Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-30T18:17:03.087Z Has data issue: false hasContentIssue false

Part IV - Solute and sedimentary fluxes in sub-Antarctic and Antarctic environments

Published online by Cambridge University Press:  05 July 2016

Achim A. Beylich
Affiliation:
Geological Survey of Norway
John C. Dixon
Affiliation:
University of Arkansas
Zbigniew Zwoliński
Affiliation:
Adam Mickiewicz University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

AARI [Russian Arctic and Antarctic Research Institute]. (2014). Antarctica. Online: http://www.aari.aq.Google Scholar
Abram, N. J., Mulvaney, R., Vimeux, F., Phipps, S. J., Turner, J., and England, M. H. (2014). Evolution of the Southern Annular Mode during the past millennium. Nature Climate Change. Letters.CrossRefGoogle Scholar
Atlas of Antarctica. (1966). USSR: GUGK MG.Google Scholar
Ballantyne, C. K. (2002). Paraglacial geomorphology. Quater. Sci. Rev., 21, 19352017.CrossRefGoogle Scholar
Bardin, W. I. (1978). About the glaciations problem of Antarctic. Antarktika, 17, 417.Google Scholar
Barnola, J.-M., Raynaud, D., Lorius, C., and Barkov, N. I. (2003). Historical CO2 record from the Vostok ice core. In Trends: a compendium of data on global change. Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. Online: cdiac.ornl.gov/trends/trends.htm.Google Scholar
BEDMAP. (2000). Bed topography of the Antarctic. Scale 1 : 10 000 000. Cambridge: British Antarctic Survey.Google Scholar
Bromwich, D. H., Nicolas, J. P., Monaghan, A. J., Lazzara, M. A., Keller, L. M.Weidner, G. A., and Wilson, A. B. (2013).  Central West Antarctica among the most rapidly warming regions on Earth. Nature Geoscience, 6, 139145.CrossRefGoogle Scholar
Carrasco, J. F. (2013). Decadal changes in the near-surface air temperature in the western side of the Antarctic Peninsula. Atmospheric and Climate Sciences, 3, 275281.CrossRefGoogle Scholar
Church, M., and Ryder, J. M. (1972). Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geol. Soc. Am. Bull., 83, 30593071.CrossRefGoogle Scholar
Comiso, J. C., Kwok, R., Martin, S., and Gordon, A. L. (2011). Variability and trends in sea ice extent and ice production in the Ross Sea. J. Geophys. Res. Oceans, 116, C04021.CrossRefGoogle Scholar
Cook, A. J., Fox, A. J., Vaughan, D. G., and Ferrigno, J. G. (2005). Retreating Glacier Fronts on the Antarctic Peninsula over the Past Half-Century. Science 308(5721): 541544. DOI: 10.1126/science.1104235.CrossRefGoogle ScholarPubMed
de la Mare, W. K. (1997). Abrupt mid-twentieth-century decline in Antarctic sea ice extent from whaling records. Nature, 389, 5760.CrossRefGoogle Scholar
Dingwall, P. R. (1995). Legal, institutional and management planning considerations in subantarctic island conservation. In Dingwall, P. R., ed., Progress in Conservation of the Subantarctic Islands. Gland, Switzerland: IUCN, no. 2.Google Scholar
Doran, P. T., Proscu, J. C., Lyons, W. B., Walsh, J. E., Fountain, A. G., McKnight, D. M., Moorhead, D. L., Virginia, R. A., Wall, D. H., Clow, G. D., Fristen, C. H., McKay, C. P., and Parsons, A. N. (2002). Antarctic climate cooling and terrestrial ecosystem response. Nature, 415, 517520.CrossRefGoogle ScholarPubMed
D’Orgeville, M., and Peltier, W. R. (2006). Review of ENSO in different climates. Joint Ann. Meeting GAC and MAC, Univ. Quebec, May 14–17, 2006.Google Scholar
Gerasimov, I. P., and Meshcheryakov Yu, A., eds. (1967). Relief of the Earth.Google Scholar
Haeberli, W., Bösch, H., and Scheler, K., (1989). World glacier inventory. Nairobi: IAHS, UNESCO.Google Scholar
IPCC [Intergovernmental Panel on Climate Change]. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R. K. and Meyer, L. A. (eds.)]. Geneva, Switzerland: IPCC, 151 pp.Google Scholar
Jacobs, S. S., and Comiso, J. C. (1997). Climate variability in the Amundsen and Bellingshausen Seas. J.  Climate, 10, 697709.2.0.CO;2>CrossRefGoogle Scholar
Jagovkina, S., and Lagun, V. (2004). Climatology of Antarctic upper-air parameters. Polish Polar Studies, Gdynia, 131142.Google Scholar
Kapica, A. P. (1968). Subglacial relief of Antarctic. Moscow.Google Scholar
Kejna, M. (2008a). Rozkład przestrzenny i zmienność temperatury powietrza na Antarktydzie w drugiej połowie XX wieku. Toruń: Wyd. Nauk. UMK, pp. 287.Google Scholar
Kejna, M. (2003). Trends of air temperature of the Antarctic during the period 1958–2000. Polish Polar Research, 24(2), 99126.Google Scholar
Kejna, M., Araźny, A., and Sobota, I. (2013). The climatic change on King George Island (South Shetland Islands, Antarctica) in the years of 1948–2011. Polish Polar Research, 2, 213235.CrossRefGoogle Scholar
King, J. C. (1994). Recent climate variability in the vicinity of the Antarctic Peninsula. Int. J. Climatol., 14, 357369.CrossRefGoogle Scholar
King, J. C., and Turner, J. (1997). Antarctic Meteorology and Climatology. Cambridge: Cambridge University Press, ss. 409.CrossRefGoogle Scholar
King, J. C., Turner, J., Marshall, G. J., Connolley, W. M., and Lachan-Cope, T. A. (2003). Antarctic Peninsula climate variability and its causes as revealed by analysis of instrumental records, [w:] Antarctic Peninsula Climate Variability. Antarctic  Res. Ser., 79, 1730.Google Scholar
Kotlyakov, V. M. (ed.), (1997). World Atlas of Snow and Ice Resources. Moscow: Institute of Geography, Russian Academy of Sciences.Google Scholar
Kotlyakov, V. M., (2000). Selected Works: Volume 1. Glaciology of Antarctica, Moscow: Nauka.Google Scholar
Kotlyakov, V. M., ed. (1997). Atlas of world snow and ice resources. Moskwa: Nauka.Google Scholar
Lastochkin, A. N. (ed.), (2011). Geomorphologic Atlas of the Antarctic (Russian issue). St. Petersburg: Karta.Google Scholar
Lastochkin, A. N. (ed.), (2013). The Antarctic. Geomorphologic Atlas (international issue). St. Petersburg: Karta.Google Scholar
Lastochkin, A. N., (2006). Subglacial geomorphology of the Antarctic: theory, methods and results. Vol. 1: General geomorphological studies. St. Petersburg: State University.Google Scholar
Lastochkin, A. N., (2007). Subglacial geomorphology of the Antarctic: theory, methods and results. Vol.2: Special geomorphological studies. St. Petersburg: State University.Google Scholar
Lastochkin, A. N., and Shavel, N. I. (2006). Comparative characteristics of the free glaciosphere, surface ice catchment basins and outlet glaciers of Antarctica. Proceedings of St. Petersburg State University. Ser., 7(4), 4356.Google Scholar
Lastochkin, A. N., Lukin, V. V., and Masolov, W. (2004). Proceedings, tasks and practical significance of geomorphological researches of Antarctica. RAS, Ser. Geography, 3, 4859.Google Scholar
Lockwood, J. G. (1984). Procesy klimatotwórcze. Warszawa: Wyd. Nauk. PWN, pp. 251.Google Scholar
Losev, K. S., (1982). Antarctic ice sheet. Moscow: Nauka.Google Scholar
Lucchitta, B. K., and Rosanova, C. E. (1998). Retreat of northern margins of George VI and Wilkins Ice Shelves, Antarctic Peninsula. Ann. Glac., 27, 4146.CrossRefGoogle Scholar
Marshall, G. J., Lagun, V., and Lachlan-Cope, T. A. (2002). Changes in Antarctic Peninsula tropospheric temperatures from 1956–1999: a synthesis of observations and reanalysis data. Int. J. Climatol., 22, 291310.CrossRefGoogle Scholar
Miller, H. (2005). EPICA: Dornning Maud Land ice core. Euroconference on Polar Regions and Quaternary climate, 25–29 September, 2005, Aquafredda di Maratea, Italy.Google Scholar
Ministry of Marine Navy USSR. (1976). Map of Antarctica. 1:3 000 000.Google Scholar
Monaghan, A. J., Bromwich, D. H., Chapman, W., and Comiso, J. C. (2008). Recent variability and trends of Antarctic near-surface temperature. J. Geophys. Res., 113, D04105.Google Scholar
Murphy, E. J., Clarke, A., Symon, C., and Priddle, J. (1995). Temporal variation in Antarctic sea-ice: analysis of a long term fast-ice record from the South Orkney Islands. Deep-Sea Res., 42, 118.CrossRefGoogle Scholar
NASA [National Aeronautics and Space Administration]. (2016). GISS Surface Temperature Analysis. Online: http://data.giss.nasa.gov/gistemp/station_data/.Google Scholar
Poliakov, A. A. (1980). Cenozoic volcanism and glacial story of Antarctic. Antarktika, 19, 132139.Google Scholar
Przybylak, R. (1998). Contemporary variations in Antarctic air temperature and sea-ice cover – a review. Pol. Polar Stud., 25th IPS, Warszawa, pp. 193203.Google Scholar
Rodriquez, R., Llasat, C. M., and Rakusa-Suszczewski, S. (1996). Analysis of the mean and extreme temperature series of the Arctowski Antarctic Base. Probl. Klimatol. Polar., 6, 191212.Google Scholar
Rott, H., Rack, W., Nagler, T., and Skvarca, P. (1998). Climatically induced retreat and collapse of northern Larsen Ice Shelf, Antarctic Peninsula. Ann. Glac., 27, 8692.CrossRefGoogle Scholar
Rott, H., Skvarca, P., and Nagler, T. (1996). Rapid collapse of Northern Larsen Ice Shelf, Antarctica. Science, 271, 788792.CrossRefGoogle Scholar
SCAR [Scientific Committee on Antarctic Research]. (2014). Met READER.Google Scholar
SCAR [Scientific Committee on Antarctic Research]. (1999). Some Antarctic statistics. Online: www.scar.org/Antarctic Info/Ant stats.html.Google Scholar
Screen, J. A., and Simmonds, I. (2012). Half-century air temperature change above Antarctica: Observed trends and spatial reconstructions. J. Geophys. Res., 117, D16108.Google Scholar
Skvarca, P., Rack, W., Rott, H., and Ibarzábal, , Donángelo, T. (1998). Evidence of recent climate warming on the eastern Antarctic Peninsula. Ann. Glac., 27, 628632.CrossRefGoogle Scholar
