Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-18T10:18:23.607Z Has data issue: false hasContentIssue false

Part IV - The Species–Area Relationship in Applied Ecology

Published online by Cambridge University Press:  11 March 2021

Thomas J. Matthews
Affiliation:
University of Birmingham
Kostas A. Triantis
Affiliation:
National and Kapodistrian University of Athens
Robert J. Whittaker
Affiliation:
University of Oxford
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Species–Area Relationship
Theory and Application
, pp. 319 - 456
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Anderson, S. (1994) Area and endemism. Quarterly Review of Biology, 69, 451471.CrossRefGoogle Scholar
Araújo, M. B. (2002) Biodiversity hotspots and zones of ecological transition. Conservation Biology, 16, 16621663.CrossRefGoogle Scholar
Balletto, E., Bonelli, S., Borghesio, L., Casale, A., Brandmayr, P. & Vigna Taglianti, A. (2010) Hotspots of biodiversity and conservation priorities: A methodological approachItalian Journal of Zoology, 77, 213.Google Scholar
Barthlott, W., Lauer, W. & Placke, A. (1996) Global distribution of species diversity in vascular plants: Towards a world map of phytodiversity. Erdkunde, 50, 317327.Google Scholar
Bellwood, D. R., Hughes, T. P., Folke, C. & Nystrom, M. (2004) Confronting the coral reef crisis. Nature, 429, 827833.CrossRefGoogle ScholarPubMed
Borregaard, M. K. & Rahbek, C. (2010) Causality of the relationship between geographic distribution and species abundance. The Quarterly Review of Biology, 85, 325.Google Scholar
Brooks, T. M., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B., Rylands, A. B., Konstant, W. R., Flick, P., Pilgrim, J., Oldfield, S., Magin, G. & Hilton-Taylor, C. (2002) Habitat loss and extinction in the hotspots of biodiversity. Conservation Biology, 16, 909923.CrossRefGoogle Scholar
Brummitt, N. & Nic Lughadha, E. (2003) Biodiversity: Where’s hot and where’s not. Conservation Biology, 17, 14421448.CrossRefGoogle Scholar
Cadotte, M. W. & Davies, T. J. (2010) Rarest of the rare: Advances in combining evolutionary distinctiveness and scarcity to inform conservation at biogeographical scales. Diversity and Distributions, 16, 376385.Google Scholar
Cañadas, E. M., Fenu, G., Peñas, J., Lorite, J., Mattana, E. & Bacchetta, G. (2014) Hotspots within hotspots: Endemic plant richness, environmental drivers, and implications for conservation. Biological Conservation, 170, 282291.Google Scholar
Caro, T. M. (2010) Conservation by proxy: Indicator, umbrella, keystone, flagship, and other surrogate species. Washington, DC: Island Press.Google Scholar
Ceballos, G. & Brown, J. H. (1995) Global patterns of mammalian diversity, endemism, and endangerment. Conservation Biology, 9, 559568.CrossRefGoogle Scholar
Ceballos, G. & Ehrlich, P. (2006) Global mammal distributions, biodiversity hotspots, and conservation. Proceedings of the National Academy of Sciences USA, 103, 1937419379.CrossRefGoogle ScholarPubMed
Christenhusz, M. J. M. & Byng, J. W. (2016) The number of known plants species in the world and its annual increase. Phytotaxa, 261, 201217.CrossRefGoogle Scholar
Conservation International (2005) Biodiversity hotspots: Hotspots by region. http://www.biodiversityhotspots.org/xp/Hotspots/hotspots_by_region.Google Scholar
Conservation International (2019) Biodiversity hotspots. www.conservation.org/How/Pages/Hotspots.aspx.Google Scholar
Daru, B. H., Bank, M. & Davies, T. J. (2015) Spatial incongruence among hotspots and complementary areas of tree diversity in southern Africa. Diversity and Distributions, 21, 769780.Google Scholar
Dengler, J. (2009) Which function describes the species–area relationship the best? A review and empirical evaluation. Journal of Biogeography, 36, 728744.CrossRefGoogle Scholar
Devictor, V., Mouillot, D., Meynard, C., Jiguet, F., Thuiller, W. & Mouquet, N. (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecology Letters, 13, 10301040.CrossRefGoogle Scholar
Dobson, A. P., Rodriguez, J. P., Roberts, W. M. & Wilcove, S. S. (1997) Geographic distribution of endangered species in the United States. Science, 275, 550553.Google Scholar
Evans, E. C., Clark, P. J. & Brandt, R. H. (1955) Estimation of the number of species present in a given area. Ecology, 36, 342343.CrossRefGoogle Scholar
Fattorini, S. (2006a) Detecting biodiversity hotspots by species–area relationships: A case study of Mediterranean beetles. Conservation Biology, 20, 11691180.CrossRefGoogle ScholarPubMed
Fattorini, S. (2006b) A new method to identify important conservation areas applied to the butterflies of the Aegean Islands (Greece). Animal Conservation, 9, 7583.CrossRefGoogle Scholar
Fattorini, S. (2007a) To fit or not to fit? A poorly fitting procedure produces inconsistent results when the species–area relationship is used to locate hotspots. Biodiversity and Conservation, 16, 25312538.Google Scholar
Fattorini, S. (2007b) Levels of endemism are not necessarily biased by the co-presence of species with different size ranges: A case study of Vilenkin and Chikatunov’s models. Journal of Biogeography, 34, 9941007.Google Scholar
Fattorini, S. (2009) Assessing priority areas by imperilled species: Insights from the European butterflies. Animal Conservation, 12, 313320.CrossRefGoogle Scholar
Fattorini, S. (2010a) Use of insect rarity for biotope prioritisation: The tenebrionid beetles of the Central Apennines (Italy). Journal of Insect Conservation, 14, 367378.Google Scholar
Fattorini, S. (2010b) Biotope prioritisation in the Central Apennines (Italy): Species rarity and cross-taxon congruence. Biodiversity and Conservation, 19, 34133429.Google Scholar
Fattorini, S. (2017) Endemism in historical biogeography and conservation biology: Concepts and implications. Biogeographia – The Journal of Integrative Biogeography, 32, 4775.Google Scholar
Fattorini, S., Dennis, R. L. H. & Cook, L. M. (2011) Conserving organisms over large regions requires multi-taxa indicators: One taxon’s diversity-vacant area is another taxon’s diversity zone. Biological Conservation, 144, 16901701.Google Scholar
Funk, S. M. & Fa, J. E. (2010) Ecoregion prioritization suggests an armoury not a silver bullet for conservation planning. PLoS One, 5, e8923.Google Scholar
Georghiou, K. & Delipetrou, P. (2010) Patterns and traits of the endemic plants of Greece. Botanical Journal of the Linnean Society, 162, 130422.CrossRefGoogle Scholar
Grenyer, R., Orme, C. D., Jackson, S. F., Thomas, G. H., Davies, R. G., Davies, T. J., Jones, K. E., Olson, V. A., Ridgely, R. S., Rasmussen, P. C., Ding, T. S., Bennett, P. M., Blackburn, T. M., Gaston, K. J., Gittleman, J. L. & Owens, I. P. (2006) Global distribution and conservation of rare and threatened vertebrates. Nature, 444, 9396.Google Scholar
Griffin, P. C. (1999) Endangered species diversity ‘hot spots’ in Russia and centers of endemism. Biodiversity and Conservation, 8, 497511.CrossRefGoogle Scholar
