Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-06T17:01:48.426Z Has data issue: false hasContentIssue false

Part II - Diversity–Area Relationships: The Different Types and Underlying Factors

Published online by Cambridge University Press:  11 March 2021

Thomas J. Matthews
Affiliation:
University of Birmingham
Kostas A. Triantis
Affiliation:
National and Kapodistrian University of Athens
Robert J. Whittaker
Affiliation:
University of Oxford
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Species–Area Relationship
Theory and Application
, pp. 49 - 154
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ando, Y., Utsumi, S. & Ohgushi, T. (2017) Aphid as a network creator for the plant associated arthropod community and its consequence for plant reproductive success. Functional Ecology, 31, 632641.CrossRefGoogle Scholar
Benchimol, M. & Peres, C. A. (2013) Anthropogenic modulators of species–area relationships in Neotropical primates: A continental‐scale analysis of fragmented forest landscapes. Diversity and Distributions, 19, 13391352.CrossRefGoogle Scholar
Blackburn, T. M., Delean, S., Pyšek, P. & Cassey, P. (2016) On the island biogeography of aliens: A global analysis of the richness of plant and bird species on oceanic islands. Global Ecology & Biogeography, 25, 859868.Google Scholar
Brown, J. H. & Kodric-Brown, A. (1977) Turnover rates in insular biogeography: Effect of immigration on extinction. Ecology, 58, 445449.Google Scholar
Cabral, J. S., Weigelt, P., Kissling, W. D. & Kreft, H. (2014) Biogeographic, climatic and spatial drivers differentially affect α-, β- and γ-diversities on oceanic archipelagos. Proceedings of the Royal Society B: Biological Sciences, 281, 20133246.Google Scholar
Cabral, J. S., Whittaker, R. J., Wiegand, K. & Kreft, H. (2019a) Assessing predicted isolation effects from the general dynamic model of island biogeography with an eco‐evolutionary model for plants. Journal of Biogeography, 46, 15691581.Google Scholar
Cabral, J. S., Wiegand, K. & Kreft, H. (2019b) Interactions between eco‐logical, evolutionary, and environmental processes unveil complex dynamics of insular plant diversity. Journal of Biogeography, 46, 15821597.Google Scholar
Chisholm, R. A., Lim, F., Yeoh, Y. S., Seah, W. W., Condit, R. & Rosindell, J. (2018) Species–area relationships and biodiversity loss in fragmented landscapes. Ecology Letters, 21, 804813.Google Scholar
Connor, E. F. & McCoy, E. D. (1979) Statistics and biology of the species–area relationship. The American Naturalist, 113, 791833.Google Scholar
Daily, G. C., Ceballos, G., Pacheco, J., Suzán, G. & Sánchez-Azofeifa, A. (2003) Countryside biogeography of neotropical mammals: Conservation opportunities in agricultural landscapes of Costa Rica. Conservation Biology, 17, 18141826.Google Scholar
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D. & Lautenbach, S. (2013) Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 2746.Google Scholar
ESRI (2012) ArcGIS Desktop, version 10. Redlands, CA: ESRI.Google Scholar
Ewers, R. M. & Didham, R. K. (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biological Reviews, 81, 117142.Google Scholar
Fahrig, L. (2017) Ecological responses to habitat fragmentation per se. Annual Review of Ecology, Evolution, and Systematics, 48, 123.CrossRefGoogle Scholar
Fattorini, S., Borges, P. A. V., Dapporto, L. & Strona, G. (2017) What can the parameters of the species–area relationship (SAR) tell us? Insights from Mediterranean islands. Journal of Biogeography, 44, 10181028.Google Scholar
Gascuel, F., Laroche, F., Bonnet-Lebrun, A.-S. & Rodrigues, A. S. L. (2016) The effects of archipelago spatial structure on island diversity and endemism: Predictions from a spatially-structured neutral model. Evolution, 70, 26572666.Google Scholar
Gould, S. J. (1979) An allometric interpretation of species–area curves: The meaning of the coefficient. The American Naturalist, 114, 335343.Google Scholar
Grace, J. B. (2006) Structural equation modeling and natural systems. Cambridge: Cambridge University Press.Google Scholar
Grace, J. B. & Bollen, K. A. (2005) Interpreting the results from multiple regression and structural equation models. The Bulletin of the Ecological Society of America, 86, 283295.CrossRefGoogle Scholar
Halley, J. M., Sgardeli, V. & Monokrousos, N. (2013) Species–area relationships and extinction forecasts. Annals of the New York Academy of Sciences, 1286, 5061.Google Scholar
Hanski, I. (1998) Metapopulation dynamics. Nature, 396, 4149.Google Scholar
Hanski, I., Zurita, G. A., Bellocq, M. I. & Rybicki, J. (2013) Species–fragmented area relationship. Proceedings of the National Academy of Sciences USA, 110, 1271512720.Google Scholar
He, F. & Hubbell, S. P. (2011) Species–area relationships always overestimate extinction rates from habitat loss. Nature, 473, 368371.CrossRefGoogle ScholarPubMed
Holt, R. D., Lawton, J. H., Polis, G. A. & Martinez, N. D. (1999) Trophic rank and the species–area relationship. Ecology, 80, 14951504.Google Scholar
Horváth, Z., Ptacnik, R., Vad, C. F. & Chase, J. M. (2019) Habitat loss over six decades accelerates regional and local biodiversity loss via changing landscape connectance. Ecology Letters, 22, 10191027.CrossRefGoogle ScholarPubMed
Laurance, W. F. (2008) Theory meets reality: How habitat fragmentation research has transcended island biogeographic theory. Biological Conservation, 141, 17311744.Google Scholar
Lefcheck, J. S. (2016) piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7, 573579.CrossRefGoogle Scholar
MacArthur, R. H. & Wilson, E. O. (1967) The theory of island biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Matthews, T. J. (2015) Analysing and modelling the impact of habitat fragmentation on species diversity: A macroecological perspective. Frontiers of Biogeography, 7, 6068.Google Scholar
Matthews, T. J., Guilhaumon, F., Triantis, K. A., Borregaard, M. K. & Whittaker, R. J. (2016) On the form of species–area relationships in habitat islands and true islands. Global Ecology & Biogeography, 25, 847858.CrossRefGoogle Scholar
Matthews, T. J., Rigal, F., Triantis, K. A. & Whittaker, R. J. (2019) A global model of island species–area relationships. Proceedings of the National Academy of Sciences USA, 116, 1233712342.CrossRefGoogle ScholarPubMed
Nakagawa, S. & Schielzeth, H. (2013) A general and simple method for obtaining R2 from generalized linear mixed‐effects models. Methods in Ecology and Evolution, 4, 133142.Google Scholar
Pebesma, E. (2018) Simple features for R: Standardized support for spatial vector data. The R Journal, 10, 439446.Google Scholar
R Core Team (2019) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Rosenzweig, M. L. (1995) Species diversity in space and time. Cambridge: Cambridge University Press.Google Scholar
Rosenzweig, M. L. (2004) Applying species–area relationships to the conservation of diversity. Frontiers of biogeography: New directions in the geography of nature (ed. by Lomolino, M. V. and Heaney, L. R.), pp. 325343. Sunderland, MA: Sinauer Associates.Google Scholar
Schoener, T. W. (1976) The species–area relations within archipelagoes: Models and evidence from island land birds. Proceedings of the XVI International Ornithological Conference (ed. by Firth, H. J. and Calaby, J. H.), pp. 629642. Canberra: Australian Academy of Science.Google Scholar
Shipley, B. (2009) Confirmatory path analysis in a generalized multilevel context. Ecology, 90, 363368.CrossRefGoogle Scholar
Shipley, B. (2013) The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology, 94, 560564.Google Scholar
Shipley, B. (2016) Cause and correlation in biology: A user’s guide to path analysis, structural equations and causal inference with R. Cambridge: Cambridge University Press.Google Scholar