Smith, R. C., Stammerjohn, S., and Baker, K. S. (1996). Surface air temperature variations in the western Antarctic Peninsula region. In Ross, R. M., Quetin, L. B., and Hofmann, E. E., eds., Foundations for Ecological Research West of the Antarctic Peninsula. Washington, DC: American Geophysical Union. Antar. Res. Ser., 70: 105121.CrossRefGoogle Scholar
Sost, E. S., Korotkievich, J. P., Koblenz, P. G., and Kosenko, L. (1974). Map of indigenous relief of Antarctic. 1:5 000 000. (1974). ААNII.Google Scholar
Stark, P. (1994). Climate warming in the central Antarctic Peninsula area. Weather, 49, 215220.CrossRefGoogle Scholar
Stastna, V. (2010). Spatio-temporal changes in surface air temperature in the region of the northern Antarctic Peninsula and South Shetland islands during 1950–2003. Polar Science, 4, 1833.CrossRefGoogle Scholar
Suetova, I. A. (1968). Basic morphometric characteristics of Antarctica. Moscow.Google Scholar
The Antarctic. Geomorphologic Atlas (international issue), (2013). Lastochkin, A. N., ed. St. Petersburg: Karta.Google Scholar
Turner, J., and Overland, J. (2009). Contrasting climate change in the two Polar Regions. Polar Research, 28, 146164.CrossRefGoogle Scholar
Turner, J., Colwell, S. R., Marshall, G. J., Lachlan-Cope, T. A., Jones, P. D., Lagun, V., and Iagovkina, S. (2004). The SCAR READER Project: toward a high-quality database of mean Antarctic meteorological observations. Journal of Climate, 17(14), 28902898.2.0.CO;2>CrossRefGoogle Scholar
UNEP GEO Team. (1999). Global Environment Outlook 2000. London: Earthscan Publications Ltd. Online: www.unep.org/geo2000.Google Scholar
van den Broeke, M. R. (2000b). On the interpretation of Antarctic temperature trends. Journal of Climate, 13(21), 38853889.2.0.CO;2>CrossRefGoogle Scholar
van den Broeke, M. R. (2000a). The semi-annual oscillation and Antarctic climate. Part 3: The role of near-surface wind speed and cloudiness. Int. J. Climate, 20, 117130.3.0.CO;2-B>CrossRefGoogle Scholar
Vaughan, D. G., and Doake, C. S. M. (1996). Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature, 379, 328331.CrossRefGoogle Scholar
Ward, C. G. (1995). Mapping ice front changes of Muller Ice Shelf, Antarctic Peninsula. Antar. Sci., 7, 197198.CrossRefGoogle Scholar
White, W. B., and Peterson, R. G. (1996). An Antarctic circumpolar wave in surface pressure, wind, temperature and sea ice extent. Nature, 380, 699702.CrossRefGoogle Scholar
Whorf, T. P., and Keeling, C. D. (1998). Rising carbon. New Scientist, 157(2124), 54.Google Scholar
Wolff, E. (2005). EPICA: Dome C ice core. EPICA – The European Project for Ice Coring in Antarctica.Google Scholar
Woronov, P. S. (1960). Some geomorphological features of Antarctic. Trudy NIIGA, 113(2), 4659.Google Scholar
Znatchko-Jaworskij, A. (1977). Relief of Antarctic. Antarktika, 16, 1627.Google Scholar
Zwoliński, Zb. (1997). Mineral matter circulation within a polar geoecosystem, South Shetland Islands. Supplementi di Geografia Fisica e Dinamica Quaternaria, Torino, Suppl. III, Tomo 1, 418.Google Scholar
Zwoliński, Zb., (2007). The mobility of mineral matter in paraglacial areas, King George Island, Western Antarctica. Wydawnictwo Naukowe UAM, Ser. Geogr., 74, 266 pp.Google Scholar

References

Bailey, R. G. (1996). Ecosystem Geography. New York: Springer Verlag, 204 pp.CrossRefGoogle Scholar
Ballantyne, C. K. (2002). Paraglacial geomorphology. Quater. Sci. Rev., 21, 19352017.CrossRefGoogle Scholar
Blume, H.-P., Kuhn, D., and Bölter, M. (2002). Soils and soilscapes. In Beyer, L. and Bölter, M., eds., Geoecology of Antarctic Ice-Free Coastal Landscapes. Ecol. Stud., 154, 91114. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Bölter, M., Beyer, L., and Stonehouse, B. (2002). Antarctic coastal landscapes: characteristics, ecology and research. In Beyer, L. and Bölter, M., eds., Geoecology of Antarctic Ice-Free Coastal Landscapes. Ecol. Stud., 154: 515. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Bryden, H. L., and Pillsbury, R. D. (1977). Variability of deep flow in the Drake Passage from year-long current measurements. J. Phys. Oceanogr., 7(6): 803810.2.0.CO;2>CrossRefGoogle Scholar
Church, M., and Ryder, J. M. (1972). Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geol. Soc. Am. Bull., 83, 30593071.CrossRefGoogle Scholar
Clark, M. J. (1987). The alpine sediment system: a context for glaciofluvial processes. In: Gurnell, A. M. and Clark, M. J., eds., Glaciofluvial Sediment Transfer: An Alpine Perspective. Chichester: Wiley, 931 pp.Google Scholar
Fitzsimons, S. J. (1996). Paraglacial redistribution of glacial sediments in the Vestfold Hills, East Antarctica. Geomorphology, 15, 93108.CrossRefGoogle Scholar
Freedman, B., Svoboda, J., and Henry, G. H. R. (1994). Alexandra fiord: an ecological oasis in the polar desert. In Svoboda, J. and Freedman, B., eds., Ecology of a Polar Oasis. Toronto: Captus Univ. Publications, 19 pp.Google Scholar
Grelowski, A., and Pastuszak, M. (1984). Preliminary determination of the occurrence and movement of water masses in the regions of South Georgia Island, the Scotia Sea and the Antarctic Peninsula. Oceanology, 14, 87111.Google Scholar
Hargreaves, P. (1980). Seas and oceans – the Antarctic. Morristown, NJ: Silver Burdette Company.Google Scholar
Iriondo, M. (2000). Patagonian dust in Antarctica. Quater. Int., 68–71, 8386.CrossRefGoogle Scholar
Klinck, J. M., and Nowlin, W. D. (2001). Antarctic circumpolar current. In Steele, J. K. and Turekian, K. K., eds., Encyclopedia of Ocean Science. London: Academic Press, 151159 pp.CrossRefGoogle Scholar
Kostrzewski, A. (1974). Granulometry of granite waste of European mountain areas. Wyd. UAM, Ser. Geografia, 9, 132 pp.Google Scholar
Kostrzewski, A., Rachlewicz, G., and Zwoliński, Zb. (2001). Contemporary sedimentary covers of western coast of Admiralty Bay, King George Island, South Shetlands. In Kostrzewski, A., ed., Geneza, litologia i stratygrafia utworów czwartorzędowych, III. Poznań: Wyd. UAM, Ser. Geografia, 64: 219235.Google Scholar
Krinner, G., and Genthon, C. (2003). Tropospheric transport of continental tracers towards Antarctica under varying climatic conditions. Tellus B, 55, 5470.CrossRefGoogle Scholar
Le, K., Shi, J., Yu, K., and Chen, J. (1998). Some thoughts on the spatiotemporal variations of water masses and circulations in the region of Prydz Bay, Antarctica. Stud. Marina Sinica, 40, 4354.Google Scholar
Marsz, A. A. (2000). Physical-geographic characteristics of land areas in surrounding of Admiralty Bay (Western Antarctica, South Shetlands, King George Island). Gdynia: Wyd. WSM, 125 pp.Google Scholar
Marsz, A. A. and Rakusa-Suszczewski, S., (1987). Ecological characteristics of Admiralty Bay region (King George Island, South Shetland Islands). I. Climate and ice-free areas. Kosmos, 36(1), 103127.Google Scholar
Marsz, A. A., and Styszyńska, A. (2000). Main features of cli mate of Henryk Arctowski Polish Polar Station (Western Antarctica, South Shetlands, King George Island). Gdynia: Wyd. WSM, 264 pp.Google Scholar
Matthews, J. A., Shakesby, R. A., Berrisford, M. S., and McEwen, L. J. (1998). Periglacial patterned ground on the Styggedalsbreen Glacier Foreland, Jotunheimen, Southern Norway: micro-topographic, paraglacial and geoecological controls. Perm. Perigl. Proc., 9, 147166.3.0.CO;2-9>CrossRefGoogle Scholar
Nowlin, W. D., and Klinck, J. M. (1986). The physics of the Antarctic Circumpolar Current. Rev. Geophys., 24, 469491.CrossRefGoogle Scholar
Nowlin, W. D., Whitworth, T., and Pillsbury, R. D. (1977. Structure and transport of the Antarctic Circumpolar Current at Drake Passage from short term measurements. J. Phys. Oceanogr., 7, 788810.2.0.CO;2>CrossRefGoogle Scholar
Olech, M. (2004). Lichens of King George Island, Antarctica. UJ, Kraków: Inst. Bot. 391 pp.Google Scholar
Owen, L. A., and Sharma, M. C. (1998). Rates and magnitudes of paraglacial fan formation in the Garhwal Himalaya: implications for landscape evolution. Geomorphology, 26, 171184.CrossRefGoogle Scholar
Palacios, D., Parrilla, G., and Zamorano, J. J. (1999). Paraglacial and postglacial debris flows on a Little Ice Age terminal moraine: Jamapa Glacier, Pico de Orizaba, Mexico. Geomorphology, 28, 95118.CrossRefGoogle Scholar
Pereira, K. C. D., Evangelista, H., Pereira, E. B., Simões, J.C., Johnson, E., and Melo, L. R. (2004). Transport of crustal microparticles from Chilean Patagonia to the Antarctic Peninsula by SEM-EDS analysis. Tellus B, 56(3), 262.CrossRefGoogle Scholar
Pickard, G. L., and Emery, W. J. (1990). Descriptive Physical Oceanography, An Introduction. Woburn, MA: Butterworth-Heinemann, 173176.Google Scholar
Pickard, J. (1986). Antarctic Oases, Davis Station and the Vestfold Hills. In Pickard, J., ed., Antarctic Oases. Sydney: Acad. Press, 119 pp.Google Scholar
Tchernia, P. 1981). Observation of the Antarctic East Wind Drift Current by using tabular icebergs tracked by satellite. Antar. J. U.S., 15, 83.Google Scholar
Wiśniewski, E. (1997). Obszary wolne od lodu. In Encyklopedia. Kraków: Opres, 216220.Google Scholar
Ziaja, W. (2004). Zróżnicowanie krajobrazowe obszarów uwolnionych spod lodowców po Małej Epoce Lodowej w paśmie górskim Lindströmfjellet-Håbergnuten (Nordenskiöldland, Spitsbergen). Gdynia: Pol. Polar Stud., XXX MSP, 439447.Google Scholar