Guilhaumon, F., Gimenez, O., Gaston, K. J. & Mouillot, D. (2008) Taxonomic and regional uncertainty in species–area relationships and the identification of richness hotspots. Proceedings of the National Academy of Sciences USA, 105, 1545815463.Google Scholar
Hobohm, C. (2000) Plant species diversity and endemism on islands and archipelagos, with special reference to the Macaronesian Islands. Flora, 195, 924.Google Scholar
Hobohm, C. (2003) Characterization and ranking of biodiversity hotspots: Centres of species richness and endemism. Biodiversity and Conservation, 12, 279287.CrossRefGoogle Scholar
Hobohm, C. & Tucker, C. M. (2014) How to quantify endemism. Endemism in vascular plants, plant and vegetation, vol. 9 (ed. by Hobohm, C.), pp. 1148. Heidelberg: Springer.Google Scholar
Hobohm, C., Janišová, M., Steinbauer, M., Landi, S., Field, R., Vanderplank, S., Beierkuhnlein, C., Grytnes, J.-A., Vetaas, O. R., Fidelis, A., de Nascimento, L., Clark, V. R., Fernández-Palacios, J. M., Franklin, S., Guarino, R., Huang, J., Krestov, P., Ma, K., Onipchenko, V., Palmer, M. W., Simon, M. F., Stolz, C. & Chiarucci, A. (2019) Global endemics–area relationships of vascular plants. Perspectives in Ecology and Conservation, 17, 4149.Google Scholar
Jenkins, C. N., Pimm, S. L. & Joppa, L. N. (2013) Global patterns of terrestrial vertebrate diversity and conservation. Proceedings of the National Academy of Sciences USA, 110, E2602E2610.Google Scholar
Jetz, W., Thomas, G. H., Joy, J. B., Redding, D., Hartmann, K. & Moore, A. O. (2014) Global distribution and conservation of evolutionary distinctness in birds. Current Biology, 24, 919930.Google Scholar
Kareiva, P. & Marvier, M. (2003) Conserving biodiversity coldspots. American Scientist, 91, 344351.Google Scholar
Kier, G. & Barthlott, W. (2001) Measuring and mapping endemism and species richness: A new methodological approach and its application on the flora of Africa. Biodiversity and Conservation, 10, 15131529.CrossRefGoogle Scholar
Kullberg, P., Toivonen, T., Montesino Pouzols, F., Lehtomäki, J., Di Minin, E. & Moilanen, A. (2015) Complementarity and area-efficiency in the prioritization of the global protected area network. PLoS One, 10, e0145231.Google Scholar
Maes, D., Gilbert, M., Titeux, N., Goffart, P. & Dennis, R. L. H. (2003) Prediction of butterfly diversity hotspots in Belgium: A comparison of statistically focused and land use-focused models. Journal of Biogeography, 30, 19071920.Google Scholar
Magurran, A. E. & McGill, B. J. (eds.) (2011) Biological diversity: Frontiers in measurement and assessment. Oxford: Oxford University Press.Google Scholar
Marchese, C. (2015) Biodiversity hotspots: A shortcut for a more complicated concept. Global Ecology & Conservation, 3, 297309.Google Scholar
Martín, H. G. & Goldenfeld, N. (2006) On the origin and robustness of power-law species–area relationships in ecology. Proceedings of the National Academy of Sciences USA, 103, 1031010315.Google Scholar
Matthews, T. J., Guilhaumon, F., Triantis, K. A., Borregaard, M. K. & Whittaker, R. J. (2016) On the form of species–area relationships in habitat islands and true islands. Global Ecology & Biogeography, 25, 847858.Google Scholar
Mazel, F., Guilhaumon, F., Mouquet, N., Devictor, V., Gravel, D., Renaud, J., Cianciaruso, M. V., Loyola, R., Diniz-Filho, J. A., Mouillot, D. & Thuiller, W. (2014) Global hotspots of multifaceted mammal diversity. Global Ecology & Biogeography, 23, 836847.CrossRefGoogle Scholar
Mittermeier, R. A., Gil, P. R., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C. G., Lamoreux, J. & da Fonseconda, G. A. B. (2004) Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. Mexico City: Cemex.Google Scholar
Mittermeier, R. A., Myers, N., Robles-Gil, P. & Mittermeier, C. G. (eds.) (1999) Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions. Mexico City: CEMEX and Agrupación Sierra Madre.Google Scholar
Mittermeier, R. A., Myers, N., Thomsen, J. B., da Fonseca, G. A. B. & Olivieri, S. (1998) Biodiversity hotspots and major tropical wilderness areas: Approaches to setting conservation priorities. Conservation Biology, 12, 516520.Google Scholar
Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. (2011) Global biodiversity conservation: The critical role of hotspots. Biodiversity hotspots (ed. by Zachos, F. E. and Habel, J. C.), pp. 322. London: Springer Publishers.Google Scholar
Myers, N. (1988) Threatened biotas: ‘Hotspots’ in tropical forests. Environmentalist, 8, 120.Google Scholar
Myers, N. (1990) The biodiversity challenge: Expanded hot-spots analysis. Environmentalist, 10, 243256.CrossRefGoogle ScholarPubMed
Myers, N. & Mittermeier, R. A. (2003) Impact and acceptance of the hotspots strategy: Response to Ovadia and to Brummit and Lughadha. Conservation Biology, 17, 14491450.Google Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853858.CrossRefGoogle ScholarPubMed
Noss, R. (2016) Announcing the World’s 36th biodiversity hotspot: The North American Coastal Plain. www.cepf.net/stories/announcing-worlds-36th-biodiversity-hotspot-north-american-coastal-plain.Google Scholar
Noss, R. F., Platt, W. J., Sorrie, B. A., Weakley, A. S., Means, D. B., Costanza, J., Peet, R. K. & Richardson, D. (2015) How global biodiversity hotspots may go unrecognized: Lessons from the North American Coastal Plain. Diversity and Distributions, 21, 236244.Google Scholar
Orme, C. L., Davies, R. G., Burgess, M. H., Eigenbrod, F., Pickup, N. J., Olson, V. A., Webster, A. J., Ding, T., Rasmussen, P. C., Ridgely, R. S., Stattersfield, A. J., Bennett, P. M., Blackburn, T. M., Gaston, K. J. & Owens, I. P. (2005) Global hotspots of species richness are not congruent with endemism or threat. Nature, 436, 10161019.CrossRefGoogle ScholarPubMed
Ovadia, O. (2003) Ranking hotspots of varying sizes: A lesson from the nonlinearity of the species–area relationship. Conservation Biology, 17, 14401441.CrossRefGoogle Scholar
Pomeroy, D. (1993) Centres of high biodiversity in Africa. Conservation Biology, 7, 901907.Google Scholar
Possingham, H. P. & Wilson, K. A. (2005) Turning up the heat on hotspots. Nature, 436, 919920.Google Scholar
Prendergast, J. R., Quinn, R. M., Lawton, J. H., Eversham, B. C. & Gibbons, D. W. (1993a) Rare species, the coincidence of diversity hotspots and conservation strategies. Nature, 365, 335337.Google Scholar
Prendergast, J., Wood, S., Lawton, J. & Eversham, B. (1993b) Correcting for variation in recording effort in analyses of diversity hotspots. Biodiversity Letters, 1, 3953.Google Scholar
Reid, W. V. (1998) Biodiversity hotspots. Trends in Ecology & Evolution, 13, 275280.CrossRefGoogle ScholarPubMed
Roberts, C. M., McClean, C. J., Veron, J. E. N., Hawkins, J. P., Allen, G. R., McAllister, D. E., Mittermeier, C. G., Schueler, F. W., Spalding, M., Wells, F., Vynne, C. & Werner, T. B. (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science, 295, 12801284.Google Scholar
Rosenzweig, M. L. (1995) Species diversity in space and time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Sloan, S., Jenkins, C. N., Joppa, L. N., Gaveau, D. L. A. & Laurance, W. F. (2014) Remaining natural vegetation in the global biodiversity hotspots. Biological Conservation, 177, 1224.Google Scholar