Sólymos, P. & Lele, S. R. (2012) Global pattern and local variation in species–area relationships. Global Ecology & Biogeography, 21, 109120.Google Scholar
Tjørve, E. & Tjørve, K. M. C. (2017) Species–area relationship. eLS (Encyclopedia of Life Sciences Online), pp. 19. Chichester: John Wiley & Sons.Google Scholar
Triantis, K. A., Economo, E. P., Guilhaumon, F. & Ricklefs, R. E. (2015) Diversity regulation at macro-scales: Species richness on oceanic archipelagos. Global Ecology & Biogeography, 24, 594605.CrossRefGoogle Scholar
Triantis, K. A., Guilhaumon, F. & Whittaker, R. J. (2012) The island species–area relationship: Biology and statistics. Journal of Biogeography, 39, 215231.CrossRefGoogle Scholar
UNEP-WCMC (2013) Global distribution of islands. Global Island Database (version 2). Based on Open Street Map data (© OpenStreetMap contributors). www.unep-wcmc.org.Google Scholar
Watling, J. I. & Donnelly, M. A. (2006) Fragments as islands: A synthesis of faunal responses to habitat patchiness. Conservation Biology, 20, 10161025.CrossRefGoogle ScholarPubMed
Weigelt, P. & Kreft, H. (2013) Quantifying island isolation – insights from global patterns of insular plant species richness. Ecography, 36, 417429.Google Scholar
Wessel, P. & Smith, W. H. F. (1996) A global, self-consistent, hierarchical, high-resolution shoreline database. Journal of Geophysical Research, 101, 87418743.Google Scholar
Whittaker, R. J. & Fernández-Palacios, J. M. (2007) Island biogeography: Ecology, evolution, and conservation, 2nd ed. Oxford: Oxford University Press.Google Scholar
Whittaker, R. J., Araújo, M. B., Jepson, P., Ladle, R. J., Watson, J. E. M. & Willis, K. J. (2005) Conservation biogeography: Assessment and prospect. Diversity and Distributions, 11, 323.CrossRefGoogle Scholar
Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. K. & Triantis, K. A. (2017) Island biogeography: Taking the long view of nature’s laboratories. Science, 357, eaam8326.Google Scholar
Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Rigal, F. & Triantis, K. A. (2018) Archipelagos and meta-archipelagos. Frontiers of Biogeography, 10, e41470.Google Scholar

References

Arrhenius, O. (1920) Yta och arter. I. Svensk Botanisk Tidsskrift, 14, 327329.Google Scholar
Arrhenius, O. (1921) Species and area. Journal of Ecology, 9, 9599.Google Scholar
Barnett, D. T. & Stohlgren, T. J. (2003) A nested-intensity design for surveying plant data. Biodiversity and Conservation, 12, 255278.Google Scholar
Begon, M., Harper, J. L. & Townsend, C. R. (1990) Ecology: Individuals, populations and communities, 2nd ed. Boston, MD: Blackwell Scientific Publications.Google Scholar
Brown, J. H. (1971) Mammals on mountaintops: Nonequilibrium insular biogeography. The American Naturalist, 105, 467478.Google Scholar
Brown, J. H., Gillooly, J. F., West, G. B. & Savage, V. M. (2003) The next step in macroecology: From general empirical patterns to universal ecological laws. Macroecology: Concepts and consequences (ed. by Blackburn, T. M. and Gaston, K. J.), pp. 408423. Malden, MA: Blackwell.Google Scholar
Burns, K. C., McHardy, P. & Pledger, S. (2009) The small-island effect: Fact or artefact? Ecography, 32, 269276.Google Scholar
Cam, E., Nichols, J. D., Hines, J. E., Sauer, J. R., Alpizar-Jara, R. & Flather, C. H. (2002) Disentangling sampling and ecological explanations underlying species–area relationships. Ecology, 83, 11181130.Google Scholar
Chase, J. M., Gooriah, L., May, F., Ryberg, W. A., Schuler, M. S., Craven, D. & Knight, T. M. (2019) A framework for disentangling ecological mechanisms underlying the island species–area relationship. Frontiers of Biogeography, 11, e40844.Google Scholar
Coleman, B. (1981) On random placement and species–area relations. Mathematical Biosciences, 54, 191215.Google Scholar
Coleman, B. D., Mares, M. A., Willig, M. R. & Hsieh, Y.-H. (1982) Randomness, area and species richness. Ecology, 64, 11211133.Google Scholar
Colwell, R. K. & Lees, D. C. (2000) The mid-domain effect: Geometric constraints on the geography of species richness. Trends in Ecology & Evolution, 15, 7076.CrossRefGoogle ScholarPubMed
Condit, R., Hubbell, S. P., LaFrankie, J. V., Sukumar, R., Monokaran, N., Foster, R. B. & Ashton, P. S. (1996) Species–area and species–individual relationships for tropical trees: A comparison of three 50-ha plots. Journal of Ecology, 84, 549562.CrossRefGoogle Scholar
Connell, J. H. (1978) Diversity in tropical rainforests and coral reefs. Science, 199, 13021310.Google Scholar
Connor, E. F. & McCoy, E. D. (1979) The statistics and biology of the species–area relationship. The American Naturalist, 113, 791833.CrossRefGoogle Scholar
Connor, E. F. & McCoy, E. D. (2001) Species–area relationships. Encyclopedia of biodiversity, vol. 5 (ed. by Levin, S. A.), pp. 397411. San Diego, CA: Academic Press.Google Scholar
Currie, D. J. & Fritz, J. T. (1993) Global patterns of animal abundance and species energy use. Oikos, 67, 5668.Google Scholar
Dengler, J. (2008) Sampling-design effects on properties of species–area relationships – A case study from Estonian dry grassland communities. Folia Geobotanica, 43, 289304.Google Scholar
Dengler, J. (2009) Which function describes the species–area relationship best? A review and empirical evaluation. Journal of Biogeography, 36, 728744.Google Scholar
Diamond, J. M. (1975) The island dilemma: Lessons of modern biogeographic studies for the design of natural reserves. Biological Conservation, 7, 129146.Google Scholar
Dunning, J. B., Danielson, B. J. & Pulliam, H. R. (1992) Ecological processes that affect populations in complex landscapes. Oikos, 65, 169175.CrossRefGoogle Scholar
Economo, E. P., Janda, M., Guénard, B. & Sarnat, E. (2017) Assembling a species–area curve through colonization, speciation and human-mediated introduction. Journal of Biogeography, 44, 10881097.CrossRefGoogle Scholar
Engen, S. (1977) Exponential and logarithmic species–area curves. The America Naturalist, 111, 591594.CrossRefGoogle Scholar
Fattorini, S. (2002) Biogeography of the tenebrionid beetles (Coleoptera, Tenebrionidae) on the Aegean Islands (Greece). Journal of Biogeography, 29, 4967.Google Scholar
Fattorini, S. (2006) Spatial patterns of diversity in the tenebrionid beetles (Coleoptera, Tenebrionidae) of the Aegean Islands (Greece). Evolutionary Ecology Research, 8, 237263.Google Scholar
Fisher, R. A., Corbet, A. S. & Williams, C. B. (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12, 4258.Google Scholar
Franzén, M., Schweiger, O. & Betzholtz, P.-E. (2012) Species–area relationships are controlled by species traits. PLoS One, 7, e37359.Google Scholar
Freeman, M. T., Oliver, P. I. & van Aarde, R. J. (2018) Matrix transformation alters species–area relationships in fragmented coastal forests. Landscape Ecology, 33, 307322.Google Scholar
Gilpin, M. E. & Diamond, J. M. (1976) Calculation of immigration and extinction curves from the species–area–distance relation. Proceedings of the National Academy of Sciences USA, 73, 41304134.Google Scholar
Gray, J. S. (1986) Species-abundance patterns. Organization of communities past and present, the 27th symposium of the British Ecological Society, Aberystwyth (ed. by Gee, J. H. R. and Giller, P. S.), pp. 5367. Oxford: Blackwell Science.Google Scholar
Gray, J. S., Ugland, K. I. & Lambshead, J. (2004) On species accumulation and species–area curves. Global Ecology & Biogeography, 13, 567568.Google Scholar
Green, J. L. & Ostling, A. (2003) Endemics–area relationships: The influence of species dominance and spatial aggregation. Ecology, 84, 30903097.Google Scholar
Green, J. L. & Plotkin, J. B. (2007) A statistical theory for sampling species abundances. Ecology Letters, 10, 10371045.CrossRefGoogle ScholarPubMed