Zwoliński, Zb. (2001). Controls of seasonal structure of geomorphic activity on ice-free areas, King George Island, Western Antarctica. In Karczewski, A. and Zwoliński, Zb., eds., Funkcjonowanie geoekosystemów w zróżnicowanych warunkach morfoklimatycznych. Monitoring, ochrona, edukacja. Poznań: Stowarzyszenie Geomorfologów Polskich, Bogucki Wyd. Nauk., 575587.Google Scholar
Zwoliński, Zb. (2002). Model of mineral matter circulation on free-ice areas, King George Island, Western Antarctica. In Kostrzewski, A. and Rachlewicz, G., eds., Funkcjonowanie i monitoring geoekosystemów obszarów polarnych. Poznań: Pol. Polar Stud., 371395.Google Scholar
Zwoliński, Zb. (2005). Geosuccession in paraglacial geomorphology. In Jóźwiak, M. and Kozłowski, R., eds., Funkcjonowanie obszarów polarnych oraz jego współczesne i reliktowe cechy w krajobrazach. Kielce: 165169.Google Scholar
Zwoliński, Zb. (2007). The mobility of mineral matter in paraglacial areas, King George Island, Western Antarctica. Poznań: Wydawnictwo Naukowe UAM, Ser. Geogr., 74, 266 pp.Google Scholar

References

Accornero, A., Manno, C., Arrigo, K. R., Martini, A., and Tucci, S. (2003). The vertical flux of particulate matter in the polynya of Terra Nova Bay. Part I. Chemical constituents. Antarctic Science, 15, 119132. doi:10.1017/S0954102003001111CrossRefGoogle Scholar
Anderson, J. B. (1991). The Antarctic continental shelf: results from marine geological and geophysical investigations. In Tingey, R. J., ed., The Geology of Antarctica, 285334. Malta: Clarendon Press.Google Scholar
Anderson, J. B. (1999). Antarctic Marine Geology. London: Cambridge University Press, 289 pp.CrossRefGoogle Scholar
Anderson, J. B., Kurtz, D., Weaver, F., and Weaver, M. (1982). Sedimentation on the West Antarctic Continental Margin. In Craddock, C., ed., Antarctic Geoscience, 10031012. Madison: The University of Wisconsin Press.Google Scholar
Anderson, J. B., Brake, C., Domack, E. W., Myers, N., and Singer, J. (1983). Sedimentary dynamics on the Antarctic continental shelf. In Oliver, R. L., James, P. R., and Jago, J. B., eds., Antarctic Earth Science-Proceedings of the Fourth International Symposium on Antarctic Earth Sciences, 387389, Canberra: Australian Academy of Science / Cambridge University Press.Google Scholar
Anderson, J. B., Brake, C. F., and Myers, N. C. (1984). Sedimentation on the Ross Sea continental shelf, Antarctica. Marine Geology, 57, 295333.CrossRefGoogle Scholar
Anderson, J. B., and Smith, M. J. (1989). Formation of modern sand-rich facies by marine currents on the Antarctic continental shelf. GCSSEPM Foundation Seventh Annual Research Conference Proceedings, 41–52.Google Scholar
Anderson, J. B., Bartek, L. R., and Thomas, M. A. (1991). Seismic and sedimentological record of glacial events on the Antarctic Peninsula shelf. In Thomson, M. R. A., Crame, J. A., and Thomson, J. W., eds., Geological Evolution of Antarctica, 687691, Proceedings of the Fifth International Symposium on Antarctic Earth Sciences. Cambridge, UK: Cambridge University Press.Google Scholar
Anderson, J. B., and Thomas, M. A. (1991). Marine ice-sheet decoupling as a mechanism for rapid, episodic sea-level change: the record of such events and their influence on sedimentation. Sedimentary Geology, 70, 87104.CrossRefGoogle Scholar
Arrigo, K. R., Mock, T., and Lizotte, M. P. (2003). Primary Producers and Sea Ice. In Thomas, D. N. and Dieckmann, G. S., eds., Sea Ice, 283326. Chichester: Blackwell Publishing Ltd.Google Scholar
Arrigo, K. R., and Thomas, D. N. (2004). Large scale importance of sea ice biology in the Southern Ocean. Antarctic Science, 16, 471486. doi:10.1017/S0954102004002263CrossRefGoogle Scholar
Arrigo, K. R., van Dijken, G. L., and Bushinsky, S. (2008). Primary production in the Southern Ocean, 1997–2006. Journal of Geophysical Research, 113, C08004, doi:10.1029/2007JC004551.CrossRefGoogle Scholar
Ashley, G. M., and Smith, N. D. (2000). Marine sedimentation at a calving glacier margin. Geological Society of America Bulletin, 112, 657667.2.0.CO;2>CrossRefGoogle Scholar
Bathmann, U., Fischer, G., Miller, P. J., and Gerdes, D. (1991). Short-term variations in particulate matter sedimentation off Kapp Norvegia, Weddell Sea, Antarctica: relation to water mass advection, ice cover, plankton biomass and feeding activity. Polar Biology, 11, 185195.CrossRefGoogle Scholar
Beaulieu, S. E. (2002). Accumulation and fate of phytodetritus on the sea floor. In Gibson, R. N. and Barnes, M., eds., Oceanography and Marine Biology: An Annual Review, 40, 171–232. London: Taylor & Francis.Google Scholar
Buffen, A., Leventer, A., Rubin, A., and Hutchins, T. (2007). Diatom assemblages in surface sediments of the northwestern Weddell Sea, Antarctic Peninsula. Marine Micropaleontology, 62, 730.CrossRefGoogle Scholar
Cavalieri, D. J., and Parkinson, C. L. (2008). Antarctic sea ice variability and trends, 1979–2006. Journal of Geophysical Research, 113, C07004, doi:10.1029/2007JC004564.CrossRefGoogle Scholar
Collier, R., Dymond, J., Honjo, S., Manganini, S., Francois, R., and Dunbar, R. (2000). The vertical flux of biogenic and lithogenic material in the Ross Sea: moored sediment trap observations 1996–1998. Deep-Sea Research II, 47, 34913520.CrossRefGoogle Scholar
Cook, A. J., Fox, A. J., Vaughan, D. G., and Ferrigno, J. G. (2005). Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science, 308, 541544.CrossRefGoogle ScholarPubMed
Dayton, P. K., and Oliver, J. S. (1977). Antarctic soft-bottom benthos in oligotrophic and eutrophic environments. Science, 197, 5558.CrossRefGoogle ScholarPubMed
DeMaster, D. J., Nelson, T. M., Harden, S. L., and Nittrouer, C. A. (1991). The cycling and accumulation of biogenic silica and organic carbon in Antarctic deep-sea and continental margin environments. Marine Chemistry, 35, 489502.CrossRefGoogle Scholar
DeMaster, D. J., Dunbar, R. B., Gordon, L. I., Leventer, A. R., Morrison, J. M., Nelson, D. M., Nittrouer, C. A., and Smith, W. A. Jr. (1992). Cycling and accumulation of biogenic silica and organic matter in high latitude environments: The Ross Sea. Oceanography, 5, 146153.CrossRefGoogle Scholar
DeMaster, D. J., Ragueneau, O., and Nittrouer, C. A. (1996). Preservation efficiencies and accumulation rates for biogenic silica and organic C, N, and P in high-latitude sediments: The Ross Sea. Journal of Geophysical Research, 101, 18,50118,518.CrossRefGoogle Scholar
Diekmann, B., and Kuhn, G. (1999). Provenance and dispersal of glacial–marine surface sediments in the Weddell Sea and adjoining areas, Antarctica: ice-rafting versus current transport. Marine Geology, 158, 209231.CrossRefGoogle Scholar
Dierssen, H. M., Zimmerman, R. C., Drake, L. A., and Burdige, D. J. (2009). Potential export of unattached benthic macroalgae to the deep sea through wind-driven Langmuir circulation. Geophysical Research Letters, 36, L04602, doi:10.1029/2008GL036188.CrossRefGoogle Scholar
Domack, E., Duran, D., Leventer, A., Ishman, S., Doane, S., McCallum, S., Amblas, D., Ring, J., Gilbert, R., and Prentice, M. (2005). Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature, 436, 681685.CrossRefGoogle Scholar
Dragon, A.-C., Houssais, M.-N., Herbaut, C., and Charrassin, J.-B. (2014). A note on the intraseasonal variability in an Antarctic polynia: prior to and after the Mertz Glacier calving. Journal of Marine Systems, 130, 4655.CrossRefGoogle Scholar
Dunbar, R. B., Leventer, A., and Mucciarone, D. A. (1998). Water column sediment fluxes in the Ross Sea, Antarctica: atmospheric and sea ice forcing. Journal of Geophysical Research, 103, 30,74130,759.CrossRefGoogle Scholar
Dunbar, R. B., Leventer, A., and Stockton, W. L. (1989). Biogenic sedimentation in McMurdo Sound, Antarctica. Marine Geology, 85, 155179.CrossRefGoogle Scholar
Ebner, L., Heinemann, G., Haid, V., and Timmermann, R. (2014). Katabatic winds and polynya dynamics at Coats Land, Antarctica. Antarctic Science 26, 309326.CrossRefGoogle Scholar
Eicken, H. (1992). The role of sea ice in structuring Antarctic ecosystems. Polar Biology, 12, 313.CrossRefGoogle Scholar
Elverhøi, A., and Roaldset, E. (1983). Glaciomarine sediments and suspended particulate matter, Weddell Sea Shelf, Antarctica. Polar Research, 1, 121.CrossRefGoogle Scholar
Estrada, M., and Berdalet, E. (1997). Phytoplankton in a turbulent world. Scientia Marina, 61 (Supl. 1), 125140.Google Scholar
Fahl, K., and Kattner, G. (1993). Lipid Content and fatty acid composition of algal communities in sea-ice and water from the Weddell Sea (Antarctica). Polar Biology, 13, 405409.CrossRefGoogle Scholar
Garrison, D. L., Close, A. L., and Reimnltz, E. (1989). Algae concentrated by frazil ice: evidence from laboratory experiments and field measurements. Antarctic Science 1, 313316.CrossRefGoogle Scholar
Gili, J. M., Isla, E., Rodriguez, E., Rodriguez, y Baena, A., Rossi, S., Teixidó, N., Vendrell, B., Gerdes, D., and Arntz, W. E. (2005). Bentho-pelagic coupling under polar spring conditions. Reports on Polar and Marine Research, 503, 4359.Google Scholar
Gleitz, M., Bathmann, U. V., and Lochte, K. (1994). Build-up and decline of summer phytoplankton biomass in the eastern Weddell Sea, Antarctica. Polar Biology, 14, 413422.CrossRefGoogle Scholar
Griffith, T. W., and Anderson, J. B. (1989). Climatic control of sedimentation in bays and fjords of the northern Antarctic Peninsula. Marine Geology, 85, 181204.CrossRefGoogle Scholar