Smith, T. B., Kark, S., Schneider, C. J., Wayne, R. K. & Moritz, C. (2001) Biodiversity hotspots and beyond: The need for preserving environmental transitions. Trends in Ecology & Evolution, 16, 431.Google Scholar
Stattersfield, A. J., Crosby, M. J., Long, A. J. & Wege, D. C. (1998Endemic bird areas of the world: Priorities for biodiversity conservation. BirdLife Conservation Series 7. Cambridge, UK: BirdLife International.Google Scholar
Storch, D., Keil, P. & Jetz, W. (2012) Universal species–area and endemics–area relationships at continental scales. Nature, 488, 7881.Google Scholar
Stork, N. E., Habel, J. C. & Ladle, R. (2014) Can biodiversity hotspots protect more than tropical forest plants and vertebrates? Journal of Biogeography, 41, 421428.Google Scholar
Stuart-Smith, R. D., Bates, A. E., Lefcheck, J. S., Duffy, J. E., Baker, S. C., Thomson, R. J., Stuart-Smith, J. F., Hill, N. A., Kininmonth, S. J., Airoldi, L., Becerro, M. A., Campbell, S. J., Dawson, T. P., Navarrete, S. A., Soler, G. A., Strain, E. M. A., Willis, T. J. & Edgar, G. J. (2013) Integrating abundance and functional traits reveals new global hotspots of fish diversityNature, 501, 539542.Google Scholar
Thomasson, M. (1999) Réflexions sur la biodiversité: Richesse, originalité et endémicité floristiques. Acta Botanica Gallica, 146, 403419.Google Scholar
Tjørve, E. (2003) Shapes and functions of species–area curves: A review of possible models. Journal of Biogeography, 30, 827835.Google Scholar
Tjørve, E. (2009) Shapes and functions of species–area curves (II): A review of new models and parameterizations. Journal of Biogeography, 36, 14351445.CrossRefGoogle Scholar
Triantis, K. A., Guilhaumon, F. & Whittaker, R. J. (2012) The island species–area relationship: Biology and statistics. Journal of Biogeography, 39, 215231.Google Scholar
Triantis, K. A., Mylonas, M. & Whittaker, R. J. (2008) Evolutionary species–area curves as revealed by single-island endemics: Insights for the inter-provincial species–area relationship. Ecography, 31, 401407.CrossRefGoogle Scholar
Troumbis, A. Y. & Dimitrakopoulos, P. G. (1998) Geographic coincidence of diversity threatspots for three taxa and conservation planning in Greece. Biological Conservation, 84, 16.Google Scholar
Ulrich, W. & Buszko, J. (2005) Detecting biodiversity hotspots using species–area and endemics–area relationships: The case of butterflies. Biodiversity and Conservation, 14, 19771988.Google Scholar
Ungricht, S. (2004) How many plant species are there? And how many are threatened with extinction? Endemic species in global biodiversity and conservation assessments. Taxon, 53, 481484.Google Scholar
Veech, J. A. (2000) Choice of species–area function affects identification of hotspots. Conservation Biology, 14, 140147.Google Scholar
Vilenkin, B. Y. & Chikatunov, V. I. (1998) Co-occurrence of species with various geographical ranges, and correlation between area size and number of species in geographical scale. Journal of Biogeography, 25, 275284.Google Scholar
Vilenkin, B. Y. & Chikatunov, V. I. (2000) Participation of species with different zoogeographical ranks in the formation of local fauna: A case study. Journal of Biogeography, 27, 12011208.Google Scholar
Vilenkin, B. Y., Chikatunov, V. I., Coad, B. W. & Schileyko, A. A. (2009) A random process may control the number of endemic species. Biologia, 64, 107112.Google Scholar
Williams, K. J., Ford, A., Rosauer, D. F., De Silva, N., Mittermeier, R., Bruce, C., Larsen, F. W. & Margules, C. (2011) Forests of East Australia: The 35th biodiversity hotspot. Biodiversity hotspots (ed. by Habel, J. C. and Zachos, F.), pp. 295310. Heidelberg: Springer.Google Scholar
Williams, M. R., Lamont, B. B. & Henstridge, J. D. (2009) Species–area functions revisited. Journal of Biogeography, 36, 19942004.Google Scholar
Williams, P., Gibbons, D., Margules, C., Rebelo, A., Humphries, C. & Pressey, R. (1996) A comparison of richness hotspots, rarity hotspots, and complementary areas for conserving diversity of British birds. Conservation Biology, 10, 155174.Google Scholar

References

Allen, A. P. & White, E. P. (2003) Effects of range size on species–area relationships. Evolutionary Ecology Research, 5, 493499.Google Scholar
Axelsen, J. B., Roll, U., Stone, L. & Solow, A. (2013) Species–area relationships always overestimate extinction rates from habitat loss: Comment. Ecology, 94, 761763.Google Scholar
Babu, S. (2011) Online comment on ‘species–area relationships always overestimate extinction rates from habitat loss’. www.nature.com/nature/journal/v473/n7347/full/nature09985.html#/comments.Google Scholar
Boettiger, C. & Hastings, A. (2013) Tipping points: From patterns to predictions. Nature, 493, 157158.Google Scholar
Bommarco, R., Biesmeijer, J. C., Meyer, B., Potts, S. G., Pöyry, J., Roberts, S. P., Steffan-Dewenter, I. & Öckinger, E. (2010) Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proceedings of the Royal Society B: Biological Sciences, 277, 20752082.Google Scholar
Borges, P. A. V., Lobo, J. M., Azevedo, E. B., Gaspar, C., Melo, C. & Nunes, L. V. (2006) Invasibility and species richness of island endemic arthropods: A general model of endemic vs. exotic species. Journal of Biogeography, 33, 169187.Google Scholar
Brook, B. W., Sodhi, N. S. & Ng, P. K. L. (2003) Catastrophic extinctions follow deforestation in Singapore. Nature, 424, 420426.CrossRefGoogle ScholarPubMed
Brooks, M. T. Brook, B. W., Koh, L. P., Pereira, H. M., Pimm, S. L., Rosenzweig, M. L. & Sodhi, N. S. (2011) Extinctions: Consider all species. Nature, 474, 284.Google Scholar
Brooks, T. & Balmford, A. (1996) Atlantic forest extinctions. Nature, 380, 115.Google Scholar
Canale, C. I. & Henry, P.-Y. (2010) Adaptive phenotypic plasticity and resilience of vertebrates to increasing climatic unpredictability. Climate Research, 43, 135147.Google Scholar
Chevin, L.-M., Lande, R. & Mace, G. M. (2010) Adaptation, plasticity, and extinction in a changing environment: Towards a predictive theory. PLoS One, 8, e1000357.Google Scholar
Condit, R., Ashton, P. S., Baker, P. Bunyavejchewin, S., Gunatilleke, S., Gunatilleke, N., Hubbell, S. P., Foster, R. B., Itoh, A., LaFrankie, J. V., Lee, H. S., Losos, E., Manokaran, N., Sukumar, R. & Yamakura, T. (2000) Spatial patterns in the distribution of tropical tree species. Science, 288, 14141418.Google Scholar
Costello, M. J., May, R. M. & Stork, N. E. (2013) Can we name Earth’s species before they go extinct? Science, 339, 413416.Google Scholar
Daily, G. C., Ceballos, G., Pacheco, J., Suzán, G. & Sánchez-Azofeifa, A. (2003) Countryside biogeography of Neotropical mammals: Conservation opportunities in agricultural landscapes of Costa Rica. Conservation Biology, 17, 18141826.Google Scholar
Didham, R. K., Lawton, J. H., Hammond, P. M. & Eggleton, P. (1998) Trophic structure stability and extinction dynamics of beetles (Coleoptera) in tropical forest fragments. Philosophical Transactions of the Royal Society B: Biological Sciences, 353, 437451.Google Scholar