Haddad, N. M., Bruvig, L. A., Clobert, J., Davies, K. F., Gonzales, A., Holt, R. D., Lovejoy, T. E., Sexton, J. O., Austin, M. P., Collins, C. D., Cook, W. M., Damschen, E. I., Ewers, R. M., Foster, B. L., Jenkins, C. N., King, A. J., Laurance, W. F., Levey, D. J., Margules, C. R., Melbourne, B. A., Nicholls, A. O., Orrock, J. L., Song, D.-X. & Townshend, J. R. (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1, e1500052.Google Scholar
Halley, J. M., Sgardeli, V. & Triantis, K. A. (2014) Extinction debt and the species–area relationship: A neutral perspective. Global Ecology & Biogeography, 23, 113123.Google Scholar
Hanski, I. (1994) A practical model of metapopulation dynamics. Journal of Animal Ecology, 63, 151162.Google Scholar
Hanski, I. (1999) Metapopulation ecology. Oxford: Oxford University Press.Google Scholar
Hanski, I. & Gyllenberg, M. (1997) Uniting two general patterns in the distribution of species. Science, 275, 397400.Google Scholar
Hart, D. D. & Horwitz, R. J. (1991) Habitat diversity and the species–area relationship: Alternative models and tests. Habitat structure, population and community biology series, vol. 8 (ed. by Bell, S. S., McCoy, E. D. and Mushinsky, H. R.), pp. 4768. Dordrecht: Springer.Google Scholar
Harte, J. (2011) Maximum entropy and ecology: A theory of abundance, distribution, and energetics. Oxford: Oxford University Press.Google Scholar
Harte, J., Kinzig, A. & Green, J. (1999) Self-similarity in the distribution and abundance of species. Science, 284, 334336.Google Scholar
Harte, J., Smith, A. B. & Storch, D. (2009) Biodiversity scales from plots to biomes with a universal species–area curve. Ecology Letters, 12, 789797.Google Scholar
Hastings, A. & Harrison, S. (1994) Metapopulation dynamics and genetics. Annual Review of Ecology and Systematics, 25, 167188.Google Scholar
Hawkins, B. A., Field, R., Cornell, H. V., Currie, D. J., Guégan, J.-F., Kaufman, D. M., Kerr, J. T., Mittelbach, G. G., Oberdorff, T., O'Brien, E. M., Porter, E. E. & Turner, J. R. G. (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 31053117.CrossRefGoogle Scholar
He, F. & Hubbell, S. (2013) Estimating extinction from species–area relationships: Why the numbers do not add up. Ecology, 94, 19051912.Google Scholar
He, F. & Legendre, P. (1996) On species–area relations. The American Naturalist, 148, 719737.CrossRefGoogle Scholar
He, F. & Legendre, P. (2002) Species diversity patterns derived from species–area models. Ecology, 83, 11851198.Google Scholar
He, F., Legendre, P. & LaFrankie, V. (1996) Spatial patterns of diversity in a tropical rain forest of Malaysia. Journal of Biogeography, 23, 5774.Google Scholar
Hill, J. L., Curran, P. J. & Fookolady, G. M. (1994) The effect of sampling on the species–area curve. Global Ecology & Biogeography Letters, 4, 97106.CrossRefGoogle Scholar
Hopkins, B. (1955) The species–area relations of plant communities. Journal of Ecology, 43, 409426.Google Scholar
Hubbell, S. P. (2001) The unified neutral theory of biodiversity and biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Hurlbert, A. H. (2004) Species–energy relationships and habitat complexity in bird communities. Ecology Letters, 7, 714720.Google Scholar
Irie, H. & Tokita, K. (2012) Species–area relationship for power-law species abundance distribution. International Journal of Biomathematics, 5, 1260014.Google Scholar
Keeley, J. E. & Fotheringham, C. J. (2005) Plot shape effects on plant species diversity measurements. Journal of Vegetation Science, 16, 249256.Google Scholar
Kohn, D. D. & Walsh, D. M. (1994) Plant species richness – the effect of island size and habitat diversity. Journal of Ecology, 82, 367377.Google Scholar
Kolasa, J., Manne, L. L. & Pandit, S. N. (2012) Species–area relationships arise from interaction of habitat heterogeneity and species pool. Hydrobiologia, 685, 135144.Google Scholar
Kraft, N. J. B., Adler, P. B., Godoy, O., James, E. C., Fuller, S. & Levine, J. M. (2014) Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29, 592599.Google Scholar
Kunin, W. E., Harte, J., He, F, Hui, C., Jobe, R., Ostling, A., Polce, C., Šizling, A. L., Smith, A. B., Smith, K., Smart, S. M., Storch., D, Tjørve, E., Ugland, K.-I., Ulrich, W. & Varma, V. (2018) Upscaling biodiversity: Estimating the species–area relationship from small samples. Ecological Monographs, 88, 170187.Google Scholar
Kůrka, P., Šizling, A. L & Rosindell, J. (2010) Analytical evidence for scale-invariance in the shape of species abundance distributions. Mathematical Biosciences, 223, 151159.Google Scholar
Kylin, H. (1923) Växtsociologiska randanmärkningar. Botaniska Notiser, 1923, 161234.Google Scholar
Levins, R. (1969) Some genetic and demographic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America, 15, 237240.Google Scholar
Levins, R. (1970) Extinction. Some mathematical questions in biology, vol. 2 (ed. by Gerstenhaber, M.). Providence, RI: American Mathematical Society.Google Scholar
Lomolino, M. V. (2001) The species–area relationship: New challenges for an old pattern. Progress in Physical Geography, 25, 121.Google Scholar
Losos, J. B. & Parent, C. E. (2009) The speciation–area relationship. The theory of island biogeography revisited (ed. by Losos, J. B. and Ricklefs, R. E.), pp. 415438. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Losos, J. B. & Schluter, D. (2000) Analysis of an evolutionary species–area relationship. Nature, 408, 847850.Google Scholar
MacArthur, R. H. (1957) On the relative abundance of bird species. Proceedings of the National Academy of Sciences USA, 43, 293295.Google Scholar
MacArthur, R. H. & Wilson, E. O. (1963) An equilibrium theory of insular zoogeography. Evolution, 17, 373387.Google Scholar
MacArthur, R. H. & Wilson, E. O. (1967) The theory of island biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Magurran, A. E. (1988) Ecological diversity and its measurement. London: Croom Helm.Google Scholar
Martín, H. G. & Goldenfeld, N. (2006) On the origin and robustness of power-law species–area relationships in ecology. Proceedings of the National Academy of Sciences USA, 103, 1031010315.CrossRefGoogle Scholar
Matter, S. F., Hanski, I. & Gyllenberg, M. (2002) A test of a metapopulation model of the species–area relationship. Journal of Biogeography, 29, 977983.Google Scholar
May, R. M. (1975) Patterns of species abundance and diversity. Ecology and evolution of communities (ed. by Cody, M. L. and Diamond, J. M.), pp. 81120. Cambridge, MA: Harvard University Press.Google Scholar
McGill, B. J. (2010) Towards a unification of unified theories. Ecology Letters, 13, 627642.Google Scholar
McGill, B. J. (2011) Species abundance distributions. Biological diversity: Frontiers in measurement and assessment (ed. by Magurran, A. E. and McGill, B. J.), pp. 105122. Oxford: Oxford University Press.Google Scholar
McGill, B. & Collins, C. (2003) A unified theory for macroecology based on spatial patterns of abundance. Evolutionary Ecology Research, 5, 469492.Google Scholar
McGuinness, K. A. (1984) Species–area relationships of communities on intertidal boulders: Testing the null hypothesis. Journal of Biogeography, 11, 439456.Google Scholar
Newmark, W. D. (1986) Species–area relationship and its determinants for mammals in western North American national parks. Biological Journal of the Linnean Society, 28, 8398.Google Scholar
Nilsson, S. G., Bengtson, J. & Ås, S. (1988) Habitat diversity or area per se? Species richness of woody plants, carabid beetles and land snails on islands. Journal of Animal Ecology, 57, 685704.Google Scholar
Öckinger, E., Lindborg, R., Sjödin, N. E. & Bommarco, R. (2012) Landscape matrix modifies richness of plants and insects in grassland fragments. Ecography, 35, 259267.Google Scholar
Olszewski, T. D. (2004) A unified mathematical framework for the measurement of richness and evenness within and among multiple communities. Oikos, 104, 377387.Google Scholar