Gutt, J., and Starmans, A. (2001). Quantification of iceberg impact and benthic recolonisation patterns in the Weddell Sea (Antarctica). Polar Biology, 24, 615619.CrossRefGoogle Scholar
Gutt, J., Starmans, A., and Dieckmann, G. (1998). Phytodetritus deposited on the Antarctic shelf and upper slope: its relevance for the benthic system. Journal of Marine Systems, 17, 435444.CrossRefGoogle Scholar
Gutt, J., Barratt, I., Domack, E., d’Udekem d’Acoz, C., Dimmler, W., Grémare, A., Heilmayer, O., Isla, E., Janussen, D., Jorgensen, E., Kock, K-H., Lehnert, L.S., López-González, P., Langner, S., Linse, K., Manjón-Cabeza, M.E., Meißner, M., Montiel, A., Raes, M., Robert, H., Rose, A., Sañé Schepisi, E., Saucède, T., Scheidat, M., Schenke, H-W., Seiler, J., and Smith, C. (2011). Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep-Sea Research II, 58, 7483.CrossRefGoogle Scholar
Hall, A., and Visbeck, M. (2002). Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the Annular Mode. Journal of Climate, 15, 30433057.2.0.CO;2>CrossRefGoogle Scholar
Hemer, M., and Harris, P. T. (2004). Sediments collected from beneath the Amery Ice Shelf, East Antarctica, document sub-ice-shelf circulation of water and sediments throughout the Holocene. (Forum for Research into Ice Shelf Processes (FRISP) Report No. 15Google Scholar
Holland, P. R., and Kwok, R. (2012). Wind-driven trends in Antarctic sea-ice drift. Nature Geoscience, 5, 872875.CrossRefGoogle Scholar
Honjo, S., Francois, R., Manganini, S., Dymond, J., and Collier, R. (2000). Particle fluxes to the interior of the Southern Ocean in the Western Pacific sector along 170°W. Deep-Sea Research II, 47, 35213548.CrossRefGoogle Scholar
Ingole, B. (2008). Characteristics of macrobenthic assemblage from sub-littoral sediment off the Lazarev Sea, East Antarctica. Indian Journal of Marine Sciences, 37, 439445.Google Scholar
Isla, E., Gerdes, D., Palanques, A., and Arntz, W. E. (2009). Downward particle fluxes, wind and a phytoplankton bloom over a polar continental shelf: a stormy impulse for the biological pump. Marine Geology, 259, 5972.CrossRefGoogle Scholar
Isla, E., Gerdes, D., Palanques, A., Gili, J. M., and Arntz, W. (2006a). Particle fluxes and tides near the continental ice edge on the eastern Weddell Sea shelf. Deep-Sea Research II, 53, 866874.CrossRefGoogle Scholar
Isla, E., Gerdes, D., Rossi, S., Fiorillo, I., Sañé, E., Gili, J.-M., and Arntz, W. E. (2011). Biochemical characteristics of surface sediments on the eastern Weddell Sea continental shelf, Antarctica: is there any evidence of seasonal patterns? Polar Biology, 34, 11251133.CrossRefGoogle Scholar
Isla, E., Masqué, P., Palanques, A., Guillén, J., Puig, P., and Sanchez-Cabeza, J. A. (2004). Sedimentation of biogenic constituents during the last century in western Bransfield and Gerlache straits, Antarctica: a relation to currents, primary production, and sea floor relief. Marine Geology, 209, 265277.CrossRefGoogle Scholar
Isla, E., Palanques, A., Alvà, V., Puig, P., and Guillén, J. (2001). Fluxes and composition of settling particles during summer in an Antarctic shallow environment: Johnson's Dock (Livingston Island, South Shetlands). Polar Biology, 24, 9, 670676.CrossRefGoogle Scholar
Isla, E., Rossi, S., Palanques, A., Gili, J. M., Gerdes, D., and Arntz, W. (2006b). Biochemical composition of marine sediment from the eastern Weddell Sea (Antarctica): high nutritive value in a high benthic-biomass environment. Journal of Marine Systems, 60, 255267.CrossRefGoogle Scholar
Isla, E., DeMaster, D. J., and Gerdes, D. (unpublished) Organic matter sedimentary patterns along the eastern Weddell Sea continental shelf.Google Scholar
Isla, E., DeMaster, D. J., Sañé, E., and Grémare, A. (2014). Seabed characteristics under the extinct A and B sections of the Larsen ice shelf: a slow awakening. XXXIII SCAR Open Science Conference, Auckland, New Zealand.Google Scholar
Jacobs, S. S. (1989). Marine controls on modern sedimentation on the Antarctic continental shelf. Marine Geology, 85, 121153.CrossRefGoogle Scholar
Kim, D., Kim, D.-Y., Park, J.-S., and Kim, Y.-J. (2005). Interannual variation of particle fluxes in the eastern Bransfield Strait, Antarctica: a response to the sea ice distribution. Deep-Sea Research I, 52, 21402155.CrossRefGoogle Scholar
Kopczynska, E. (1992). Dominance of microflagellates over diatoms in the Antarctic areas of deep vertical mixing and krill concentrations. Journal of Plankton Research, 14, 10311054.CrossRefGoogle Scholar
Langone, L., Frignani, M., Labbrozzi, L., and Ravaioli, M. (1998). Present-day biosiliceous sedimentation in the northwestern Ross Sea, Antarctica. Journal of Marine Systems, 17, 459470.CrossRefGoogle Scholar
Langone, L., Frignani, M., Ravaioli, M., and Bianchi, C. (2000). Particle fluxes and biogeochemical processes in an area influenced by seasonal retreat of the ice margin (northwestern Ross Sea, Antarctica). Journal of Marine Systems, 27, 221234.CrossRefGoogle Scholar
Littlepage, J. L., and Pearse, J. S. (1962). Biological and oceanographic observations under an Antarctic Ice Shelf. Science, 137, 679681.CrossRefGoogle ScholarPubMed
Lizotte, M. P. (2001). The contributions of sea ice algae to Antarctic marine primary production. American Zoologist, 41, 5773.Google Scholar
Margalef, R. (1978). Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta, 1, 493509.Google Scholar
Massom, R. A., Stammerjohn, S. E., Lefebvre, W., Harangozo, S. A., Adams, N., Scambos, T. A., Pook, M. J., and Fowler, C. (2008). West Antarctic Peninsula sea ice in 2005: Extreme ice compaction and ice edge retreat due to strong anomaly with respect to climate. Journal of Geophysical Research, 113, C02S20, doi:10.1029/2007JC004239.CrossRefGoogle Scholar
Masson, R. A., Harris, P. T., Michael, K. J., and Potter, M. J. (1998). The distribution and formative processes of latent-heat polynyas in East Antarctica. Annals of Glaciology, 27, 420426.CrossRefGoogle Scholar
Miles, B. W. J., Stokes, C. R., Vieli, A., and Cox, N. J. (2013). Rapid, climate-driven changes in outlet glaciers on the Pacific coast of East Antarctica. Nature, 500, 563567.CrossRefGoogle ScholarPubMed
Mock, T., and Kroon, B. M. A. (2002). Photosynthetic energy conversion under extreme conditions – I: important role of lipids as structural modulators and energy sink under N-limited growth in Antarctic sea ice diatoms. Phytochemistry, 61, 4151.CrossRefGoogle ScholarPubMed
Montes-Hugo, M., Doney, S. C., Ducklow, H. W., Fraser, W., Martinson, D., Stammerjohn, S. E., and Schofield, O. (2009). Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science, 323, 14701473.CrossRefGoogle ScholarPubMed
Montes-Hugo, M. A., and Yuan, X. (2012). Climate patterns and phytoplankton dynamics in Antarctic latent heat polynyas. Journal of Geophysical Research, 117, C05031, doi:10.1029/2010JC006597.CrossRefGoogle Scholar
Palanques, A., Isla, E., Puig, P., Sanchez-Cabeza, J. A., and Masqué, P. (2002). Annual evolution of downward particle fluxes in the Western Bransfield Strait (Antarctica) during the FRUELA experiment. Deep-Sea Research II, 49, 903920.CrossRefGoogle Scholar
Peck, L. S., Barnes, D. K. A., Cook, A. J., Fleming, A. H., and Clarke, A. (2010). Negative feedback in the cold: ice retreat produces new carbon sinks in Antarctica. Global Change Biology, 16, 26142623, doi: 10.1111/j.1365–2486.2009.02071.xCrossRefGoogle Scholar
Peisong, Y., Haisheng, Z., Chuanyu, H., and Bing, L. (2012). Using biomarkers in sediments as indicators to rebuild the phytoplankton community in Prydz Bay, Antarctica, 24, 143150.Google Scholar
Pusceddu, A., Cattaneo-Vietti, R., Albertelli, G., and Fabiano, M. (1999). Origin, biochemical composition and vertical flux of particulate organic matter under the pack ice in Terra Nova Bay (Ross Sea, Antarctica) during late summer 1995. Polar Biology, 22, 124132.CrossRefGoogle Scholar
Pusceddu, A., Dell’Anno, A., and Fabiano, M. (2000). Organic matter composition in coastal sediments at Terra Nova Bay (Ross Sea) during summer 1995. Polar Biology, 23, 288293.CrossRefGoogle Scholar
Rahmstorf, S. (2002). Ocean circulation and climate during the past 120,000 years. Nature, 419, 207214.CrossRefGoogle ScholarPubMed
Ramos, C. S., Parrish, C. C., Quibuyen, T. A. O., and Abrajano, T. A. (2003). Molecular and carbon isotopic variations in lipids in rapidly settling particles during a spring phytoplankton bloom. Organic Geochemistry, 34, 195207.CrossRefGoogle Scholar
Riddle, M. J., Craven, M., Goldsworthy, P. M., and Carsey, F. (2007). A diverse benthic assemblage 100 km from open water under the Amery Ice Shelf, Antarctica. Paleoceanography, 22, PA1204, doi:10.1029/2006PA001327.CrossRefGoogle Scholar
Riebesell, U., Schloss, I., and Smetacek, V. (1991). Aggregation of algae released from melting sea ice: implications for seeding and sedimentation. Polar Biology, 11, 239248.CrossRefGoogle Scholar
Robinson, N. J., and Williams, M. J. M. (2012). Iceberg induced changes to polynya operation and regional oceanography in the southern Ross Sea, Antarctica, from in situ observations. Antarctic Science, 24, 514526.CrossRefGoogle Scholar
Rossi, S., Isla, E., Martínez-García, A., Moraleda, N., Gili, J.-M., Rosell-Melé, A., Arntz, W. E., and Gerdes, D. (2013). Transfer of seston lipids during a flagellate bloom from the surface to the benthic community in the Weddell Sea. Scientia Marina, 77, 397407.CrossRefGoogle Scholar