Donahue, M. (2017) Possible ivory-billed woodpecker footage breathes life into extinction debate. www.audubon.org/news/possible-ivory-billed-woodpecker-footage-breathes-life-extinction-debate.Google Scholar
Durrett, R. & Levin, S. A. (1996) Spatial models for species–area curves. Journal of Theoretical Biology, 179, 119127.Google Scholar
Evans, M., Possingham, H. & Wilson, K. (2011) Extinctions: Conserve not collate. Nature, 474, 284.Google Scholar
Fattorini, S. &. Borges, P. V. A. (2012) Species–area relationships underestimate extinction rates. Acta Oecologica, 40, 2730.Google Scholar
Fischer, J. & Lindenmayer, D. B. (2007) Landscape modification and habitat fragmentation: A synthesis. Global Ecology & Biogeography, 16, 265280.Google Scholar
Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347, 1255957.Google Scholar
Habel, J. C., Trusch, R., Schmitt, T., Ochse, M. & Ulrich, W. (2019) Long-term large-scale decline in relative abundances of butterfly and burnet moth species across south-western Germany. Scientific Reports, 9, 14921.Google Scholar
Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., Lovejoy, T. E., Sexton, J. O., Austin, M. P., Collins, C. D., Cook, W. M., Damschen, E. I., Ewers, R. M., Foster, B. L., Jenkins, C. N., King, A. J., Laurance, W. F., Levey, D. J., Margules, C. R., Melbourne, B. A., Nicholls, A. O., Orrock, J. L., Song, D.-X. & Townshend, J. R. (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1, e1500052.Google Scholar
Halley, J. M., Sgardeli, V. & Monokrousos, N. (2013) Species–area relationships and extinction forecasts. Annals of the New York Academy of Sciences, 1286, 5061.Google Scholar
Hanski, I. & Ovaskainen, O. (2003) Metapopulation theory for fragmented landscapes. Theoretical Population Biology, 64, 119127.CrossRefGoogle ScholarPubMed
Hanski, I., Koivulehto, H., Cameron, A. & Rahagalala, P. (2007) Deforestation and apparent extinctions of endemic forest beetles in Madagascar. Biology Letters, 3, 344347.Google Scholar
Hanski, I., Zurita, G. A., Bellocq, M. I. & Rybicki, J. (2013) Species–fragmented area relationship. Proceedings of the National Academy of Sciences USA, 110, 1271512720.Google Scholar
Harte, J. (2000) Scaling and self-similarity in species distributions: Implications for extinction, species richness, abundance, and range. Scaling in biology: Patterns and processes, causes and consequences (ed. by Brown, J. H., West, J. H. and Enquist, B. J.), pp. 325342. Oxford: Oxford University Press.Google Scholar
Harte, J. & Kinzig, A. P. (1997) On the implications of species–area relationships for endemism, spatial turnover, and food web patterns. Oikos, 80, 417427.Google Scholar
Harte, J., Kinzig, A. P. & Green, J. (1999a) Self-similarity in the distribution and abundance of species. Science, 284, 334336.Google Scholar
Harte, J., McCarthy, S., Kinzig, A. P. & Fischer, M. L. (1999b) Estimating species–area relationships from plot to landscape scale using species spatial-turnover data. Oikos, 86, 4554.Google Scholar
He, F. & Hubbell, S. P. (2011) Species–area relationships always overestimate extinction rates from habitat loss. Nature, 473, 368371.Google Scholar
He, F. & Hubbell, S. P. (2013) Estimating extinction from species–area relationships: Why the numbers do not add up. Ecology, 94, 19051912.Google Scholar
Hubbell, S. P. (2001) The unified neutral theory of biodiversity and biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Keil, P., Storch, D. & Jetz, W. (2015) On the decline of biodiversity due to area loss. Nature Communications, 6, 8837.Google Scholar
Kinzig, A. P. & Harte, J. (2000) Implications of endemics–area relationships for estimates of species extinction. Ecology, 81, 33053311.Google Scholar
Kitzes, J. & Harte, J. (2014) Beyond the species–area relationship: Improving macroecological extinction estimates. Methods in Ecology and Evolution, 5, 18.Google Scholar
Koh, L. P. & Ghazoul, J. (2010) A matrix-calibrated species–area model for predicting biodiversity losses due to land-use change. Conservation Biology, 24, 9941001.Google Scholar
Koh, L. P., Lee, T. M., Sodhi, N. S. & Ghazoul, J. (2010) An overhaul of the species–area approach for predicting biodiversity loss: Incorporating matrix and edge effects. Journal of Applied Ecology, 47, 10631070.Google Scholar
Kunin, W. E. Harte, J., He, F., Hui, C., Jobe, R. T., Ostling, A., Polce, C., Šizling, A., Smith, A. B., Smith, K., Smart, S., Storch, D., Tjørve, E., Ugland, K.-E., Ulrich, W. & Varma, V. (2018) Upscaling biodiversity: Estimating the species–area relationship from small samples. Ecological Monographs, 88, 170187.Google Scholar
Laurance, W. F. (2008) Theory meets reality: How habitat fragmentation research has transcended island biogeographic theory. Biological Conservation, 141, 17311744.Google Scholar
Lomolino, M. V., Riddle, B. R., Whittaker, R. J. & Brown, J. H. (2010) Biogeography, 4th ed. Sunderland, MA: Sinauer Associates.Google Scholar
MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L. & Hines, J. E. (2006) Occupancy estimation and modeling: Inferring patterns and dynamics of species occurrence. Burlington, MA: Academic Press.Google Scholar
Maes, D. & Van Dyck, H. (2001) Butterfly diversity loss in Flanders (north Belgium): Europe’s worst case scenario? Biological Conservation, 99, 263276.Google Scholar
Martins, I. S. & Pereira, H. M. (2017) Improving extinction projections across scales and habitats using the countryside species–area relationship. Scientific Reports, 7, 12899.Google Scholar
Matthews, T. J. & Aspin, T. (2019) Model averaging fails to improve the extrapolation capability of the island species–area relationship. Journal of Biogeography, 46, 15581568.Google Scholar
Matthews, T. J., Cottee-Jones, H. E. & Whittaker, R. J. (2014b) Habitat fragmentation and the species–area relationship: A focus on total species richness obscures the impact of habitat loss on habitat specialists. Diversity and Distributions, 20, 11361146.Google Scholar
Matthews, T. J., Guilhaumon, F., Triantis, K. A., Borregaard, M. K. & Whittaker, R. J. (2016) On the form of species–area relationships in habitat islands and true islands. Global Ecology & Biogeography, 25, 847858.CrossRefGoogle Scholar
Matthews, T. J., Steinbauer, M. J., Tzirkalli, E., Triantis, K. A. & Whittaker, R. J. (2014a) Thresholds and the species–area relationship: A synthetic analysis of habitat island datasets. Journal of Biogeography, 41, 10181028.Google Scholar
May, R. M. (1975) Patterns of species abundance and diversity. Ecology and evolution of communities (ed. by Cody, M. L. and Diamond, J. M.), pp. 81120. Cambridge MA: Harvard University Press.Google Scholar
May, R. M., Lawton, J. H. & Stork, N. E. (1995) Assessing extinction rates. Extinction rates (ed. by Lawton, J. H. and May, R. M.), pp. 124. Oxford: Oxford University Press.Google Scholar
Mendenhall, C. D., Karp, D. S., Meyer, C. F. J., Hadly, E. A. & Daily, G. C. (2014) Predicting biodiversity change and averting collapse in agricultural landscapes. Nature, 509, 213217.Google Scholar