Ovaskainen, O. & Hanski, I. (2003) The species–area relationship derived from species-specific incidence functions. Ecology Letters, 6, 903909.Google Scholar
Palmer, M. W., Earls, P. G., Hoagland, B. W., White, P.S. & Wohlgemuth, T. (2002) Quantitative tools for perfecting species lists. Environmetrics, 13, 121137.Google Scholar
Panitsa, M., Trigas, P., Iatrou, G. & Sfenthourakis, S. (2010) Factors affecting species richness and endemism on land-bridge islands – an example from the East Aegean archipelago. Acta Oecologica, 36, 431437.Google Scholar
Panitsa, M., Tzanouakis, D., Triantis, K. A. & Sfenthourakis, S. (2006) Patterns of species richness on very small islands: The plants of the Aegean archipelago. Journal of Biogeography, 33, 12231234.Google Scholar
Pardini, R., Bueno, A. D. A., Gardner, T. A., Prado, P. I. & Metzger, J. P. (2010) Beyond the fragmentation threshold hypothesis: Regime shifts in biodiversity across fragmented landscapes. PLoS One, 5, e13666.Google Scholar
Picard, N., Karambé, M. & Birnbaum, P. (2004) Species–area curve and spatial pattern. Écoscience, 11, 4554.CrossRefGoogle Scholar
Pielou, E. C. (1975) Ecological diversity. New York: Wiley-Interscience.Google Scholar
Pielou, E. C. (1977) Mathematical ecology. New York: Wiley.Google Scholar
Pigolotti, S. & Cencini, M. (2009) Speciation-rate dependence in species–area relationships. Journal of Theoretical Biology, 260, 8389.Google Scholar
Plotkin, J. B., Potts, M. D., Leslie, N., Manokaran, N., LaFrankie, J. & Ashton, P. S. (2000) Species–area curves, spatial aggregation, and habitat specialization in tropical forests. Journal of Theoretical Biology, 207, 8199.Google Scholar
Powell, K. I. (2013) Invasive plants have scale-dependent effects on diversity by altering species–area relationships. Science, 339, 316318.CrossRefGoogle ScholarPubMed
Preston, C. D., Pearman, D. A. & Dines, T. D. (2002) New atlas of the British & Irish flora. Oxford: Oxford University Press.Google Scholar
Preston, F. W. (1948) The commonness, and rarity, of species. Ecology, 29, 254283.Google Scholar
Preston, F. W. (1960) Time and space and the variation of species. Ecology, 41, 611627.Google Scholar
Preston, F. W. (1962) The canonical distribution of commonness and rarity: Part I & II. Ecology, 43, 185215, 410–432.Google Scholar
Pueyo, S. (2006) Self-similarity in species–area relationship and in species abundance distribution. Oikos, 112, 156162.Google Scholar
Pulliam, H. R. (1988) Sources, sinks, and population regulation. The American Naturalist, 132, 652661.CrossRefGoogle Scholar
Qian, H., Ricklefs, R. E. & White, P. S. (2005) Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecology Letters, 8, 1522.Google Scholar
Qiao, X., Tang, Z., Wang, S., Liu, Y. & Fang, J. (2012) Effects of community structure on the species–area relationship in China's forests. Ecography, 35, 11171123.Google Scholar
Ricklefs, R. E. (2006) The unified neutral theory of biodiversity: Do the numbers add up? Ecology, 87, 14241431.Google Scholar
Ricklefs, R. E. & Lovette, I. J. (1999) The roles of island area per se and habitat diversity in the species–area relationships of four Lesser Antillean faunal groups. Journal of Animal Ecology, 68, 11421160.Google Scholar
Romell, L. G. (1920) Sur la régle de distribution de fréquences. Svensk Botanisk Tidsskrift, 14, 120.Google Scholar
Romell, L. G. (1930) Comments on Raunkiær's and similar methods of vegetation analysis and the ‘law of frequency’. Ecology, 11, 598596.Google Scholar
Rosenzweig, M. L. (1995) Species diversity in space and time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Rosindell, J., Hubbell, S. P., He, F., Harmon, L. J. & Etienne, R. S. (2012) The case for ecological neutral theory. Trends in Ecology & Evolution, 27, 203208.Google Scholar
Scheiner, S. M. (2003) Six types of species–area curves. Global Ecology & Biogeography, 12, 441447.Google Scholar
Scheiner, S. M., Chiarucci, A., Fox, G. A., Helmus, M. R., McGlinn, D. J. & Willig, M. R. (2011) The underpinnings of the relationship of species richness with space and time. Ecological Monographs, 81, 195213.CrossRefGoogle Scholar
Scheiner, S. M., Cox, S. B., Willig, M., Mittelbach, G. G., Osenberg, C. & Kaspari, M. (2000) Species richness, species–area curves and Simpson's paradox. Evolutionary Ecology Research, 2, 791802.Google Scholar
Sfenthourakis, S. (1996) The species–area relationship of terrestrial isopods (Isopoda; Oniscidea) from the Aegean archipelago (Greece): A comparative study. Global Ecology & Biogeography Letters, 5, 149157.Google Scholar
Shmida, A. & Wilson, M. V. (1985) Biological determinants of species diversity. Journal of Biogeography, 12, 120.Google Scholar
Šizling, A. L. & Storch, D. (2004) Power-law species–area relationships and self-similar species distributions within finite areas. Ecology Letters, 7, 6068.Google Scholar
Šizling, A. L., Kunin, W. E., Šizlingová, E., Reif, J. & Storch, D. (2011) Between geometry and biology: The problem of universality of the species–area relationship. The American Naturalist, 178, 602611.Google Scholar
Šizling, A. L., Šizlingová, E., Tjørve, E., Tjørve, K. M. C. & Kunin, W. E. (2017) How to allow SAR collapse across local and continental scales: A resolution of the controversy between Storch et al. (2012) and Lazarina et al. (2013). Ecography, 40, 971981.Google Scholar
Šizling, A. L., Storch, D., Reif, J. & Gaston, K. J. (2009b) Invariance in species-abundance distributions. Theoretical Ecology, 2, 89103.Google Scholar
Šizling, A. L., Storch, D., Šizlingová, E. D., Reif, J. & Gaston, K. J. (2009a) Species abundance distribution results from a spatial analogy of central limit theorem. Proceedings of the National Academy of Sciences USA, 106, 66916695.Google Scholar
Solow, A. R. & Smith, W. (1991) Detecting cluster in a heterogeneous community sampled by quadrats. Biometrics, 47, 311217.Google Scholar
Stein, A., Gerstner, K. & Kreft, H. (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17, 866880.CrossRefGoogle ScholarPubMed
Storch, D., Šizling, A. L. & Gaston, K. J. (2003) Geometry of the species–area relationship in central European birds: Testing the mechanism. Journal of Animal Ecology, 72, 509519.Google Scholar
Svedberg, T. (1922) Statistisk vegetationsanalys, några synspunkter. Svensk Botanisk Tidsskrift, 16, 197205.Google Scholar
Tjørve, E. (2002) Habitat size and number in multi-habitat landscapes: A model approach based on species–area curves. Ecography, 25, 1724.Google Scholar
Tjørve, E. (2003) Shapes and functions of species–area curves: A review of possible models. Journal of Biogeography, 30, 827835.CrossRefGoogle Scholar
Tjørve, E. & Tjørve, K. (2017) Species–area relationship. eLS (Encyclopedia of Life Sciences Online), pp. 19. Chichester: John Wiley & Sons.Google Scholar
Tjørve, E. & Turner, W.R. (2009) The importance of samples and isolates for species–area relationships. Ecography, 32, 391400.Google Scholar
Tjørve, E., Kunin, W. E., Polce, C. & Tjørve, K. M. C. (2008) The species–area relationship: Separating the effects of species-abundance and spatial distribution. Journal of Ecology, 96, 11411151.Google Scholar
Tjørve, E., Tjørve, K. M. C., Šizlingová, E. & Šizling, A. L. (2018) Great theories of species diversity in space and why they were forgotten: The beginnings of a spatial ecology and the Nordic early 20th-century botanists. Journal of Biogeography, 45, 530540.Google Scholar
Tokeshi, M. (1993). Species abundance patterns and community structure. Advances in Ecological Research, 24, 111186.Google Scholar
Tolimieri, N. (2007) Patterns in species richness, species density, and evenness in groundfish assemblages on the continental slope of the U.S Pacific coast. Environmental Biology of Fishes, 78, 241256.Google Scholar
Triantis, K. A., Guilhaumon, F. & Whittaker, R. J. (2012) The island species–area relationship: Biology and statistics. Journal of Biogeography, 39, 215231.Google Scholar