Ruiz, J., Macías, D., and Peters, F. (2004). Turbulence increases the average settling velocity of phytoplankton cells. Proceedings of the National Academy of Sciences, 101, 1772017724.CrossRefGoogle ScholarPubMed
Salonen, K., Sarvala, J., Hakala, I., and Vilianen, M.-L. (1976). The relation of energy and organic carbon in aquatic invertebrates. Limnology and Oceanography, 21, 724730.CrossRefGoogle Scholar
Sañé, E., Isla, E., Bárcena, M. A., and DeMaster, D. (2013). A shift in the biogenic silica of sediment in the Larsen B continental shelf, off the eastern Antarctic Peninsula, resulting from climate change. Public Library of Science One, 8 (1): e52632. doi:10.1371/journal.pone.0052632.Google Scholar
Sañé, E., Isla, E., Gerdes, D., Montiel, A., and Gili, J.-M. (2012). Benthic macrofauna assemblages and biochemical properties of sediments in two Antarctic regions differently affected by climate change. Continental Shelf Research, 35, 5363.CrossRefGoogle Scholar
Sañé, E., Isla, E., Grémare, A., and Escoubeyrou, K. (2013). Utility of amino acids as biomarkers in polar marine sediments: a study on the continental shelf of Larsen region, Eastern Antarctic Peninsula. Polar Biology, 36, 16711680.CrossRefGoogle Scholar
Sañé, E., Isla, E., Grémare, A., Gutt, J., Vétion, G., and DeMaster, D. J. (2011). Pigments in sediments beneath a recently collapsed ice shelves: the case of Larsen A and B shelves, Antarctic Peninsula. Journal of Sea Research, 65, 94102CrossRefGoogle Scholar
Sañé, E., Isla, E., Pruski, A. M., Bárcena, M. A., Vétion, G., and DeMaster, D. J. (2011). Diatom valve distribution and sedimentary fatty acid composition in Larsen Bay, Eastern Antarctic Peninsula. Continental Shelf Research, 31, 11611168.CrossRefGoogle Scholar
Schnack-Schiel, S. B., and Isla, E. (2005). The role of zooplankton in the pelagic-benthic coupling of the Southern Ocean. Scientia Marina, 69 (II), 3955.CrossRefGoogle Scholar
Smith, K. L. Jr., Sherman, A. D., Shaw, T. J., Murray, A. E., Vernet, M., and Cefarelli, A. O. (2011). Carbon export associated with free-drifting icebergs in the Southern Ocean. Deep-Sea Research II, 58, 14851496.CrossRefGoogle Scholar
Smith, K. L Jr., Robison, B. H., Helly, J. J., Kaufmann, R. S., Ruhl, H. A., Shaw, T. J., Twining, B. S., and Vernet, M. (2007). Free-drifting icebergs: hot spots of chemical and biological enrichment in the Weddell Sea. Science, 317, 478482.CrossRefGoogle ScholarPubMed
Smith, W. O. Jr., and Comiso, J. C. (2008). Influence of sea ice on primary production in the Southern Ocean: A satellite perspective. Journal of Geophysical Research, 113, C05S93, doi:10.1029/2007JC004251.CrossRefGoogle Scholar
Smith, C. R., Mincks, S., and DeMaster, D. J. (2008b). The FOODBANCS project: introduction and sinking fluxes of organic carbon, chlorophyll-a and phytodetritus on the western Antarctic Peninsula continental shelf. Deep-Sea Research II, 55, 24042414.CrossRefGoogle Scholar
Smith, R. C., Martinson, D. G., Stammerjohn, S. E., Iannuzzi, R. A., and Ireson, K. (2008a). Bellingshausen and western Antarctic Peninsula region: Pigment biomass and sea-ice spatial/temporal distributions and interannual variability. Deep-Sea Research II, 55, 19491963.CrossRefGoogle Scholar
Tamura, T., Ohshima, K. I., and Nihashi, S. (2008). Mapping of sea ice production for Antarctic coastal polynyas. Geophysical Research Letters, 35, L07606, doi:10.1029/2007GL032903.CrossRefGoogle Scholar
Thatje, S., Hillenbrand, C.-D., Mackensen, A., and Larter, R. (2008). Life hung by a thread: endurance of Antarctic fauna in glacial periods. Ecology, 89, 682692.CrossRefGoogle Scholar
Thomas, D., and Dieckmann, G. (2002). Antarctic sea ice – a habitat for extremophiles. Science, 295, 641644.CrossRefGoogle ScholarPubMed
Villafañe, V. E., Helbling, E. W., and Holm-Hansen, O. (1995). Spatial and temporal variability of phytoplankton biomass and taxonomic composition around Elephant Island, Antarctica, during the summers of 1990–1993. Marine Biology, 123, 677686.CrossRefGoogle Scholar
Wefer, G., and Fischer, G. (1991). Annual primary production and export flux in the Southern Ocean from sediment trap data. Marine Chemistry, 35, 597613.CrossRefGoogle Scholar
Wefer, G., Fischer, G., Füetterer, D., and Gersonde, R. (1988). Seasonal particle flux in the Bransfield Strait, Antarctica. Deep-Sea Research, 35, 891898.CrossRefGoogle Scholar
Wefer, G., Fischer, G., Füetterer, D., Gersonde, R., Honjo, S., and Ostermann, D. (1990) Particle sedimentation and productivity in Antarctic waters of the Atlantic sector. In Bleil, U., Thiede, J., eds., Geological History of the Polar Oceans: Arctic versus Antarctic, 363379. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Wing, S. R., McLeod, R. J., Leichter, J. J., Frew, R. D., and Lamare, M. D. (2012). Sea ice microbial production supports Ross Sea benthic communities: influence of a small but stable subsidy. Ecology, 93, 314323.CrossRefGoogle ScholarPubMed

References

Atkinson, S. L. (2001). Weathering and major-ion chemistry in the Herbert, Eagle and Mendenhall glacial meltwaters. 14th Keck Symposium Volume. NASA Goddard Space Flight Center. Online: http://keckgeology.org/14thsymposiumvolume, accessed 27 February 2014.Google Scholar
Battke, Z., Marsz, A. A., and Pudełko, R. (2001). The processes of deglaciation in the region SSSI No. 8 and their climatic and hydrological conditions (Admiralty Bay, King George Islands, South Shetlands). Problemy Klimatologii Polarnej, 11, 121135.Google Scholar
Borysiak, J., Grześ, M., Pulina, M., and Szpikowska, G. (2015). Hydrogeochemical and biogeochemical processes in Kaffiøyra river catchments (Spitsbergen, Norway). Quaestiones Geographicae, 34(1), 111124. doi: 10.1515/quageo-2015-0010.CrossRefGoogle Scholar
Braun, M. (2001). Ablation on the ice cap of King George Island (Antarctica)–an approach from field measurements, modelling and remote sensing. Ph.D. thesis, Albert–Ludwigs–Universität Freiburg, 165 pp.Google Scholar
Braun, M., and Goßmann, H. (2002). Glacial changes in the area of Admiralty Bay and Potter Cove, King George Island, Antarctica. In Beyer, M. and Boelter, M., eds., Geoecology of terrestrial Antarctic oases. Ecological Studies, 154, 75–89. Heidelberg: Springer-Verlag.Google Scholar
Braun, M., Saurer, H., Vogt, S., Simoes, J. C., and Grossmann, H. (2001). The influence of large-scale atmospheric circulation on the surface energy balance of the King George Island ice cap. International Journal of Climatology, 21, 2136.CrossRefGoogle Scholar
Carrasco, J. F., (2013). Decadal changes in the near-surface air temperature in the western side of the Antarctic Peninsula. Atmospheric and Climate Sciences, 3, 275281. Online: http://dx.doi.org/10.4236/acs.2013.33029.CrossRefGoogle Scholar
Chapman, W. L., and Walsh, J. E. (2007). A synthesis of Antarctic temperatures. Journal of Climate, 20, 40964117.CrossRefGoogle Scholar
Chmiel, S., Bartoszewski, S., and Siwek, K. (2011). Chemical denudation rates in the Wydrzyca catchment (Bellsund, Svalbard). Annales Universitatis Mariae Curie-Skłodowska, 66(1), 115128.Google Scholar
Cogley, J. G., Hock, R., Rasmussen, L. A., Arendt, A. A., Bauder, A., Braithwaite, R. J., Jansson, P., Kaser, G., Möller, M., Nicholson, L., and Zemp, M. (2011). Glossary of glacier mass balance and related terms. IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris: UNESCO.Google Scholar
Domack, E., Leventer, A., Burnett, A., Bindschadler, R., Convey, P., and Kirby, M., eds. (2003). Antarctic Peninsula Climate Variability. Antarctic Research Series 79. Washington: American Geophys. Union, 260 pp.Google Scholar
Doran, P. T., Proscu, J. C., Lyons, W. B., Walsh, J. E, Fountain, A. G., McKnight, D. M., Moorhead, D. L., Virginia, R. A., Wall, D. H., Clow, G. D., Fristen, C. H., McKay, C. P., and Parsons, A. N. (2002). Antarctic climate cooling and terrestrial ecosystem response, Nature, 415, 517520.CrossRefGoogle ScholarPubMed
Embleton, C., and Thornes, J., eds. (1979). Process in Geomorphology. London: Hodder & Stoughton Educational.Google Scholar
Ferron, F. A., Simões, J. C., Aquino, F. E., and Setzer, A. W. (2004). Air temperature time series for King George Island, Antarctica. Pesquisa Antártica Brasileira, 4, 155169.CrossRefGoogle Scholar
Finlayson, B. (1979). Electrical conductivity: a useful technique in teaching geomorphology. Journal of Geography in Higher Education, 3(2), 6887.CrossRefGoogle Scholar
Francelino, M. R., Schaefer, C. E. G. R., and Fernandes Filho, E. I. (2003). Arctowski region map. Non-conventional aerial photographs.Google Scholar
Gurnell, A. M. (1987). Suspended sediment. In Gurnell, A. M. and Clark, M. J., eds., Glaciofluvial Sediment Transfer: An Alpine Perspective. Chichester: Wiley, 305354.Google Scholar
Hodson, A. (1999). Glacio-fluvial sediment and solute transfer in high Arctic basins: examples from Svalbard. Glacial Geology and Geomorphology, 10. Online: ggg.qub.ac.uk/ggg/papers/full/1999/rp101999/rp10.html.Google Scholar
Hodson, A., Gurnell, A., Tranter, M., Bogen, J., Hagen, J. O., and Clarke, M. (1998). Suspended sediment yield and transfer processes in a small High Arctic glacier basin, Svalbard. Hydrol. Proc., 12, 7386.3.0.CO;2-S>CrossRefGoogle Scholar