Moczek, A. P. (2010) Phenotypic plasticity and diversity in insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 593603.CrossRefGoogle ScholarPubMed
Ney-Nifle, M. & Mangel, M. (1999) Species–area curves based on geographic range and occupancy. Journal of Theoretical Biology, 196, 327342.Google Scholar
Ney-Nifle, M. & Mangel, M. (2000) Habitat loss and changes in the species–area relationship. Conservation Biology, 14, 893898.Google Scholar
Palmer, M. W. & White, P. S. (1994) Scale dependence and the species–area relationship. The American Naturalist, 144, 717740.Google Scholar
Pereira, H. M. & Daily, G. C. (2006) Modeling biodiversity dynamics in countryside landscapes. Ecology, 87, 18771885.Google Scholar
Pereira, H. M., Borda-de-Água, L. & Martins, I. S. (2012) Geometry and scale in species–area relationships. Nature, 482, E3E4.Google Scholar
Pimm, S. L. (1998) Extinction. Conservation science and action (ed. by Sutherland, W. J.), pp. 2838. Oxford: Blackwell.Google Scholar
Pimm, S. L. & Askins, R. A. (1995) Forest losses predict bird extinction in eastern North America. Proceedings of the National Academy of Sciences USA, 92, 93439347.Google Scholar
Primack, R. B. (2014) Essentials of conservation biology, 6th ed. Oxford: Oxford University Press.Google Scholar
Pullin, A. S. (2002) Conservation biology. Cambridge: Cambridge University Press.Google Scholar
Reid, W. V. & Miller, K. R. (1989) Keeping options alive: The scientific basis for conserving biodiversity. Washington, DC: World Resources Institute.Google Scholar
Riddle, B. R., Ladle, R. J., Lourie, S. A. & Whittaker, R. J. (2011) Basic biogeography: Estimating biodiversity and mapping nature. Conservation biogeography (ed. by Ladle, R. J. and Whittaker, R. J.), pp. 4792. Chichester: Wiley-Blackwell.Google Scholar
Rohr, R. P., Saavedra, S. & Bascompte, J. (2014) On the structural stability of mutualistic systems. Science, 345, 1253497.Google Scholar
Rosenzweig, M.L. (1995) Species diversity in space and time. Cambridge: Cambridge University Press.Google Scholar
Schilthuizen, M. (2018) Darwin comes to town: How the urban jungle drives evolution. New York: Picador.Google Scholar
Seabloom, E. W., Dobson, A. P. & Stoms, D. M. (2002) Extinction rates under non-random patterns of habitat loss. Proceedings of the National Academy of Sciences USA, 99, 1122911234.Google Scholar
Smith, A. B. (2010) Caution with curves: Caveats for using the species–area relationship in conservation. Biological Conservation, 143, 555564.Google Scholar
Storch, D., Keil, P. & Jetz, W. (2012) Universal species–area and endemics–area relationships at continental scales. Nature, 488, 7881.Google Scholar
Stork, N. (2010) Re-assessing current extinction rates. Biodiversity and Conservation, 19, 357371.Google Scholar
Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. (1994) Habitat destruction and the extinction debt. Nature, 371, 6566.Google Scholar
Triantis, K. A., Borges, P. A. V., Ladle, R. J., Hortal, J., Cardoso, P., Gaspar, C., Dinis, F., Mendonça, E., Silveira, L. M. A., Gabriel, R., Melo, C., Santos, A. M. C., Amorim, I. R., Ribeiro, S. P., Serrano, A. R. M., Quartau, J. A. & Whittaker, R. J. (2010) Extinction debt on oceanic islands. Ecography, 33, 285294.CrossRefGoogle Scholar
Triantis, K. A., Guilhaumon, F. & Whittaker, R. J. (2012) The island species–area relationship: Biology and statistics. Journal of Biogeography, 39, 215231.Google Scholar
Ulrich, W. (2005) Predicting species numbers using species–area and endemics–area relations. Biodiversity and Conservation, 14, 33513362.Google Scholar
Ulrich, W. & Buszko, J. (2003a) Species–area relationship of butterflies in Europe: The simulation of extinction processes reveals different patterns between Northern and Southern Europe. Ecography, 26, 365374.CrossRefGoogle Scholar
Ulrich, W. & Buszko, J. (2003b) Self-similarity and the species–area relation of Polish butterflies. Basic and Applied Ecology, 4, 263270.Google Scholar
Ulrich, W. & Buszko, J. (2004) Habitat reduction and patterns of species loss. Basic and Applied Ecology, 5, 231240.Google Scholar
Ulrich, W. & Buszko, J. (2005) Detecting biodiversity hotspots using species–area and endemics–area relationships: The case of butterflies. Biodiversity and Conservation, 14, 19771988.Google Scholar
Whittaker, R. J. & Matthews, T. J. (2014) The varied form of species–area relationships. Journal of Biogeography, 41, 209210.Google Scholar
Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. K. & Triantis, K. A. (2017) Island biogeography: Taking the long view of nature’s laboratories. Science, 357, eaam8326.Google Scholar
Wilsey, B. J., Martin, L. M. & Polley, H. W. (2005) Predicting plant extinction based on species–area curves in prairie fragments with high beta richness. Conservation Biology, 19, 18351841.Google Scholar
Wilson, E. O. (1992) The diversity of life. Cambridge, MA: Belknap Press.Google Scholar
World Conservation Monitoring Centre (1992) Global biodiversity: Status of the Earth’s living resources. London: Chapman and Hall.Google Scholar

References

Ackerly, D. D. (2003) Community assembly, niche conservatism, and adaptive evolution in changing environments. International Journal of Plant Sciences, 164, S165S184.Google Scholar
Adler, P. B., White, E. P., Laurenroth, W. K., Kaufman, D. M., Rassweiler, A. & Rusak, J. A. (2005) Evidence for a general species–time–area relationship. Ecology, 86, 20322039.Google Scholar
Allesina, S. & Pascual, M. (2006) Googling food webs: Can an eigenvector measure species’ importance for coextinctions? PLoS Computational Biology, 9, e1000494.Google Scholar
Altieri, A. H., van Wesenbeeck, B. K., Bertness, M. D. & Silliman, B. R. (2010) Facilitation cascade drives positive relationship between native biodiversity and invasion success. Ecology, 91, 12691275.Google Scholar
Arrhenius, O. (1921) Species and area. Journal of Ecology, 9, 9599.Google Scholar
Baranyi, G., Saura, S., Podani, J. & Jordán, F. (2011) Contribution of habitat patches to network connectivity: Redundancy and uniqueness of topological indices. Ecological Indicators, 11, 13011310.Google Scholar
Bodin, Ö. & Norberg, J. (2007) A network approach for analyzing spatially structured populations in fragmented landscape. Landscape Ecology, 22, 3144.Google Scholar
Bodin, Ö. & Saura, S. (2010) Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments. Ecological Modelling, 221, 23932405.Google Scholar
Brown, J. H. & Kodric-Brown, A. (1977) Turnover rates in insular biogeography: Effect of immigration on extinction. Ecology, 58, 445449.Google Scholar
Cadotte, M. W. (2006) Dispersal and species diversity: A meta-analysis. The American Naturalist, 167, 913924.Google Scholar
Case, T. J. (1983) Niche overlap and the assembly of island lizard communities. Oikos, 41, 427433.Google Scholar
Connor, E. F. & McCoy, E. D. (1979) The statistics and biology of the species–area relationship. The American Naturalist, 113, 791833.Google Scholar