Triantis, K. A., Mylonas, M., Lika, K. & Vardinoyannis, K. (2003) A model for the species–area–habitat relationship. Journal of Biogeography, 30, 1927.Google Scholar
Triantis, K. A., Sfenthourakis, S. & Mylonas, M. (2008) Biodiversity patterns of terrestrial isopods from two island groups in the Aegean Sea (Greece): Species–area relationship, small island effect and nestedness. Écoscience, 15, 169181.Google Scholar
Triantis, K. A., Vardinoyannis, K., Tsolaki, E. P., Botsaris, I., Lika, K. & Mylonas, M. (2006) Re-approaching the small island effect. Journal of Biogeography, 33, 914923.Google Scholar
Turner, W. R. & Tjørve, E. (2005) Scale-dependence in species–area relationships. Ecography, 28, 721730.Google Scholar
Ulrich, W., Kusumoto, B., Shiono, T. & Kubota, Y. (2016) Climatic and geographic correlates of global forest tree species-abundance distributions and community evenness. Journal of Vegetation Science, 27, 295305.Google Scholar
Weigelt, P. & Kreft, H. (2013) Quantifying island isolation – insights from global patterns of insular plant species richness. Ecography, 36, 417429.Google Scholar
Welter-Schultes, F. W. & Williams, M. R. (1999) History, island area and habitat availability determine land snail species richness of Agean islands. Journal of Biogeography, 26, 239249.Google Scholar
Whittaker, R. H. (1965) Dominance and diversity in land plant communities. Science, 147, 250260.Google Scholar
Whittaker, R. J. & Fernandéz-Palacios, J. M. (2007) Island biogeography: Ecology, evolution, and conservation, 2nd ed. Oxford: Oxford University Press.Google Scholar
Williams, C. B. (1943) Area and number of species. Nature, 152, 264267.Google Scholar
Williams, C. B. (1964) Patterns in the balance of nature and related problems in quantitative ecology. London: Academic Press.Google Scholar
Williams, M. R. (1995) An extreme-value function model of the species incidence and species–area relations. Ecology, 76, 26072616.Google Scholar
Williams, M. R. (1996) Species–area curves: The need to include zeroes. Global Ecology & Biogeography Letters, 5, 9193.Google Scholar
Williamson, M. (1988) Relationship of species number to area, distance and other variables. Analytical biogeography (ed. by Myers, A. A. and Giller, P. S.), pp. 91115. London: Chapman and Hall.Google Scholar

References

Cadotte, M. W. & Tucker, C. M. (2017) Should environmental filtering be abandoned? Trends in Ecology & Evolution, 32, 429437.Google Scholar
Cadotte, M. W., Carscadden, K. & Mirotchnick, N. (2011) Beyond species: Functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48, 10791087.Google Scholar
Carscadden, K. A., Cadotte, M. W. & Gilbert, B. (2017) Trait dimensionality and population choice alter estimates of phenotypic dissimilarity. Ecology and Evolution, 7, 22732285.Google Scholar
Carvajal-Endara, S., Hendry, A. P., Emery, N. C. & Davies, T. J. (2017) Habitat filtering not dispersal limitation shapes oceanic island floras: Species assembly of the Galápagos archipelago. Ecology Letters, 20, 495504.Google Scholar
Cavender-Bares, J., Keen, A. & Miles, B. (2006) Phylogenetic structure of floridian plant communities depends on taxonomic and spatial scale. Ecology, 87, S109S122.Google Scholar
Chao, A., Chiu, C.-H. & Jost, L. (2010) Phylogenetic diversity measures based on Hill numbers. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 35993609.Google Scholar
Chase, J. M., Amarasekare, P., Cottenie, K., Gonzalez, A., Holt, R. D., Holyoak, M., Hoopes, M. F., Leibold, M. A., Loreau, M., Mouquet, N., Shurin, J. B. & Tilman, D. (2005) Competing theories for competitive metacommunities. Metacommunities: Spatial dynamics and ecological communities (ed. by Holyoak, M., Leibold, M. A. and Holt, R. D.), pp. 335354. Chicago, IL: University of Chicago Press.Google Scholar
Chesson, P. (2000) Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343366.Google Scholar
Cianciaruso, M. V., Silva, I. A., Batalha, M. A., Gaston, K. J. & Petchey, O. L. (2012) The influence of fire on phylogenetic and functional structure of woody savannas: Moving from species to individuals. Perspectives in Plant Ecology, Evolution and Systematics, 14, 205216.Google Scholar
Cornwell, W. K., Schwilk, D. W., Ackerly, D. D. & Schwilk, L. (2006) A trait-based test for habitat filtering: Convex hull volume. Ecology, 87, 14651471.Google Scholar
de Bello, F., Lavorel, S., Lavergne, S., Albert, C. H., Boulangeat, I., Mazel, F. & Thuiller, W. (2013) Hierarchical effects of environmental filters on the functional structure of plant communities: A case study in the French Alps. Ecography, 36, 393402.Google Scholar
Ding, Z., Feeley, K. J., Wang, Y., Pakeman, R. J. & Ding, P. (2013) Patterns of bird functional diversity on land-bridge island fragments. Journal of Animal Ecology, 82, 781790.Google Scholar
Faith, D. P. (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 110.Google Scholar
Felsenstein, J. (2004) Inferring phylogenies. Sunderland, MA: Sinauer.Google Scholar
Ficetola, G. F., Mazel, F. & Thuiller, W. (2017) Global determinants of zoogeographical boundaries. Nature Ecology & Evolution, 1, 0089.CrossRefGoogle ScholarPubMed
Gerhold, P., Cahill, J. F., Winter, M., Bartish, I. V. & Prinzing, A. (2015) Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Functional Ecology, 29, 600614.Google Scholar
Gotelli, N. J. (2001) Research frontiers in null model analysis. Global Ecology & Biogeography, 10, 337343.Google Scholar
He, F. & Hubbell, S. P. (2011) Species–area relationships always overestimate extinction rates from habitat loss. Nature, 473, 368371.Google Scholar
Helmus, M. R. & Ives, A. R. (2012) Phylogenetic diversity–area curves. Ecology, 91, 3143.Google Scholar
Hill, M. O. (1973) Diversity and evenness: A unifying notation and its consequences. Ecology, 54, 427432.Google Scholar
HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. (2012) Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43, 227248.Google Scholar
Hubbell, S. P. (2001) The unified neutral theory of biodiversity and biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Kadmon, R. & Allouche, O. (2007) Integrating the effects of area, isolation, and habitat heterogeneity on species diversity: A unification of island biogeography and niche theory. The American Naturalist, 170, 443454.Google Scholar
Karadimou, E. K., Kallimanis, A. S., Tsiripidis, I. & Dimopoulos, P. (2016) Functional diversity exhibits a diverse relationship with area, even a decreasing one. Scientific Reports, 6, 35420.Google Scholar
Keil, P., Storch, D. & Jetz, W. (2015) On the decline of biodiversity due to area loss. Nature Communications, 6, 8837.Google Scholar
Kelly, S., Grenyer, R. & Scotland, R. W. (2014) Phylogenetic trees do not reliably predict feature diversity. Diversity and Distributions, 20, 600612.Google Scholar
Kraft, N. J. B., Adler, P. B., Godoy, O., James, E. C., Fuller, S. & Levine, J. M. (2015a) Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29, 592599.Google Scholar
Kraft, N. J. B., Godoy, O. & Levine, J. M. (2015b) Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences USA, 112, 797802.Google Scholar
Kraft, N. J. B., Valencia, R. & Ackerly, D. D. (2008) Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580582.Google Scholar
Laliberté, E. & Legendre, P. (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299305.Google Scholar
Lavorel, S., Grigulis, K., Lamarque, P., Colace, M.-P., Garden, D., Girel, J., Pellet, G. & Douzet, R. (2011) Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology, 99, 135147.Google Scholar
Lawton, J. H. (1999) Are there general laws in ecology? Oikos, 84, 177192.Google Scholar
Leibold, M. A. & Chase, J. M. (2018) Metacommunity ecology. Princeton, NJ: Princeton University Press.Google Scholar