Hodson, A., Tranter, M., and Vatne, G. (2000). Contemporary rates of chemical denudation and atmospheric CO2 sequestration in glacier basins: an Arctic perspective. Earth Surface Processes and Landforms, 25, 14471471.3.0.CO;2-9>CrossRefGoogle Scholar
Jacobs, S. S., and Comiso, J. C. (1997). Climate variability in the Amundsen and Bellingshausen Seas. Journal of Climate, 10, 697709.2.0.CO;2>CrossRefGoogle Scholar
Kejna, M. (1999). Air temperature on King George Island (South Shetland Islands, Antarctica). Polish Polar Research, 20, 183201.Google Scholar
Kejna, M. (2003). Trends of air temperature of the Antarctic during the period 1958–2000, Polish Polar Research, 24(2), 99-126.Google Scholar
Kejna, M. (2008a). Spatial distribution and variability of air temperature on Antarctica during the second part of the 20th century. Toruń: Wydawnictwo Uniwersytetu Mikołaja Kopernika, 272 pp.Google Scholar
Kejna, M. (2008b). Topoclimatic conditions in the vicinity of the H. Arctowski Station (King George Island, Antarctica) during the summer season of 2006/2007. Polish Polar Research, 29(2), 95-116.Google Scholar
Kejna, M., Araźny, A., and Sobota, I. (2013). The climatic change on King George Island (South Shetland Islands, Antarctica) in the years of 1948–2011, Polish Polar Research, 2, 213235.CrossRefGoogle Scholar
Kejna, M., Láska, K., and Caputa, Z. (1998). Recession of Ecology Glacier (King George Island) in the period 1961–1996. Warszawa: Polish Polar Studies, 121128.Google Scholar
Kostrzewski, A., Kaniecki, A., Kapuściński, J., Klimczak, R., Stach, A., and Zwoliński, Zb. (1989). The dynamics and rate of denudation of glaciated and non-glaciated catchments, central Spitsbergen. Polish Polar Research, 10(3), 317367.Google Scholar
Kostrzewski, A., Mazurek, M, and Zwoliński, Zb. (1994). Dynamika transportu fluwialnego górnej Parsęty jako odbicie funkcjonowania systemu zlewni. Poznań: Stowarzyszenie Geomorfologów Polskich, 165 pp.Google Scholar
Kostrzewski, A., Rachlewicz, G., and Zwoliński, Zb. (1998). Geomorphological map of the western coast of Admiralty Bay, King George Island. In Repelewska-Pękalowa, J., ed., Relief, Quaternary Paleogeography and Changes of the Polar Environment. Lublin: II. IV Zjazd Geom. Pol., UMCS, 7177.Google Scholar
Kostrzewski, A., Rachlewicz, G., and Zwoliński, Zb. (2001). Contemporary sedimentary covers of western coast of Admiralty Bay, King George Island, South Shetlands. In Kostrzewski, A., ed., Geneza, litologia i stratygrafia utworów czwartorzędowych, III. Poznań: Wyd. UAM, Ser. Geografia, 64: 219235.Google Scholar
Kostrzewski, A., Rachlewicz, G., and Zwoliński, Zb. (2003). The relief of the Western Coast of Admiralty Bay, King George Island, South Shetlands. Quaestiones Geographicae, 22, 4358.Google Scholar
Kostrzewski, A., and Zwoliński, Zb. (1985). Chemical denudation rate in the upper Parsęta catchment, Western Pomerania: research methods and preliminary results. Quaestiones Geographicae, Spec. Iss., 1, 121138.Google Scholar
Kostrzewski, A., and Zwoliński, Zb. (1992). Udział denudacji chemicznej i mechanicznej we współczsnym systemie geomorficznym górnej Parsęty (Pomorze Zachodnie). In A. Kotarba, ed., System denudacyjny Polski. Pr. Geogr. IGiPZ PAN, 155: 11–45.Google Scholar
Krawczyk, W. E., and Bartoszewski, S. A. (2008). Crustal solute fluxes and transient carbon dioxide drawdown in the Scottbreen Basin, Svalbard in 2002. Journal of Hydrology, 362, 206219.CrossRefGoogle Scholar
Lagun, V. E., Ivanov, N. E., and Jagovkina, S. V. (2006). About the warming in the region of the Antarctic Peninsula. Problemy Klimatologii Polarnej, 16, 2245 (in Russian).Google Scholar
Macioszczyk, A. (1987). Hydrogeochemia. Warszawa: Wydawnictwa Geologiczne, 475 pp.Google Scholar
Marsz, A. A., and Styszyńska, A. (2000). Main features of climate of Henryk Arctowski Polish Polar Station (Western Antarctica, South Shetlands, King George Island). Gdynia: Wyd. WSM, 264 pp.Google Scholar
Martianov, V., and Rakusa-Suszczewski, S., (1990). Ten years of climate observations at the Arctowski and Bellingshausen Stations (King George Island, South Shetlands, Antarctic). In Breymeyer, A., ed., Global Change Regional Research Centres, Seminar Papers and IGBP WG2 Report. IGSO PAS: 8087.Google Scholar
Mazurek, M. (2000). Zmienność transportu materiałurozpuszczonego w zlewni Kłudy jako przejaw współczesnych procesów denudacji chemicznej (Pomorze Zachodnie). Poznań: Wyd. UAM, 125 pp.Google Scholar
Meredith, M. P., and King, J. C. (2005). Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophysical Research Letters, 32, L19604, doi:10.1029/2005GL024042CrossRefGoogle Scholar
Monaghan, A. J., Bromwich, D. H., Chapman, W., and Comiso, J. C. (2008). Recent variability and trends of Antarctic near-surface temperature. J. Geophys. Res., 113, D04105, doi: 10.1029/2007JD009094Google Scholar
Murphy, E. J., Clarke, A., Symon, C., and Priddle, J. (1995). Temporal variation in Antarctic sea-ice: analysis of a long term fast-ice record from the South Orkney Islands. Deep-Sea Res., 42, 118.CrossRefGoogle Scholar
Olech, M. A., and Massalski, A. (2001). Plant colonization and community development on the Sphinx Glacier forefield. Folia Facultatis Scientiarium Naturalium Universitatis Masarykianae Brunensis, Geographia, 25, 111119.Google Scholar
Østrem, G., and Brugman, M. (1991). Glacier mass-balance measurements: a manual for field and office work. Saskatoon, Saskatchewan: National Hydrology Research Institute, Science Report No. 4, 224 pp.Google Scholar
Parkinson, C. L., and Cavalieri, D. J. (2012). Antarctic sea ice variability and trends, 1979–2010, The Cryosphere, 6, 871880, doi:10.5194/tc-6–871-2012CrossRefGoogle Scholar
Project KGIS. (2005). SCAR KGIS, The King George Island GIS Project. Online: www.kgis.scar.org.Google Scholar
Pudełko, R. 2003). Topographic map of the SSSI No. 8, King George Island, West Antarctica. Polish Polar Research, 24(1), 5260.Google Scholar
Pudełko, R. (2007). Othophotomap. Western Shore of Admiralty Bay. 1:10000, Department of Antarctic Biology Polish Academy of Science.Google Scholar
Pulina, M. (1974). Denudacja chemiczna na obszarach krasu węglanowego. Wrocław: Zakład Narodowy im. Ossolińskich, 159 pp.Google Scholar
Rachlewicz, G. (1997). Mid-winter thawing in the vicinity of Arctowski Station, King George Island. Polish Polar Research, 18(1), 15–24.Google Scholar
Rachlewicz, G. (2001). Wybrane procesy glacjalne w warunkach morskiego klimatu Antarktyki na przykładzie Kopuły Lodowej Warszawy, Wyspa Króla Jerzego (Szetlandy Południowe). In Karczewski, A. and Zwoliński, Zb., eds., Funkcjonowanie geoekosystemów w zróżnicowanych warunkach morfoklimatycznych. Monitoring, ochrona, edukacja. Poznań: Stowarzyszenie Geomorfologów Polskich, Bogucki Wyd. Nauk., 443452.Google Scholar
Rachlewicz, G., Szczuciński, W., and Ewertowski, M. (2007). Post- “Little Ice Age” retreat rates of glaciers around Billefjorden in central Spitsbergen, Svalbard. Polish Polar Research. 28(3): 159186.Google Scholar
Rakusa-Suszczewski, S. (1999). Ekosystem morskiej Antarktyki. Zmiany i zmienność. Warszawa: PWN Wyd. Nauk., 152 pp.Google Scholar
Rakusa-Suszczewski, S. (2003). Functioning of the geoecosystem for the west side of Admiralty Bay (King George Island, Antarctica): outline of research at Arctowski Station. Ocean and Polar Research, 25(4), 653662.CrossRefGoogle Scholar
Rakusa-Suszczewski, S., and Sierakowski, K. (1993). Pinnipeds in Admiralty Bay, King George Island, South Shetlands (1988–1992). Polish Polar Research, 14, 439453.Google Scholar
Rodriquez, R., Llasat, C. M., and Rakusa-Suszczewski, S. (1996). Analysis of the mean and extreme temperature series of the Arctowski Antarctic Base. Problemy Klimatologii Polarnej, 6, 191212.Google Scholar
Rückamp, M., Blindow, N., Suckro, S., Braun, M., and Humbert, A. (2010). Dynamics of the ice cap on King George Island, Antarctica: field measurements and numerical simulations. Annals of Glaciology, 51, 8090.CrossRefGoogle Scholar
Rückamp, M., Braun, M., Suckro, S., and Blindow, N. (2011). Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Global and Planetary Change, 79, 99-109.CrossRefGoogle Scholar
Sharp, M., Tranter, M., Brown, G., and Skidmore, M. (1995). Rates of chemical denudation and CO2 drawdown in a glacier-covered alpine catchment. Geology, 23, 6164.2.3.CO;2>CrossRefGoogle Scholar
Sierakowski, K. (1991). Birds and mammals in the region of SSSI No. 8 in the season 1988/89 (South Shetlands, King George Island, Admiralty Bay). Polish Polar Research, 12, 2554.Google Scholar
Simões, J. C., Bremer, U. F., Aquino, F. E., and Ferron, F. A. (1999). Morphology and variations of glacial drainage basins in the King George Island ice field. Antarctica Ann. Glac., 29, 220224.CrossRefGoogle Scholar
Smith, R. C., Stammerjohn, S., and Baker, K. S. (1996). Surface air temperature variations in the western Antarctic Peninsula region. In Ross, R. M., Quetin, L. B., and Hofmann, E. E., eds., Foundations for Ecological Research West of the Antarctic Peninsula. AGU Antar. Res. Ser., 70: 105121.CrossRefGoogle Scholar
Sobota, I. (2013). Recent changes of cryosphere of north-western Spitsbergen based on Kaffiøyra region. Toruń: Wydawnictwo UMK. 449 pp.Google Scholar
Sobota, I., Kejna, M., and Araźny, A. (2015). Short-term mass changes and retreat of the Ecology and Sphinx glacier system, King George Island, Antarctic Peninsula. Antarctic Science, 27(5), 500510.CrossRefGoogle Scholar