Cornell, H. V. & Lawton, J. H. (1992) Species interactions, local and regional processes, and limits to the richness of ecological communities: A theoretical perspective. Journal of Animal Ecology, 61, 112.Google Scholar
Crist, T. O. & Veech, J. A. (2006) Additive partitioning of rarefaction curves and species–area relationships: Unifying α-, β-, and γ-diversity with sample size and habitat area. Ecology Letters, 9, 923932.CrossRefGoogle ScholarPubMed
de Arruda, G. F., Barbieri, A. L., Rodríguez, P. M., Rodrigues, F. A., Moreno, Y. & Costa, L. F. (2014) Role of centrality for the identification of influential spreaders in complex networks. Physical Review E, 90, 032812.Google Scholar
Drakare, S., Lennon, J. J. & Hillebrand, H. (2006) The imprint of the geographical, evolutionary, and ecological context on species–area relationships. Ecology Letters, 9, 215227.Google Scholar
Economo, E. P. & Keitt, T. H. (2008) Species diversity in neutral metacommunities: A network approach. Ecology Letters, 11, 5262.Google Scholar
Economo, E. P. & Keitt, T. H. (2010) Network isolation and local diversity in neutral metacommunities. Oikos, 119, 13551363.CrossRefGoogle Scholar
Fattorini, S. (2009) On the general dynamic model of oceanic island biogeography. Journal of Biogeography, 36, 11001110.Google Scholar
Fattorini, S., Borges, P. A. V., Dapporto, L. & Strona, G. (2017) What can the parameters of the species–area relationship (SAR) tell us? Insights from Mediterranean islands. Journal of Biogeography, 44, 10181028.Google Scholar
Gómez-Rodríguez, C., Miller, K. E., Castillejo, J., Iglesias-Piñeiro, J. & Baselga, A. (2019) Understanding dispersal limitation through the assessment of diversity patterns across phylogenetic scales below the species level. Global Ecology & Biogeography, 28, 353364.Google Scholar
He, F., Gaston, K. J., Connor, E. F. & Srivastava, D. S. (2005) The local–regional relationship: Immigration, extinction, and scale. Ecology, 86, 360365.Google Scholar
Hormiga, G., Arnedo, M. & Gillespie, R. G. (2003) Speciation on a conveyor belt: Sequential colonization of the Hawaiian Islands by Orsonwelles spiders (Araneae, Linyphiidae). Systematic Biology, 52, 7088.Google Scholar
Hubbell, S. P. (2001) The unified neutral theory of biodiversity and biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Janzen, D. H. (1985) On ecological fitting. Oikos, 45, 308310.Google Scholar
Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E. & Makse, H. A. (2010) Identification of influential spreaders in complex networks. Nature Physics, 6, 888893.Google Scholar
Kneitel, J. M. & Miller, T. E. (2003) Dispersal rates affect species composition in metacommunities of Sarraenia purpurea inquilines. The American Naturalist, 162, 165171.Google Scholar
Kokko, H. & López-Sepulcre, A. (2006) From individual dispersal to species ranges: Perspectives for a changing world. Science, 313, 789791.Google Scholar
Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R., Tilman, D., Loreau, M. & Gonzalez, A. (2004) The metacommunity concept: A framework for multi‐scale community ecology. Ecology Letters, 7, 601613.CrossRefGoogle Scholar
Lomolino, M. V. (2000) Ecology’s most general, yet protean pattern: The species–area relationship. Journal of Biogeography, 27, 1726.Google Scholar
Lomolino, M. V., Riddle, B. R. & Brown, J. H. (2006) Biogeography, 3rd ed. Sunderland, MA: Sinauer Associates.Google Scholar
Losos, J. B. & Ricklefs, R. E. (2010) The theory of island biogeography revisited. Princeton, NJ: Princeton University Press.Google Scholar
MacArthur, R. H. & Wilson, E. O. (1963) An equilibrium theory of insular zoogeography. Evolution, 17, 373387.Google Scholar
MacArthur, R. H. & Wilson, E. O. (1967) The theory of island biogeography. Princeton, NJ: Princeton University Press.Google Scholar
MacDougall, A. S., Gilbert, B. & Levine, J. M. (2009) Plant invasions and the niche. Journal of Ecology, 97, 609615.Google Scholar
Matthews, T. J., Rigal, F., Triantis, K. A. & Whittaker, R. J. (2019) A global model of island species–area relationships. Proceedings of the National Academy of Sciences USA, 116, 1233712342.Google Scholar
McGill, B. J. (2010) Towards a unification of unified theories of biodiversity. Ecology Letters, 13, 627642.Google Scholar
Medeiros, M. J. & Gillespie, R. G. (2011) Biogeography and the evolution of flightlessness in a radiation of Hawaiian moths (Xyloryctidae: Thyrocopa). Journal of Biogeography, 38, 101111.Google Scholar
Mooney, H. A. & Cleland, E. E. (2001) The evolutionary impact of invasive species. Proceedings of the National Academy of Sciences USA, 98, 54465451.Google Scholar
Mouquet, N. & Loreau, M. (2003) Community patterns in source-sink metacommunities. The American Naturalist, 162, 544557.Google Scholar
Newman, M. E., Barabási, A. L. E. & Watts, D. J. (2006) The structure and dynamics of networks. Princeton, NJ: Princeton University Press.Google Scholar
O’Dwyer, J. P. & Green, J. L. (2010) Field theory for biogeography: A spatially explicit model for predicting patterns of biodiversity. Ecology Letters, 13, 8795.Google Scholar
Patiño, J., Weigelt, P., Guilhaumon, F., Kreft, H., Triantis, K. A., Naranjo-Cigala, A., Sólymos, P. & Vanderpoorten, A. (2014) Differences in species–area relationships among the major lineages of land plants: A macroecological perspective. Global Ecology & Biogeography, 23, 12751283.CrossRefGoogle Scholar
Proulx, S. R., Promislow, D. E. L. & Phillips, P. C. (2005) Network thinking in ecology and evolution. Trends in Ecology & Evolution, 20, 345353.Google Scholar
Radicchi, F. & Castellano, C. (2017) Fundamental difference between superblockers and superspreaders in networks. Physical Review E, 95, 012318.Google Scholar
Ricciardi, A., Hoopes, M. F., Marchetti, M. P. & Lockwood, J. A. (2013) Progress toward understanding the ecological impacts of nonnative species. Ecology, 83, 263282.Google Scholar
Ricklefs, R. E. (1987) Community diversity: Relative roles of local and regional processes. Science, 235, 167171.Google Scholar
Rosenzweig, M. L. (1995) Species diversity in space and time. Cambridge: Cambridge University Press.Google Scholar
Santamaria, C. A., Mateos, M., Taiti, S., DeWitt, T. J. & Hurtado, L. A. (2013) A complex evolutionary history in a remote archipelago: Phylogeography and morphometrics of the Hawaiian endemic Ligia isopods. PLoS One, 12, e85199.Google Scholar
Schoener, T. W. (2010) The MacArthur-Wilson equilibrium model: A chronicle of what it said and how it was tested. The theory of island biogeography revisited (ed. by Losos, J. B. and Ricklefs, R. E.), pp. 5287. Princeton, NJ: Princeton University Press.Google Scholar
Seymour, M., Fronhofer, E. A. & Altermatt, F. (2015) Dendritic network structure and dispersal affect temporal dynamics of diversity and species persistence. Oikos, 124, 908916.Google Scholar
Shaw, K. L. (1996) Sequential radiations and patterns of speciation in the Hawaiian cricket genus Laupala inferred from DNA sequences. Evolution, 50, 237255.Google Scholar