Lessard, J.-P., Belmaker, J., Myers, J. A., Chase, J. M. & Rahbek, C. (2012a) Inferring local ecological processes amid species pool influences. Trends in Ecology & Evolution, 27, 600607.Google Scholar
Lessard, J.-P., Borregaard, M. K., Fordyce, J. A., Rahbek, C. & Sanders, N. J. (2012b) Strong influence of regional species pools on continent-wide structuring of local communities. Proceedings of the Royal Society B: Biological Sciences, 279, 266274.Google Scholar
Li, D., Monahan, W. B. & Baiser, B. (2018) Species richness and phylogenetic diversity of native and non-native species respond differently to area and environmental factors. Diversity and Distributions, 24, 853864.Google Scholar
Loreau, M. (2010) Linking biodiversity and ecosystems: Towards a unifying ecological theory. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 4960.Google Scholar
Louca, S., Parfrey, L. W. & Doebeli, M. (2016) Decoupling function and taxonomy in the global ocean microbiome. Science, 353, 12721277.Google Scholar
MacArthur, R. H. & Levins, R. (1967) The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377385.Google Scholar
MacArthur, R. H. & Wilson, E. O. (1967) The theory of island biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Matthews, T. J., Triantis, K. A., Rigal, F., Borregaard, M. K., Guilhaumon, F. & Whittaker, R. J. (2016) Island species–area relationships and species accumulation curves are not equivalent: An analysis of habitat island datasets. Global Ecology & Biogeography, 25, 607618.Google Scholar
Matthews, T. J., Triantis, K. A., Whittaker, R. J. & Guilhaumon, F. (2019) sars: An R package for fitting, evaluating and comparing species–area relationship models. Ecography, 42, 14461455.Google Scholar
Mayfield, M. & Levine, J. (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13, 10851093.Google Scholar
Mazel, F., Davies, T. J., Gallien, L., Renaud, J., Groussin, M., Münkemüller, T. & Thuiller, W. (2016) Influence of tree shape and evolutionary time-scale on phylogenetic diversity metrics. Ecography, 39, 913920.CrossRefGoogle ScholarPubMed
Mazel, F., Guilhaumon, F., Mouquet, N., Devictor, V., Gravel, D., Renaud, J., Cianciaruso, M. V., Loyola, R., Diniz-Filho, J. A. F., Mouillot, D. & Thuiller, W. (2014) Multifaceted diversity–area relationships reveal global hotspots of mammalian species, trait and lineage diversity. Global Ecology & Biogeography, 23, 836847.Google Scholar
Mazel, F., Mooers, A. O., Riva, G. V. D. & Pennell, M. W. (2017b) Conserving phylogenetic diversity can be a poor strategy for conserving functional diversity. Systematic Biology, 66, 10191027.Google Scholar
Mazel, F., Pennell, M. W., Cadotte, M. W., Diaz, S., Dalla Riva, G. V., Grenyer, R., Leprieur, F., Mooers, A. O., Mouillot, D., Tucker, C. M. & Pearse, W. D. (2018) Prioritizing phylogenetic diversity captures functional diversity unreliably. Nature Communications, 9, 2888.Google Scholar
Mazel, F., Pennell, M. W., Cadotte, M. W., Diaz, S., Dalla Riva, G. V., Grenyer, R., Leprieur, F., Mooers, A. O., Mouillot, D., Tucker, C. M. & Pearse, W. D. (2019) Reply to ‘Global conservation of phylogenetic diversity captures more than just functional diversity’. Nature Communications, 10, 859.Google Scholar
Mazel, F., Renaud, J., Guilhaumon, F., Mouillot, D., Gravel, D. & Thuiller, W. (2015) Mammalian phylogenetic diversity–area relationships at a continental scale. Ecology, 96, 28142822.Google Scholar
Mazel, F., Wüest, R. O., Gueguen, M., Renaud, J., Ficetola, G. F., Lavergne, S. & Thuiller, W. (2017a) The geography of ecological niche evolution in mammals. Current Biology, 27, 13691374.Google Scholar
Miller, E. T., Farine, D. R. & Trisos, C. H. (2016) Phylogenetic community structure metrics and null models: A review with new methods and software. Ecography, 40, 461477.Google Scholar
Morlon, H., Schwilk, D. W., Bryant, J. A., Marquet, P. A., Rebelo, A. G., Tauss, C., Bohannan, B. J. M. & Green, J. L. (2011) Spatial patterns of phylogenetic diversity. Ecology Letters, 14, 141149.Google Scholar
Mouchet, M. A., Villéger, S., Mason, N. W. H. & Mouillot, D. (2010) Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24, 867876.Google Scholar
Münkemüller, T., Gallien, L., Lavergne, S., Renaud, J., Roquet, C., Abdulhak, S., Dullinger, S., Garraud, L., Guisan, A., Lenoir, J., Svenning, J.-C., Van Es, J., Vittoz, P., Willner, W., Wohlgemuth, T., Zimmermann, N. E. & Thuiller, W. (2014) Scale decisions can reverse conclusions on community assembly processes. Global Ecology & Biogeography, 23, 620632.Google Scholar
Narwani, A., Alexandrou, M. A., Oakley, T. H., Carroll, I. T. & Cardinale, B. J. (2013) Experimental evidence that evolutionary relatedness does not affect the ecological mechanisms of coexistence in freshwater green algae. Ecology Letters, 16, 13731381.Google Scholar
Nee, S. & May, R. M. (1997) Extinction and the loss of evolutionary history. Science, 288, 328330.Google Scholar
Pavoine, S. & Bonsall, M. B. (2011) Measuring biodiversity to explain community assembly: A unified approach. Biological Reviews, 86, 792812.Google Scholar
Pavoine, S., Vallet, J., Dufour, A.-B., Gachet, S. & Daniel, H. (2009) On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. Oikos, 118, 391402.CrossRefGoogle Scholar
Petchey, O. L. & Gaston, K. J. (2007) Dendrograms and measuring functional diversity. Oikos, 116, 14221426.Google Scholar
Rao, R. C. (1982) Diversity and dissimilarity coefficients: A unified approach. Theoretical Population Biology, 21, 2443.CrossRefGoogle Scholar
Rosenzweig, M. L. (1995) Species diversity in space and time. Cambridge: Cambridge University Press.Google Scholar
Rosindell, J. & Cornell, S. J. (2007) Species–area relationships from a spatially explicit neutral model in an infinite landscape. Ecology Letters, 10, 586595.Google Scholar
Scheiner, S. M. (2003) Six types of species–area curves. Global Ecology & Biogeography, 12, 441447.Google Scholar
Shen, G., Yu, M., Hu, X.-S., Mi, X., Ren, H., Sun, I.-F. & Ma, K. (2009) Species–area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity. Ecology, 90, 30333041.Google Scholar
Smith, A. B., Sandel, B., Kraft, N. J. B. & Carey, S. (2013) Characterizing scale-dependent community assembly using the functional-diversity–area relationship. Ecology, 94, 23922402.Google Scholar
Swenson, N. G., Enquist, B. J., Pither, J., Thompson, J. & Zimmerman, J. K. (2006) The problem and promise of scale dependency in community phylogenetics. Ecology, 87, 24182424.Google Scholar
Triantis, K. A., Guilhaumon, F. & Whittaker, R. J. (2012) The island species–area relationship: Biology and statistics. Journal of Biogeography, 39, 215231.Google Scholar
Tucker, C., Cadotte, M. W., Carvalho, S. B., Davies, J. T., Ferrier, S., Fritz, S., Grenyer, R., Helmus, M. R., Jin, L., Mooers, A. O., Pavoine, S., Purschke, O., Redding, D. W., Rosauer, D., Winter, M. & Mazel, F. (2017) A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews, 92, 698715.Google Scholar
Vane-Wright, R. I., Humphries, C. J. & Williams, P. H. (1991) What to protect? – Systematics and the agony of choice. Biological Conservation, 55, 235254.Google Scholar
Vellend, M. (2010) Conceptual synthesis in community ecology. The Quarterly Review of Biology, 85, 183206.Google Scholar
Venail, P., Gross, K., Oakley, T. H., Narwani, A., Allan, E., Flombaum, P., Isbell, F., Joshi, J., Reich, P. B., Tilman, D., van Ruijven, J. & Cardinale, B. J. (2015) Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Functional Ecology, 29, 615626.Google Scholar
Villéger, S., Maire, E. & Leprieur, F. (2017) On the risks of using dendrograms to measure functional diversity and multidimensional spaces to measure phylogenetic diversity: A comment on Sobral et al. (2016). Ecology Letters, 20, 554557.Google Scholar
Villéger, S., Mason, N. & Mouillot, D. (2008) New multidimensional functional diversity indices for a multifaceted framwork in functional ecology. Ecology, 89, 22902301.Google Scholar
Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. & Garnier, E. (2007) Let the concept of trait be functional! Oikos, 116, 882892.Google Scholar
Wagner, C. E., Harmon, L. J. & Seehausen, O. (2014) Cichlid species–area relationships are shaped by adaptive radiations that scale with area. Ecology Letters, 17, 583592.Google Scholar
Wallace, A. (1876) The geographical distribution of animals. Cambridge: Cambridge University Press.Google Scholar
Wang, X., Swenson, N. G., Wiegand, T., Wolf, A., Howe, R., Lin, F., Ye, J., Yuan, Z., Shi, S., Bai, X., Xing, D. & Hao, Z. (2013) Phylogenetic and functional diversity area relationships in two temperate forests. Ecography, 36, 883893.Google Scholar
Warren, D. L., Cardillo, M., Rosauer, D. F. & Bolnick, D. I. (2014) Mistaking geography for biology: Inferring processes from species distributions. Trends in Ecology & Evolution, 29, 572580.Google Scholar
Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. (2002) Phylogenies and community ecology. Annual Review of Ecology, Evolution, and Systematics, 33, 475505.Google Scholar
Weiher, E. & Keddy, P. A. (1995) Assembly rules, null models, and trait dispersion: New questions from old patterns. Oikos, 74, 159164.Google Scholar
Weiher, E. & Keddy, P. A. (eds.) (1999) Ecological assembly rules: Perspectives, advances, retreats. Cambridge: Cambridge University Press.Google Scholar
White, H. J., Montgomery, W. I., Pakeman, R. J. & Lennon, J. J. (2018) Spatiotemporal scaling of plant species richness and functional diversity in a temperate semi-natural grassland. Ecography, 41, 845856.Google Scholar
Whittaker, R. J., Rigal, F., Borges, P. A. V., Cardoso, P., Terzopoulou, S., Casanoves, F., Pla, L., Guilhaumon, F., Ladle, R. J. & Triantis, K. A. (2014) Functional biogeography of oceanic islands and the scaling of functional diversity in the Azores. Proceedings of the National Academy of Sciences USA, 111, 1370913714.Google Scholar
Wright, I. J., Reich, P. B., Cornelissen, J. H. C., Falster, D. S., Groom, P. K., Hikosaka, K., Lee, W., Lusk, C. H., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Warton, D. I. & Westoby, M. (2005) Modulation of leaf economic traits and trait relationships by climate. Global Ecology & Biogeography, 14, 411421.Google Scholar
Zhang, H., Chen, H. Y. H., Lian, J., John, R., Ronghua, L., Liu, H., Ye, W., Berninger, F. & Ye, Q. (2018) Using functional trait diversity patterns to disentangle the scale-dependent ecological processes in a subtropical forest. Functional Ecology, 32, 13791389.Google Scholar

References

Baiser, B. & Li, D. (2018) Comparing species–area relationships of native and exotic species. Biological Invasions, 20, 36473658.Google Scholar
Blackburn, T. M. & Duncan, R. P. (2001) Establishment patterns of exotic birds are constrained by non-random patterns in introduction. Journal of Biogeography, 28, 927939.Google Scholar
Blackburn, T. M. & Gaston, K. J. (2018) Abundance, biomass and energy use of native and alien breeding birds in Britain. Biological Invasions, 20, 35633573.Google Scholar
Blackburn, T. M., Lockwood, J. L. & Cassey, P. (2008) The island biogeography of exotic bird species. Global Ecology & Biogeography, 17, 246251.Google Scholar
Blackburn, T. M., Pyšek, P., Bacher, S., Carlton, J. T., Duncan, R. P., Jarošík, V., Wilson, J. R. U. & Richardson, D. M. (2011) A proposed unified framework for biological invasions. Trends in Ecology & Evolution, 26, 333339.Google Scholar
Blackburn, T. M., Redding, D. W. & Dyer, E. E. (2019) Bergmann’s Rule in alien birds. Ecography, 42, 102110.Google Scholar
Blackburn, T. M., Scrivens, S. L., Heinrich, S. & Cassey, P. (2017) Patterns of selectivity in introductions of mammal species worldwide. NeoBiota, 33, 3351.Google Scholar
Brett, M. T. (2004) When is correlation between non-independent variables ‘spurious’? Oikos, 105, 647656.Google Scholar
Brown, J. H. (1995) Macroecology. Chicago, IL: University of Chicago Press.Google Scholar
Cadotte, M. W., McMahon, S. M. & Fukami, T. (2006) Conceptual ecology and invasion biology: Reciprocal approaches to nature. Dordrecht, the Netherlands: Springer.Google Scholar
Capellini, I., Baker, J., Allen, W. L., Street, S. E. & Venditti, C. (2015) The role of life history traits in mammalian invasion success. Ecology Letters, 18, 10991107.Google Scholar
Cassey, P., Delean, S., Lockwood, J. L., Sadowski, J. S. & Blackburn, T. M. (2018) Dissecting the null model for biological invasions: A meta-analysis of the propagule pressure effect. PLoS Biology, 16, e2005987.Google Scholar
CBD (2002) COP 6 Decision VI/23. Alien species that threaten ecosystems, habitats or species. www.cbd.int/decision/cop/default.shtml?id=7197.Google Scholar
Colautti, R. I., Grigorovich, I. A. & MacIsaac, H. J. (2006) Propagule pressure: A null model for biological invasions. Biological Invasions, 8, 10231037.Google Scholar
Connell, J. H. (1978) Diversity in tropical rain forests and coral reefs. Science, 199, 13021310.Google Scholar
Darwin, C. (1859) On the origin of species. London: Murray.Google Scholar
Dawson, W., Moser, D., Van Kleunen, M., Kreft, H., Pergl, J., Pyšek, P., Weigelt, P., Winter, M., Lenzner, B., Blackburn, T. M., Dyer, E. E., Cassey, P., Scrivens, S. L., Economo, E. P., Guénard, B., Capinha, C., Seebens, H., García-Díaz, P., Nentwig, W., García-Berthou, E., Casal, C., Mandrak, N. E., Fuller, P., Meyer, C. & Essl, F. (2017) Global hotspots and correlates of alien species richness across taxonomic groups. Nature Ecology & Evolution, 1, 0186.Google Scholar
Diamond, J. (1986) Overview: Laboratory experiments, field experiments, and natural experiments. Community ecology (ed. by Diamond, J. and Case, T. J.), pp. 322. New York: Harper Row.Google Scholar
Dyer, E. E., Cassey, P., Redding, D. W., Collen, B., Franks, V., Gaston, K. J., Jones, K. E., Kark, S., Orme, C. D. L. & Blackburn, T. M. (2017b) The global distribution and drivers of alien bird species richness. PLoS Biology, 15, e2000942.Google Scholar
Dyer, E. E., Redding, D. W., Cassey, P., Collen, B. & Blackburn, T. M. (2020) Evidence for Rapoport’s rule and latitudinal patterns in the distribution of alien bird species. Journal of Biogeography, 47, 13621372.Google Scholar
Dyer, E. E., Redding, D. W. & Blackburn, T. M. (2017a) The global avian invasions atlas, a database of alien bird distributions worldwide. Scientific Data, 4, 170041.Google Scholar
Fox, J. W. (2013) The intermediate disturbance hypothesis should be abandoned. Trends in Ecology & Evolution, 28, 8692.Google Scholar
Gaston, K. J., Jones, A. G., Hanel, C. & Chown, S. L. (2003) Rates of species introduction to a remote oceanic island. Proceedings of the Royal Society B: Biological Sciences, 270, 10911098.Google Scholar
Hanski, I. & Gyllenberg, M. (1997) Uniting two general patterns in the distribution of species. Science, 275, 397400.Google Scholar
HBW & BirdLife International (2017) Handbook of the birds of the World and BirdLife International digital checklist of the birds of the world. Version 2. datazone.birdlife.org/userfiles/file/Species/Taxonomy/HBW-BirdLife_Checklist_v2%20Dec17.zip.Google Scholar
Hulme, P. E. (2008) Contrasting alien and plant species–area relationships: The importance of spatial grain and extent. Global Ecology & Biogeography, 17, 641647.Google Scholar
IUCN (2018) The IUCN red list of threatened species. Version 2018-2. www.iucnredlist.org/.Google Scholar
Jeschke, J. M. & Strayer, D. L. (2005) Invasion success of vertebrates in Europe and North America. Proceedings of the National Academy of Sciences USA, 102, 71987202.Google Scholar
