Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-05T19:32:26.409Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  11 November 2009

Riccardo Scalenghe
Affiliation:
Università degli Studi, Palermo, Italy
Giacomo Certini
Affiliation:
University of florence
Riccardo Scalenghe
Affiliation:
University of Palermo
Giacomo Certini
Affiliation:
Università degli Studi di Firenze, Italy
Get access

Summary

Soil is a dynamic natural body occurring in the upper few metres of the Earth's surface at the interface between the atmosphere, biosphere, hydrosphere and geosphere. A soil is both an ecosystem in itself, and a critical part of the larger terrestrial ecosystem. From the earliest perceptions of soils as the organic enriched surface layer to today's pedologic horizonation of profiles, there is a rich history of beliefs and understanding of this vital life-sustaining resource.

In Chapter 1 changes in perceptions of soils and their classification are explored. Chapter 2 describes some of the specific reactions that are components of the soil-forming processes that transform geologic materials into recognizable pedologic features and horizons. Solids, along with the liquids and gases that fill pore spaces between the solids, compose the three-phase soil system.

Chapter 3 treats the inorganic fraction of the solid phase, examining differences between primary minerals, derived directly from rocks, and secondary minerals, formed by pedogenic processes. Soil organic matter is discussed in Chapter 4. It is often a minor fraction of soil in quantitative terms, but exerts a major control on soil properties. Soil organic matter is complex, being a mixture of a multitude of different components. Organic matter may be tightly bound to clay surfaces by adsorption or physically protected by entrapment within aggregates. These associations modify the physicochemical and physical properties of the mineral phase and affect organic matter biodegradation rates.

The liquid phase of soil is an aqueous solution of solids and gases.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×