Simberloff, D., Martin, J. L., Genovesi, P., Maris, V., Wardle, D. A., Aronson, J., Courchamp, F., Galil, B., García-Berthou, E., Pascal, M., Pyšek, P., Sousa, R., Tabacchi, E. & Vilà, M. (2013) Impacts of biological invasions: What’s what and the way forward. Trends in Ecology & Evolution, 28, 5866.CrossRefGoogle ScholarPubMed
Skóra, F., Abilhoa, V., Padial, A. A. & Vitule, J. R. S. (2015) Darwin’s hypotheses to explain colonization trends: Evidence from a quasi-natural experiment and a new conceptual model. Diversity and Distributions, 21, 583594.Google Scholar
Sólymos, P. & Lele, S. R. (2012) Global pattern and local variation in species–area relationships. Global Ecology & Biogeography, 21, 109120.Google Scholar
Thomas, C. D., Bodsworth, E. J., Wilson, R. J., Simmons, A. D., Davies, Z. G., Musche, M. & Conradt, L. (2001) Ecological and evolutionary processes at expanding range margins. Nature, 411, 577581.Google Scholar
Triantis, K. A., Guilhaumon, F. & Whittaker, R. J. (2012) The island species–area relationship: Biology and statistics. Journal of Biogeography, 39, 215231.Google Scholar
Wagner, W. L. & Funk, V. A. (1995) Hawaiian biogeography: Evolution on a hot spot archipelago. Washington, DC: Smithsonian Institution Press.Google Scholar
White, E. P. (2004) Two-phase species–time relationships in North American land birds. Ecology Letters, 7, 329336.Google Scholar
Whittaker, R. J. & Fernández-Palacios, J. M. (2007) Island biogeography: Ecology, evolution, and conservation, 2nd ed. Oxford: Oxford University Press.Google Scholar
Whittaker, R. J., Triantis, K. A. & Ladle, R. J. (2008) A general dynamic theory of oceanic island biogeography. Journal of Biogeography, 35, 977994.Google Scholar

References

Andrle, R. F. & Carroll, J. R. (eds.) (1988) The atlas of breeding birds in New York State. New York: Cornell University Press.Google Scholar
Brooks, T. M., Mittermeier, R. A., da Fonseca, G. A., Gerlach, J., Hoffmann, M., Lamoreux, J. F., Mittermeier, C. G., Pilgrim, J. D. & Rodrigues, A. S. (2006) Global biodiversity conservation priorities. Science, 313, 5861.Google Scholar
Dengler, J. & Oldeland, J. (2010) Effects of sampling protocol on the shapes of species richness curves. Journal of Biogeography, 37, 16981705.Google Scholar
Diamond, J. M. (1972) Biogeographic kinetics: Estimation of relaxation times for avifaunas of southwest Pacific islands. Proceedings of the National Academy of Sciences USA, 69, 31993203.Google Scholar
Diniz‐Filho, J. A. F., Bini, L. M. & Hawkins, B. A. (2003) Spatial autocorrelation and red herrings in geographical ecology. Global Ecology & Biogeography, 12, 5364.Google Scholar
Fattorini, S. & Borges, P. A. (2012) Species–area relationships underestimate extinction ratesActa Oecologica40, 2730.Google Scholar
Green, J. L. & Ostling, A. (2003) Endemics–area relationships: The influence of species dominance and spatial aggregation. Ecology, 84, 30903097.Google Scholar
Halley, J. M. & Iwasa, Y. (2011) Neutral theory as a predictor of avifaunal extinctions after habitat loss. Proceedings of the National Academy of Sciences USA, 108, 23162321.Google Scholar
Halley, J. M., Monokrousos, N., Mazaris, A. D., Newmark, W. D. & Vokou, D. (2016) Dynamics of extinction debt across five taxonomic groups. Nature Communications, 7, 12283.Google Scholar
Halley, J. M., Sgardeli, V. & Monokrousos, N. (2013) Species–area relationships and extinction forecasts. Annals of the New York Academy of Sciences, 1286, 5061.Google Scholar
Halley, J. M., Sgardeli, V. & Triantis, K. A. (2014) Extinction debt and the species–area relationship: A neutral perspective. Global Ecology & Biogeography, 23, 113123.Google Scholar
He, F. & Hubbell, S. P. (2011) Species–area relationships always overestimate extinction rates from habitat loss. Nature, 473, 368.CrossRefGoogle ScholarPubMed
IUCN (2019) The IUCN Red List of Threatened Species. www.iucnredlist.org.Google Scholar
Kallimanis, A. S., Kunin, W. E., Halley, J. M. & Sgardelis, S. P. (2005) Metapopulation extinction risk under spatially autocorrelated disturbance. Conservation Biology, 19, 534546.Google Scholar
Keil, P., Pereira, H. M., Cabral, J. S., Chase, J. M., May, F., Martins, I. S. & Winter, M. (2018) Spatial scaling of extinction rates: Theory and data reveal nonlinearity and a major upscaling and downscaling challenge. Global Ecology & Biogeography, 27, 213.Google Scholar
Keil, P., Storch, D. & Jetz, W. (2015) On the decline of biodiversity due to area loss. Nature Communications, 6, 8837.Google Scholar
Kinzig, A. P. & Harte, J. (2000) Implications of endemics–area relationships for estimates of species extinctions. Ecology, 81, 33053311.Google Scholar
Kuussaari, M., Bommarco, R., Heikkinen, R. K., Helm, A., Krauss, J., Lindborg, R., Öckinger, E., Pärtel, M., Pino, J., Rodà, F. & Stefanescu, C. (2009) Extinction debt: A challenge for biodiversity conservation. Trends in Ecology & Evolution, 24, 564571.Google Scholar
Lazarina, M., Kallimanis, A. S., Pantis, J. D. & Sgardelis, S. P. (2014) Linking species richness curves from non-contiguous sampling to contiguous-nested SAR: An empirical study. Acta Oecologica, 61, 2431.CrossRefGoogle Scholar
Legendre, P. (1993) Spatial autocorrelation: Trouble or new paradigm? Ecology, 74, 16591673.Google Scholar
Matias, M. G., Gravel, D., Guilhaumon, F., Desjardins‐Proulx, P., Loreau, M., Münkemüller, T. & Mouquet, N. (2014) Estimates of species extinctions from species–area relationships strongly depend on ecological context. Ecography, 37, 431442.Google Scholar
Pan, X. (2013) Fundamental equations for species–area theory. Scientific Reports, 3, 1334.Google Scholar
Pereira, H. M., Borda-de-Água, L. & Martins, I. S. (2012) Geometry and scale in species–area relationships. Nature, 482, E3.Google Scholar
Pimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., Raven, P. H., Roberts, C. M. & Sexton, J. O. (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344, 1246752.Google Scholar
Rahbek, C. (2005) The role of spatial scale and the perception of large‐scale species‐richness patterns. Ecology Letters, 8, 224239.Google Scholar
Rahbek, C. & Colwell, R. K. (2011) Biodiversity: Species loss revisited. Nature, 473, 288.Google Scholar
Rybicki, J. & Hanski, I. (2013) Species–area relationships and extinctions caused by habitat loss and fragmentation. Ecology Letters, 16, 2738.CrossRefGoogle ScholarPubMed
Scheiner, S. M., Chiarucci, A., Fox, G. A., Helmus, M. R., McGlinn, D. J. & Willig, M. R. (2011) The underpinnings of the relationship of species richness with space and time. Ecological Monographs, 81, 195213.Google Scholar
Šizling, A. L., Kunin, W. E., Šizlingová, E., Reif, J. & Storch, D. (2011) Between geometry and biology: The problem of universality of the species–area relationship. The American Naturalist, 178, 602611.Google Scholar
Soininen, J., McDonald, R. & Hillebrand, H. (2007) The distance decay of similarity in ecological communities. Ecography, 30, 312.Google Scholar