Sobota, I., and Lankauf, K. R. (2010). Recession of Kaffiøyra Region glaciers, Oscar II Land, Svalbard. Bulletin of Geography, Physical Geography Series, 3, 2745.CrossRefGoogle Scholar
Stach, A. (1992). Pomiar przepływu wody metoda konduktometryczna w profilach nieustabilizowanych małych cieków nizinnych. In Kostrzewski, A. and Pulina, M., eds., Metody hydrochemiczne w geomorfologii dynamicznej. Pr. Nauk. UŚl., 1254: 84-105.Google Scholar
Stastna, V. (2010). Spatio-temporal changes in surface air temperature in the region of the northern Antarctic Peninsula and South Shetland Islands during 1950–2003, Polar Science, 4, 1833.CrossRefGoogle Scholar
Steig, E. J, Schneider, D. P., Rutherford, S. D., Mann, M. E., Comiso, J. C. and Shindell, D. T. (2009). Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457(22).CrossRefGoogle ScholarPubMed
Stumm, W., and Morgan, J. (1996). Aquatic chemistry, 3rd ed. New York: John Wiley & Sons.Google Scholar
Szpikowski, J., Szpikowska, G., Zwoliński, Zb., and Kostrzewski, A. (2014a). Magnitude of fluvial transport and rate of denudation in a non-glacierised catchment in a polar zone, Central Spitsbergen. Geografiska Annaler: Series A, Physical Geography, 96, 447464. doi:10.1111/geoa.12070.Google Scholar
Szpikowski, J., Szpikowska, G., Zwoliński, Zb., Rachlewicz, G., Kostrzewski, A., Marciniak, M., and Dragon, K. (2014b). Character and rate of denudation in a High Arctic glacierized catchment (Ebbaelva, Central Spitsbergen). Geomorphology, 218, 5262. DOI 10.1016/j.geomorph.2014.01.012.CrossRefGoogle Scholar
Turner, J., Colwell, S. R., and Harangozo, S. (1997). Variability of precipitation over the coastal western Antarctic Peninsula from synoptic observations. Journal of Geophysical Research, 102, D12: 1399914007.CrossRefGoogle Scholar
van den Broeke, M. R. (2000). On the interpretation of Antarctic temperature trends. Journal of Climate, 13(21), 38853889.2.0.CO;2>CrossRefGoogle Scholar
Vaughan, D. G., Marshall, G. J., Connolley, W. M., Parkinson, C., Mulvaney, R., Hodgson, D. A., King, J. C., Pudsey, C. J., and Turner, J. (2003). Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change 60, 243274, DOI: 10.1023/A:1026021217991.CrossRefGoogle Scholar
Wadham, J. L., Hodson, A. J., Tranter, M., and Dowdeswell, J. A. (1997). The rate of chemical weathering beneath a quiescent, surge-type, polythermal-based glacier, southern Spitsbergen, Svalbard. Annals of Glaciology, 24, 2731.CrossRefGoogle Scholar
Zwoliński, Zb. (1989). Geomorficzne dostosowywanie się koryta Parsęty do aktualnego reżimu rzecznego (Geomorphic adjustment of the Parsęta channel to the present-day river regime). Dokum. Geogr., 3/4, 144 pp.Google Scholar
Zwoliński, Zb. (2007a). The mobility of mineral master in paraglacial areas, King George Island, Western Antarctica. Poznań: Wydawnictwo Naukowe UAM, Ser. Geografia, 74, 266 pp.Google Scholar
Zwoliński, Zb. (2007b). Hydrological polar monitoring – methodical proposition. Monitoring Środowiska Przyrodniczego, 8, 2939.Google Scholar
Zwoliński, Zb., Szpikowski, J., Wiśniewska, K. (2012). Provenance of surface waters on the western coast of Admiralty Bay, King George Island, Antarctica. In: Beylich, A. A., Zwoliński, Zb. (eds.), Hydrogeomorphological processes in catchment geoecosystems. Zeitschrift für Geomorphologie, 56(SI 1), 123141, DOI: 10.1127/0372-8854/2012/S-00076.Google Scholar

References

Ivanov, V. L., and Kamenev, E. N., eds. (1990). Geology and Mineral Resources of Antarctica. Moscow: Nedra.Google Scholar
Kotlyakov, V. M., ed. (1997). World Atlas of Snow and Ice Resources. Moscow: Institute of Geography, Russian Academy of Sciences.Google Scholar
Kotlyakov, V. M. (2000). Selected Works: Volume 1. Glaciology of Antarctica, Moscow: Nauka.Google Scholar
Lastochkin, A. N. (2006). Subglacial geomorphology of the Antarctic: theory, methods and results. General geomorphological studies, vol. 1. State University, St. Petersburg.Google Scholar
Lastochkin, A. N., ed. (2013). The Antarctic. Geomorphologic Atlas (international issue). St. Petersburg: Karta.Google Scholar
Lastochkin, A. N., and Popov, S. V. (2003). Subglacial – submarine network valleys near the trough Lambert (East Antarctica). Proceedings of the Russian Geographical Society, 135(4), 3546.Google Scholar
Lastochkin, A. N., and Popov, S. V. (2004). Method for detecting structural lines during the ice-submarine topography of Antarctica. Geomorfologija, 1, 3443.Google Scholar
Lastochkin, A. N., Popov, S. V. (2005). The methodology and results of a study of the subglacial-submarine valley network in Antarctica (District gutter Lambert). Geography and Natural Resources, 3, 2741.Google Scholar
Lastochkin, A. N., Popov, S. V., and Mandrikova, D. V. (2005). Analytical map subglacial-submarine relief Antarctic. Geomorfologija, (4), 1319.Google Scholar
Losev, K. S. (1982). Antarctic ice sheet. Moscow: Nauka.Google Scholar
Masolov, V. N., Popov, S. V., and Lukin, V. V. (2002). Main results of seismic and radar studies of the subglacial Lake Vostok. Exploration and Protection of Natural Resources, 9, 5867.Google Scholar
Masolov, V. N., Popov, S. V., Lukin, V. V., Sheremetyev, A. N., and Popkov, A. M. (2006). Russian geophysical studies of Lake Vostok, Central East Antarctica. Antarctica – Contributions to Global Earth Sciences. Berlin; Heidelberg; New York: Springer-Verlag.Google Scholar
Meshcheryakov, Y. A. (1960). Structural geomorphology plain countries. Moscow.Google Scholar
Popov, S. V., Lastochkin, A. N., Popkov, A. M., Maslov, V. M., and Lukin, V. V. (2002). Results of geomorphologic interpretation of the bed relief in the subglacial Lake Vostok area. American Geophysical Union, Spring Meeting 2002, abstract #B22A-02.Google Scholar
Serebryanyj, L. R. (1980). The glaciation of Antarctica in the light of paleogeographic data. Antarctica, 19, 3945.Google Scholar
Shumsky, P. A. (1967). The glaciation of Antarctica. The Main Results of Antarctic Investigations for 10 years. Moscow.Google Scholar
Studinger, M., Bell, R. E., Karner, G. D., Tikku, A. A., Holt, J. W., Morse, D. L., Richter, T. G., Kempf, S. D., Peters, M. E., Blankenship, D. D., Sweeney, R. E., and Rystrom, V. L. (2002). Ice cover, landscape setting, and geological framework of Lake Vostok, East Antarctica. Earth and Planetary Science Letters, 205(3-4), 195210.CrossRefGoogle Scholar

References

Alger, A. S., McKnight, D. M., Spaulding, S. A., Tate, C. M., Shupe, G. H., Welch, K. A., Edwards, R., Andrews, E. D., and House, H. R. (1997). Ecological processes in a cold desert ecosystem: the abundance and species distribution of algal mats in glacial meltwater streams in Taylor Valley. Institute of Arctic and Alpine Research Occasional Paper 51. Boulder, CO: University of Colorado. 108pp.Google Scholar
Andersen, D. W., Wharton, R. A. Jr., and Squyres, S. W. (1993). Terrigenous clastic sedimentation in antarctic dry valley lakes. In Green, W. J. and Friedman, E. I., eds., Physical and Biogeochemical Processes in Antarctic Lakes. Antarctic Research Series 59, 7181.CrossRefGoogle Scholar
Angino, E. E., Armitage, K. B., and Tash, J. C. (1962). Chemical stratification in Lake Fryxell, Victoria Land, Antarctica. Science, 138, 3436.CrossRefGoogle Scholar
Bagshaw, E., Tranter, M., Fountain, A. G., Welch, K. A., Basagic, H. J., and Lyons, W. B. (2007). The biogeochemical evolution of cryoconite holes on glaciers in Taylor Valley, Antarctica. Journal of Geophysical Research, 113, G04S35.CrossRefGoogle Scholar
Barrett, J. E., Virginia, R. A., Lyons, W. B., McKnight, D. M., Priscu, J. C., Doran, P. T., Fountain, A. G., Wall, D. H., and Moorhead, D. L. (2007). Biogeochemical stoichiometry of Antarctic Dry Valley ecosystems. Journal of Geophysical Research: Biogeosciences, 112, G01010. doi:10.1029/2005JG000141.CrossRefGoogle Scholar
Bisson, K. M., Welch, K. A., Welch, S. A., Sheets, J. M., Lyons, W. B., Levy, J. S., and Fountain, A. G. (In press.) Patterns and processes of salt efflorescences in the McMurdo region, Antarctica. Arctic, Antarctic and Alpine Research, doi: 10.1657/AAAR0014-024,CrossRefGoogle Scholar
Chapman, W. L, and Walsh, J. E. (2007). A synthesis of Antarctic temperatures. Journal of Climate, 20, 40964117.CrossRefGoogle Scholar
Conovitz, P. A., McKnight, D. M., MacDonald, L. H., and Fountain, A. G. (1998). Hydrologic processes influencing streamflow variation in Fryxell Basin, Antarctica. In Priscu, J. C., ed., Ecosystem Processes in a Polar Desert: The McMurdo Dry Valleys, Antarctica. Antarctic Research Series 72. Washington DC: American Geophysical Union, 93108.Google Scholar
Deuerling, K. M., Lyons, W. B., Welch, S. A., and Welch, K. A. (2014). The characterization and role of aeolian deposition on water quality, McMurdo Dry Valleys, Antarctica. Aeolian Research, 13 (2014), 717.CrossRefGoogle Scholar
Doran, P. T., Wharton, R. A. Jr., and Lyons, W. B. (1994). Paleolimnology of the McMurdo Dry Valleys, Antarctica. Journal of Paleolimnology, 10(2), 85114.CrossRefGoogle ScholarPubMed
Doran, P. T., McKay, C. P., Clow, G. D., Dana, G. L., Fountain, A. G., Nylen, T. H., and Lyons, W. B. (2002). Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. Journal of Geophysical Research, 107, 47724784.CrossRefGoogle Scholar
Faure, G., and Mensing, T. M. (2010). The Transantarctic Mountains: Rocks, Ice, Meteorites and Water. New York: Springer, 830pp.Google Scholar
