. W., & Keltner, D. (2012). Class and compassion: Socioeconomic factors predict responses to suffering. Emotion, 12(3), 449459.Google Scholar
Stoltenberg, S. F., Christ, C. C., & Carlo, G. (2013). Afraid to help: Social anxiety partially mediates the association between 5-HTTLPR triallelic genotype and prosocial behavior. Social Neuroscience, 8(5), 400406.Google Scholar
Stringhini, S., Berkman, L., Dugravot, A., Ferrie, J. E., Marmot, M., Kivimaki, M., & Singh-Manoux, A. (2012). Socioeconomic status, structural and functional measures of social support, and mortality: The British Whitehall II Cohort Study, 1985–2009. American Journal of Epidemiology, 175(12), 12751283.Google Scholar
Suess, G. J., Grossmann, K. E., & Sroufe, L. A. (1992). Effects of infant attachment to mother and father on quality of adaptation in preschool: From dyadic to individual organisation of self. International Journal of Behavioral Development, 15(1), 4365.CrossRefGoogle Scholar
Sugden, K., Arseneault, L., Harrington, H., Moffitt, T. E., Williams, B., & Caspi, A. (2010). Serotonin transporter gene moderates the development of emotional problems among children following bullying victimization. Journal of the American Academy of Child & Adolescent Psychiatry, 49(8), 830840.Google Scholar
Tani, Y., Fujiwara, T., Kondo, N., Noma, H., Sasaki, Y., & Kondo, K. (2016). Childhood socioeconomic status and onset of depression among Japanese older adults: The JAGES prospective cohort study. The American Journal of Geriatric Psychiatry, 24(9), 717726.Google Scholar
Taylor, S. E., Eisenberger, N. I., Saxbe, D., Lehman, B. J., & Lieberman, M. D. (2006). Neural responses to emotional stimuli are associated with childhood family stress. Biological Psychiatry, 60(3), 296301.Google Scholar
Tost, H., Kolachana, B., Hakimi, S., Lemaitre, H., Verchinski, B. A., Mattay, V. S., Weinberger, D. R., & Meyer–Lindenberg, A. (2010). A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function. Proceedings of the National Academy of Sciences, 107(31), 1393613941.Google Scholar
Tottenham, N., Hare, T. A., Millner, A., Gilhooly, T., Zevin, J. D., & Casey, B. J. (2011). Elevated amygdala response to faces following early deprivation. Developmental Science, 14(2), 190204.Google Scholar
Tottenham, N., Hare, T. A., Quinn, B. T., McCarry, T. W., Nurse, M., Gilhooly, T., Millner, A., Galvan, A., Davidson, M. C., Eigsti, I. M., Thomas, K. M., Freed, P. J., Booma, E. S., Gunnar, M. R., Altemus, M., Aronson, J., & Casey, B. J. (2010). Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Developmental Science, 13(1), 4661.Google Scholar
Trickett, P. K., & Kuczynski, L. (1986). Children’s misbehaviors and parental discipline strategies in abusive and nonabusive families. Developmental Psychology, 22(1), 115123.Google Scholar
Tucker-Seeley, R. D., Li, Y., Sorensen, G., & Subramanian, S. V. (2011). Lifecourse socioeconomic circumstances and multimorbidity among older adults. BMC Public Health, 11(1), 19.Google Scholar
Turner, R. J., Thomas, C. S., & Brown, T. H. (2016). Childhood adversity and adult health: Evaluating intervening mechanisms. Social Science & Medicine, 156, 114124.Google Scholar
Uzefovsky, F., Shalev, I., Israel, S., Edelman, S., Raz, Y., Mankuta, D., Knafo-Noam, A., & Ebstein, R. P. (2015). Oxytocin receptor and vasopressin receptor 1a genes are respectively associated with emotional and cognitive empathy. Hormones and Behavior, 67, 6065.Google Scholar
Van Groenou, M. I. B., & Van Tilburg, T. (2003). Network size and support in old age: Differentials by socio-economic status in childhood and adulthood. Ageing & Society, 23(5), 625645.Google Scholar
Veenema, A. H. (2012). Toward understanding how early-life social experiences alter oxytocin-and vasopressin-regulated social behaviors. Hormones and Behavior, 61(3), 304312.Google Scholar
Veroff, J., Douvan, E., & Kulka, R. A. (1981). The Inner American: A Self-Portrait from 1957 to 1976. Basic Books.Google Scholar
Verschueren, K., & Marcoen, A. (1999). Representation of self and socioemotional competence in kindergartners: Differential and combined effects of attachment to mother and to father. Child Development, 70(1), 183201.Google Scholar
Wade, M., Hoffmann, T. J., Wigg, K., & Jenkins, J. M. (2014). Association between the oxytocin receptor (OXTR) gene and children’s social cognition at 18 months. Genes, Brain and Behavior, 13(7), 603610.Google Scholar
Walum, H., Westberg, L., Henningsson, S., Neiderhiser, J. M., Reiss, D., Igl, W., Ganiban, J. M., Spotts, E. L., Pedersen, N. L., Eriksson, E., & Lichtenstein, P. (2008). Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans. Proceedings of the National Academy of Sciences, 105(37), 1415314156.Google Scholar
Whittle, S., Simmons, J. G., Dennison, M., Vijayakumar, N., Schwartz, O., Yap, M. B., Sheeber, L., & Allen, N. B. (2014). Positive parenting predicts the development of adolescent brain structure: A longitudinal study. Developmental Cognitive Neuroscience, 8, 717.Google Scholar
Whittle, S., Vijayakumar, N., Dennison, M., Schwartz, O., Simmons, J. G., Sheeber, L., & Allen, N. B. (2016). Observed measures of negative parenting predict brain development during adolescence. PLoS ONE, 11(1), e0147774.Google Scholar
Whittle, S., Yap, M. B., Yücel, M., Sheeber, L., Simmons, J. G., Pantelis, C., & Allen, N. B. (2009). Maternal responses to adolescent positive affect are associated with adolescents’ reward neuroanatomy. Social Cognitive and Affective Neuroscience, 4(3), 247256.Google Scholar
Wu, J., Guo, Z., Gao, X., & Kou, Y. (2020). The relations between early-life stress and risk, time, and prosocial preferences in adulthood: A meta-analytic review. Evolution and Human Behavior, 41(6), 557572.Google Scholar
Yanagisawa, K., Masui, K., Furutani, K., Nomura, M., Yoshida, H., & Ura, M. (2013). Family socioeconomic status modulates the coping-related neural response of offspring. Social Cognitive and Affective Neuroscience, 8(6), 617622.Google Scholar
Youngblade, L. M., & Belsky, J. (1992). Parent-child antecedents of 5-year-olds’ close friendships: A longitudinal analysis. Developmental Psychology, 28(4), 700713.CrossRefGoogle Scholar
Yu, Q., Daugherty, A. M., Anderson, D. M., Nishimura, M., Brush, D., Hardwick, A., Lacey, W., Raz, S., & Ofen, N. (2018). Socioeconomic status and hippocampal volume in children and young adults. Developmental Science, 21(3), e12561.Google Scholar
Zink, C. F., & Meyer-Lindenberg, A. (2012). Human neuroimaging of oxytocin and vasopressin in social cognition. Hormones and Behavior, 61(3), 400409.Google Scholar
Zhong, Y., Wang, J., & Nicholas, S. (2017). Gender, childhood and adult socioeconomic inequalities in functional disability among Chinese older adults. International Journal for Equity in Health, 16(1), 111.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×