van Kleunen, M., Dawson, W., Essl, F., Pergl, J., Winter, M., Weber, E., Kreft, H., Weigelt, P., Kartesz, J., Nishino, M., Antonova, L. A., Barcelona, J. F., Cabezas, F. J., Cárdenas, D., Cárdenas-Toro, J., Castańo, N., Chacón, E., Chatelain, C., Ebel, A. L., Figueiredo, E., Fuentes, N., Groom, Q. J., Henderson, L., Inderjit, , Kupriyanov, A., Masciadri, S., Meerman, J., Morozova, O., Moser, D., Nickrent, D. L., Patzelt, A., Pelser, P. B., Baptiste, M. P., Poopath, M., Schulze, M., Seebens, H., Shu, W., Thomas, J., Velayos, M., Wieringa, J. J. & Pyšek, P. (2015) Global exchange and accumulation of non-native plants. Nature, 525, 100103.Google Scholar
Kolar, C. S. & Lodge, D. M. (2001) Progress in invasion biology: Predicting invaders. Trends in Ecology & Evolution, 16, 199204.Google Scholar
Lawton, J. H. & May, R. M. (eds.) (1995) Extinction rates. Oxford: Oxford University Press.Google Scholar
Leung, B. & Roura‐Pascual, N. (2012) TEASIng apart alien species risk assessments: A framework for best practices. Ecology, 15, 14751493.Google Scholar
Lockwood, J. L., Cassey, P. & Blackburn, T. M. (2009) The more you introduce the more you get: The role of colonization pressure and propagule pressure in invasion ecology. Diversity and Distributions, 15, 904910.Google Scholar
MacArthur, R. H. & Wilson, E. O. (1963) An equilibrium theory of insular zoogeography. Evolution, 17, 373387.Google Scholar
MacArthur, R. H. & Wilson, E. O. (1967) The theory of island biogeography. Princeton, NJ: Princeton University Press.Google Scholar
May, F., Gerstner, K., McGlinn, D. J., Xiao, X. & Chase, J. M. (2018) mobsim: An R package for the simulation and measurement of biodiversity across spatial scales. Methods in Ecology and Evolution, 9, 14011408.Google Scholar
May, R. M. (1975) Patterns of species abundance and diversity. Ecology and evolution of communities (ed. by Cody, M. L. and Diamond, J. M.), pp. 81120. Cambridge, MA: Harvard University Press.Google Scholar
McGill, B. J., Etienne, R. S., Gray, J. S., Alonso, D., Anderson, M. J., Benecha, H. K., Dornelas, M., Enquist, B. J., Green, J. L., He, F., Hurlbert, A. H., Magurran, A. E., Marquet, P. A., Maurer, B. A., Ostling, A., Soykan, C. U., Ugland, K. I. & White, E. P. (2007) Species abundance distributions: Moving beyond single prediction theories to integration within an ecological framework. Ecology Letters, 10, 9951015.Google Scholar
McGuinness, K. A. (1984) Species–area curves. Biological Reviews, 59, 423440.Google Scholar
Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. (2011) How many species are there on Earth and in the ocean? PLOS Biology, 9, e1001127.Google Scholar
Moser, D., Lenzner, B., Weigelt, P., Dawson, W., Kreft, H., Pergl, J., Pyšek, P., van Kleunen, M., Winter, M., Capinha, C., Cassey, P., Dullinger, S., Economo, E. P., García-Díaz, P., Guénard, B., Hofhansl, F., Mang, T., Seebens, H. & Essl, F. (2018) Remoteness promotes biological invasions on islands worldwide. Proceedings of the National Academy of Sciences USA, 115 , 92709275.Google Scholar
Musgrove, A., Aebischer, N., Eaton, M., Hearn, R., Newson, S., Noble, D., Parsons, M., Risely, K. & Stroud, D. (2013) Population estimates of birds in Great Britain and the United Kingdom. British Birds, 106, 64100.Google Scholar
Prairie, Y. T. & Bird, D. F. (1989) Some misconceptions about the spurious correlation problem in the ecological literature. Oecologia, 81, 285288.Google Scholar
Preston, F. W. (1962) The canonical distribution of commonness and rarity: Part I and II. Ecology, 43, 185215, 410–432.Google Scholar
Pyšek, P. (1998) Alien and native species in Central European urban floras: A quantitative comparison. Journal of Biogeography, 25, 155163.Google Scholar
Pyšek, P., Kučera, T. & Jarošík, V. (2002) Plant species richness of nature reserves: The interplay of area, climate and habitat in a central European landscape. Global Ecology & Biogeography, 11, 279289.CrossRefGoogle Scholar
Pyšek, P., Pergl, J., Essl, F., Lenzner, B., Dawson, W., Kreft, H., Weigelt, P., Winter, M., Kartesz, J., Nishino, M., Antonova, L. A., Barcelona, J. F., Cabezas, F. J., Cárdenas, D., Cárdenas-Toro, J., Castańo, N., Chacón, E., Chatelain, C., Dullinger, S., Ebel, A. L., Figueiredo, E., Fuentes, N., Genovesi, P., Groom, Q. J., Henderson, L., Inderjit, , Kupriyanov, A., Masciadri, S., Maurel, N., Meerman, J., Morozova, O., Moser, D., Nickrent, D., Nowak, P. M., Pagad, S., Patzelt, A., Pelser, P. B., Seebens, H., Shu, W., Thomas, J., Velayos, M., Weber, E., Wieringa, J. J., Baptiste, M. P. & van Kleunen, M. (2017) Naturalized alien flora of the world: Species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia, 89, 203274.Google Scholar
R Core Team (2018) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Richardson, D. M. (ed.) (2011) Fifty years of invasion ecology: The legacy of Charles Elton. Oxford: Wiley-Blackwell.Google Scholar
Rosenzweig, M. L. (1995) Species diversity in space and time. Cambridge: Cambridge University Press.Google Scholar
Sax, D. F. (2001) Latitudinal gradients and geographic ranges of exotic species: Implications for biogeography. Journal of Biogeography, 28, 139150.Google Scholar
Sax, D. F. & Gaines, S. D. (2005) The biogeography of naturalised species and the species–area relationship: Reciprocal insights to biogeography and invasion biology. Conceptual ecology and invasions biology: Reciprocal approaches to nature (ed. by Cadotte, M. W., McMahon, S. M. and Fukami, T.), pp. 449479. Dordrecht, Netherlands: Kluwer.Google Scholar
Sax, D. F., Stachowicz, J. J. & Gaines, S. D. (eds.) (2005) Exotic species: A source of insight into ecology, evolution, and biogeography. Sunderland, MA: Sinauer Associates.Google Scholar
Scheiner, S. M. (2003) Six types of species–area curves. Global Ecology & Biogeography, 12, 441447.Google Scholar
Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E., Jeschke, J. M., Pagad, S., Pyšek, P., Winter, M., Arianoutsou, M., Bacher, S., Blasius, B., Brundu, G., Capinha, C., Celesti-Grapow, L., Dawson, W., Dullinger, S., Fuentes, N., Jäger, H., Kartesz, J., Kenis, M., Kreft, H., Kühn, I., Lenzner, B., Leibhold, A., Mosena, A., Moser, D., Nishino, M., Pearman, D., Pergl, , J., Rabitsch, W., Rojas-Sandoval, J., Roques, A., Rorke, S., Rossinelli, S., Roy, H. E., Scalera, R., Schindler, S., Štajerová, K., Tokarska-Guzik, B., van Kleunen, M., Walker, K., Weigelt, P., Yamanaka, T. & Essl, F. (2017) No saturation in the accumulation of alien species worldwide. Nature Communications, 8, 14435.Google Scholar
Sherratt, T. N. & Wilkinson, D. M. (2009) Big questions in ecology and evolution. Oxford: Oxford University Press.Google Scholar
Stohlgren, T. J., Barnett, D., Flather, C., Fuller, P., Peterjohn, B., Kartesz, J. & Master, L. L. (2006) Species richness and patterns of invasion in plants, birds, and fishes in the United States. Biological Invasions, 8, 427447.Google Scholar
Tarasi, D. D. & Peet, R. K. (2017) The native-exotic species richness relationship varies with spatial grain of measurement and environmental conditions. Ecology, 98, 30863095.Google Scholar
Whittaker, R. J. & Fernández-Palacios, J. M. (2007) Island biogeography: Ecology, evolution, and conservation, 2nd ed. Oxford: Oxford University Press.Google Scholar
Whittaker, R. J., Rigal, F., Borges, P. A. V., Cardoso, P., Terzopoulou, S., Casanoves, F., Pla, L., Guilhaumon, F., Ladle, R. J. & Triantis, K. A. (2014) Functional biogeography of oceanic islands and the scaling of functional diversity in the Azores. Proceedings of the National Academy of Sciences USA, 111, 1370913714.Google Scholar
Williams, C. B. (1964) Patterns in the balance of nature. London: Academic Press.Google Scholar
Williamson, M. (1996) Biological invasions. London: Chapman and Hall.Google Scholar
Wilson, D. E. & Reeder, D. M. (eds.) (2005) Mammal species of the world. A taxonomic and geographic reference, 3rd ed. Baltimore, MD: Johns Hopkins University Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×