Foley, K., Lyons, W. B., Barrett, J. E., and Virginia, R. A. (2006). Pedogenic carbonate distribution within glacial till in Taylor Valley, Southern Victoria Land, Antarctica. Geological Society of America Special Paper, 416, 89103.Google Scholar
Fountain, A. G., Lyons, W. B., Burkins, M. B., Dana, G. L., Doran, P. T., Lewis, K. J., McKnight, D. M., Moorhead, D. L., Parsons, A. N., and Priscu, J. C. (1999). Physical controls on the Taylor Valley Ecosystem, Antarctica. BioScience, 49(12), 961972.CrossRefGoogle Scholar
Fountain, A. G., and Walder, J. S. (1998). Water flow through temperate glaciers. Reviews of Geophysics, 36(3), 299328.CrossRefGoogle Scholar
Fountain, A. G., Nylen, T. H., Monaghan, A., Basagic, H. J., and Browmwich, D. (2010). Snow in the McMurdo Dry Valleys, Antarctica. International Journal of Climatology, 30(5), 633642.CrossRefGoogle Scholar
Fountain, A. G., Levy, J. S., Gooseff, M. N., and Van Horn, D. (2014). The McMurdo Dry Valleys: A landscape on the threshold of change. Geomorphology, http://dx.doi.org/10.1016/j.geomorph.2014.03.044.CrossRefGoogle Scholar
Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170, 10881090.CrossRefGoogle ScholarPubMed
Gillies, J. A., Nickling, W. G., and Tilson, M. (2013). Frequency, magnitude, and characteristics of Aeolian sediment transport: McMurdo Dry Valleys, Antarctica. Journal of Geophysical Research, 118, 461479. doi:10.1002/jgrf.20007.CrossRefGoogle Scholar
Green, W. J., and Canfield, D. E. (1984). Geochemistry of the Onyx River (Wright Valley, Antarctica) and its role in the chemical evolution of Lake Vanda. Geochimica et Cosmochimica Acta, 48 , 24572467.CrossRefGoogle Scholar
Green, W. J., Angle, M. P., and Chave, K. E. 1988). The geochemistry of Antarctic streams and their role in the evolution of four lakes of the McMurdo Dry valleys. Geochimica et Cosmochimica Acta, 52, 12651274.CrossRefGoogle Scholar
Green, W. J., Stage, B. R., Preston, A., Wagers, S., Shacat, J., Newell, S. (2005). Geochemical processes in the Onyx River, Wright Valley, Antarctica: Major ions, nutrients, trace metals. Geochimica et Cosmochimica Acta, 69, 839850.CrossRefGoogle Scholar
Gooseff, M. N., McKnight, D. M., Lyons, W. B., and Blum, A. E. (2002). Weathering reactions and hyporheic exchange controls on stream water chemistry in a glacial meltwater stream in the McMurdo Dry Valleys. Water Resources Research, 38, 1279. doi:10.1029/2001WR000834.CrossRefGoogle Scholar
Gooseff, M. N., McKnight, D. M., Runkel, R. L., and Vaughn, B. H. (2003). Determining long time-scale hyporheic zone flow paths in Antarctic streams. Hydrological Processes, 17, 16911710.CrossRefGoogle Scholar
Gurnell, A. M., Hannah, D., and Lawler, D. (1996). Suspended sediment yield from glacier basins. IAHS Publication, 236, 97104.Google Scholar
Hall, B. L., and Denton, G. H. (2000). Extent and chronology of the Ross Sea ice sheet and the Wilson Piedmont Glacier along the Scott Coast at and since the last glacial maximum. Geografiska Annaler, 82A, 337363.CrossRefGoogle Scholar
Hall, K., Thorn, C. E., Matsuoka, N., and Prick, A. (2002). Weathering in cold regions: some thoughts and perspectives. Progress in Physical Geography, 26(4), 577603.CrossRefGoogle Scholar
Hendy, C. H. (2000). Late Quaternary lakes in the McMurdo Sound region of Antarctica. Geografiska Annaler, 82A, 411432.CrossRefGoogle Scholar
Harris, K., Carey, A. E., Welch, K. A., Lyons, W. B., and Fountain, A. G. (2007). Solute and isotope geochemistry of near-surface ice melt flows in Taylor Valley, Antarctica. Geological Society of America Bulletin, 119, 548555.CrossRefGoogle Scholar
Howard-Williams, C., Priscu, J. C., and Vincent, W. F. (1989). Nitrogen dynamics in two Antarctic streams. Hydrobiologia, 172, 5161.CrossRefGoogle Scholar
Keys, J. R., and Williams, K. (1981). Origin of crystalline, cold desert salts in the McMurdo region, Antarctica. Geochimica et Cosmochimica Acta, 45, 22992309.Google Scholar
Koch, J., McKnight, D. M., and Neupauer, R. M. (2011). Simulating unsteady flow, anabranching, and hyporheic dynamics in a glacial meltwater stream using a coupled surface water routing and groundwater flow model. Water Resources Research, 47(5). 10.1029/2010WR009508.CrossRefGoogle Scholar
Lancaster, N. (2002). Flux of aeolian sediment in the McMurdo Dry Valleys, Antarctica: a preliminary assessment. Arctic, Antarctic, and Alpine Research, 34(3), 318323. doi: 10.2307/1552490.CrossRefGoogle Scholar
Levy, J. S., Fountain, A. G., Gooseff, M. N., Welch, K. A., and Lyons, W. B. (2011). Water tracks and permafrost in Taylor Valley, Antarctica: Extensive and shallow groundwater connectivity in a cold desert ecosystem. Geological Society of America Bulletin, 123(11–12), 22952311.CrossRefGoogle Scholar
Lyons, W. B., Welch, K. A., Nezat, C. A., Crick, K., Toxey, J. K., Mastrine, J. A., and McKnight, D. M. (1997). Chemical weathering rates and reactions in the Lake Fryxell Basin, Taylor Valley: Comparison to temperate river basins. In Lyons, W.B., Howard-Williams, C., and Hawes, I., eds., Ecosystem Processes in Antarctic Ice-free Landscapes. Rotterdam: Balkema Publishers, 147154.Google Scholar
Lyons, W. B., Welch, K. A., Fountain, A. G., Dana, G. L., Vaughn, B. H., and McKnight, D. M. (2003). Surface glaciochemistry of Taylor Valley, southern Victoria Land, Antarctica and its relationship to stream chemistry. Hydrological Processes, 17, 115130.CrossRefGoogle Scholar
MacDonell, S. A., Fitzsimons, S. J., and Mölg, T. (2012). Seasonal sediment fluxes forcing supraglacial melting on the Wright Lower Glacier, McMurdo Dry Valleys, Antarctica. Hydrological Processes, doi:10.1002/hyp.9444 2012.CrossRefGoogle Scholar
Maurice, P., McKnight, D. M., Leff, L., Fulghun, J., and Gooseff, M. N. (2002). Direct observation of aluminosilicate weathering in the hyporheic zone of an Antarctic Dry Valley stream. Geochimica et Cosmochimica Acta, 66, 13351347.CrossRefGoogle Scholar
McKnight, D. M., Niyogi, D. K., Alger, A. S., Bomblies, A., Conovitz, P. A., and Tate, C. M. (1999). Dry valley streams in Antarctica: ecosystems waiting for water. BioScience, 49(12), 985995.CrossRefGoogle Scholar
Mosley, M. P. (1988). Bedload transport and sediment yield in the Onyx River, Antarctica. Earth Surface Processes and Landforms, 13, 5167.CrossRefGoogle Scholar
Mullin, J. B., and Riley, J. P. (1955). The colorimetric determination of silicate with special reference to sea and natural waters. Analytica Chemica Acta, 12, 162176.CrossRefGoogle Scholar
Nezat, C. A., Lyons, W. B., and Welch, K. A. (2001. Chemical weathering in streams of a polar desert (Taylor Valley, Antarctica). Geological Society of America Bulletin, 113, 14011408.2.0.CO;2>CrossRefGoogle Scholar
Nylen, T. H., Fountain, A. G., and Doran, P. T. (2004). Climatology of katabatic winds in the McMurdo Dry Valleys, Southern Victoria Land, Antarctica. Journal of Geophysical Research, 109. DOI: 10.1029/2003JD003937.Google Scholar
Priscu, J. C., ed. (1998), Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica. Antarctic Research Series 72, Washington, DC: American Geophysical Union, 369 pp.CrossRefGoogle Scholar
Putkonen, J., Balco, G., and Morgan, D. (2008). Slow regolith degradation without creep determined by cosmogenic nuclide measurements in Arena Valley, Antarctica. Quaternary Research, 69, 242249. doi:10.1016/j.yqres.2007.12.004.CrossRefGoogle Scholar
Stanish, L. F., Kohler, T. J., Esposito, R. M. M., Simmons, B. L., Nielsen, U. N., Wall, D. H., Nemergut, D. R., and McKnight, D. M. (2012). Extreme streams: flow intermittency as a control on diatom communities in meltwater streams in the McMurdo Dry Valleys, Antarctica. Canadian Journal of Fisheries and Aquatic Sciences, 69(8), 14051419.CrossRefGoogle Scholar
Summerfield, M. A., Stuart, F. M., Cockburn, H. A. P., Sugden, D. E., Denton, G. H., Dunai, T., and Marchant, D. R. (1999). Long-term rates of denudation in the Dry Valleys, Transantarctic Mountains, southern Victoria Land, Antarctica based on in-situ-produced cosmogenic 21Ne. Geomorphology, 27(1–2), 113129.CrossRefGoogle Scholar
Szpikowski, J., Szpikowska, G., Zwoliński, Z., Rachlewicz, G., Kostrzewski, A., Marciniak, M., and Dragon, K. (2014). Character and rate of denudation in a High Arctic glacierized catchment (Ebbaelva, Central Spitsbergen). Geomorphology, http://dx.doi.org/10.1016/j.geomorph.2014.01.012.CrossRefGoogle Scholar
Tranter, M., Fountain, A., Fritsen, C., Lyons, W. B., Priscu, J. C., Statham, P., and Welch, K. (2004). Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice. Hydrological Processes, 18, 379387.CrossRefGoogle Scholar
Tranter, M. (2003). Geochemical weathering in glacial and proglacial environments. In Holland, H. D. and Turekian, K. K., eds., Surface and Ground Water, Weathering, and Soils (ed. Drever, J. I.) Vol. 5 Treatise on Geochemistry. Oxford: Elsevier-Pergamon, pp 189205.Google Scholar
Welch, K. A., Lyons, W. B., Graham, E., Neumann, K., Thomas, J. M., and Mikesell, D. (1996). Determination of major element chemistry in terrestrial waters from Antarctica by ion chromatography. Journal of Ion Chromatography A, 739, 257263.CrossRefGoogle Scholar
Welch, K. A., Lyons, W. B., Whisner, C., Gardner, C. B., Gooseff, M. N., McKnight, D. M., and Priscu, J. C. (2010). Spatial variations in the geochemistry of glacial meltwater streams in the Taylor Valley, Antarctica. Antarctic Science, 22(06) 662672.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×