Steinbauer, M. J., Dolos, K., Reineking, B. & Beierkuhnlein, C. (2012) Current measures for distance decay in similarity of species composition are influenced by study extent and grain size. Global Ecology & Biogeography, 21, 12031212.Google Scholar
Tsianou, M. A., Koutsias, N., Mazaris, A. D. & Kallimanis, A. S. (2016) Climate and landscape explain richness patterns depending on the type of species’ distribution data. Acta Oecologica, 74, 1927.Google Scholar
Ulrich, W. & Buszko, J. (2005) Detecting biodiversity hotspots using species–area and endemics–area relationships: The case of butterflies. Biodiversity and Conservation, 14, 19771988.CrossRefGoogle Scholar

References

Anderson-Teixeira, K. J., Wang, M. M. H., McGarvey, J. C. & LeBauer, D. S. (2016) Carbon dynamics of mature and regrowth tropical forests derived from a pantropical database (TropForC-db). Global Change Biology, 22, 16901709.Google Scholar
Aurélio-Silva, M., Anciães, M., Henriques, L. M. P., Benchimol, M. & Peres, C. A. (2016) Patterns of local extinction in an Amazonian archipelagic avifauna following 25 years of insularization. Biological Conservation, 199, 101109.Google Scholar
Benchimol, M. & Peres, C. A. (2015a) Edge-mediated compositional and functional decay of tree assemblages in Amazonian forest islands after 26 years of isolation. Journal of Ecology, 103, 408420.Google Scholar
Benchimol, M. & Peres, C. A. (2015b) Predicting local extinctions of Amazonian vertebrates in forest islands created by a mega dam. Biological Conservation, 187, 6172.Google Scholar
Bregman, T. P., Sekercioglu, C. H. & Tobias, J. A. (2014) Global patterns and predictors of bird species responses to forest fragmentation: Implications for ecosystem function and conservation. Biological Conservation, 169, 372383.Google Scholar
Bueno, A. S. & Peres, C. A. (2019) Patch-scale biodiversity retention in fragmented landscapes: Reconciling the habitat amount hypothesis with the island biogeography theory. Journal of Biogeography, 46, 621632.Google Scholar
Bueno, A. S. & Peres, C. A. (2020) The role of baseline suitability in assessing the impacts of land-use change on biodiversity. Biological Conservation, 243, 108396.Google Scholar
Bueno, A. S., Dantas, S. M., Henriques, L. M. P. & Peres, C. A. (2018) Ecological traits modulate bird species responses to forest fragmentation in an Amazonian anthropogenic archipelago. Diversity and Distributions, 24, 387402.Google Scholar
Bueno, A. S., Masseli, G. S., Kaefer, I. L. & Peres, C. A. (2020) Sampling design may obscure species–area relationships in landscape‐scale field studies. Ecography, 43, 107118.Google Scholar
Bull, J. W., Suttle, K. B., Gordon, A., Singh, N. J. & Milner-Gulland, E. J. (2013) Biodiversity offsets in theory and practice. Oryx, 47, 369380.Google Scholar
Chaplin-Kramer, R., Ramler, I., Sharp, R., Haddad, N. M., Gerber, J. S., West, P. C., Mandle, L., Engstrom, P., Baccini, A., Sim, S. & Mueller, C. (2015) Degradation in carbon stocks near tropical forest edges. Nature Communications, 6, 10158.Google Scholar
Diamond, J. M. (1972) Biogeographic kinetics: Estimation of relaxation times for avifaunas of southwest pacific islands. Proceedings of the National Academy of Sciences USA, 69, 31993203.Google Scholar
Emer, C., Venticinque, E. M. & Fonseca, C. R. (2013) Effects of dam-induced landscape fragmentation on Amazonian ant-plant mutualistic networks. Conservation Biology, 27, 763773.Google Scholar
ESRI (2012) ArcGIS Desktop, version 10.1. Redlands, CA: ESRI.Google Scholar
Ewers, R. M. & Didham, R. K. (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biological Reviews, 81, 117142.Google Scholar
Fearnside, P. M. (2016) Environmental and social impacts of hydroelectric dams in Brazilian Amazonia: Implications for the aluminium industry. World Development, 77, 4865.Google Scholar
Gardner, T. A., Barlow, J., Araujo, I. S., Ávila‐Pires, T. C., Bonaldo, A. B., Costa, J. E., Esposito, M. C., Ferreira, L. V., Hawes, J., Hernandez, M. I. & Hoogmoed, M. S. (2008) The cost-effectiveness of biodiversity surveys in tropical forests. Ecology Letters, 11, 139150.Google Scholar
Gibson, L., Lynam, A. J., Bradshaw, C. J., He, F., Bickford, D. P., Woodruff, D. S., Bumrungsri, S. & Laurance, W. F. (2013) Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science, 341, 15081510.Google Scholar
Gibson, L., Wilman, E. N. & Laurance, W. F. (2017) How green is green? Trends in Ecology & Evolution, 32, 922935.Google Scholar
Gonzalez, A. (2000) Community relaxation in fragmented landscapes: The relation between species richness, area and age. Ecology Letters, 3, 441448.Google Scholar
ICOLD (2018) International Commission on Large Dams. www.icold-cigb.org/GB/World_register/general_synthesis.asp.Google Scholar
Jones, I. L. & Bull, J. W. (2020) Major dams and the challenge of achieving “No Net Loss” of biodiversity in the tropics. Sustainable Development, 28, 435443.Google Scholar
Jones, I. L., Bunnefeld, N., Jump, A. S., Peres, C. A. & Dent, D. H. (2016) Extinction debt on reservoir land-bridge islands. Biological Conservation, 199, 7583.Google Scholar
Jones, I. L., Peres, C. A., Benchimol, M., Bunnefeld, L. & Dent, D. H. (2017) Woody lianas increase in dominance and maintain compositional integrity across an Amazonian dam-induced fragmented landscape. PLoS ONE, 12, 119.Google Scholar
Jones, I. L., Peres, C. A., Benchimol, M., Bunnefeld, L. & Dent, D. H. (2019) Instability of insular tree communities in an Amazonian mega-dam is driven by impaired recruitment and altered species composition. Journal of Applied Ecology, 56, 779791.Google Scholar
Latrubesse, E. M., Arima, E. Y., Dunne, T., Park, E., Baker, V. R., d’Horta, F. M., Wight, C., Wittmann, F., Zuanon, J., Baker, P. A. & Ribas, C. C. (2017) Damming the rivers of the Amazon basin. Nature, 546, 363369.Google Scholar
Laurance, W. F., Camargo, J. L., Luizão, R. C., Laurance, S. G., Pimm, S. L., Bruna, E. M., Stouffer, P. C., Williamson, G. B., Benítez-Malvido, J., Vasconcelos, H. L. & Van Houtan, K. S. (2011) The fate of Amazonian forest fragments: A 32-year investigation. Biological Conservation, 144, 5667.Google Scholar
Lees, A. C., Peres, C. A., Fearnside, P. M., Schneider, M. & Zuanon, J. A. (2016) Hydropower and the future of Amazonian biodiversity. Biodiversity and Conservation, 25, 451466.Google Scholar
Lomolino, M. V. (2000) Ecology’s most general, yet protean pattern: The species–area relationship. Journal of Biogeography, 27, 1726.Google Scholar
MacArthur, R. H. & Wilson, E. O. (1967) The theory of island biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Maron, M., Brownlie, S., Bull, J. W., Evans, M. C., von Hase, A., Quétier, F., Watson, J. E. & Gordon, A. (2018) The many meanings of no net loss in environmental policy. Nature Sustainability, 1, 1927.Google Scholar
Matthews, T. J., Guilhaumon, F., Triantis, K. A., Borregaard, M. K. & Whittaker, R. J. (2016) On the form of species–area relationships in habitat islands and true islands. Global Ecology & Biogeography, 25, 847858.CrossRefGoogle Scholar
Mendenhall, C. D., Karp, D. S., Meyer, C. F., Hadly, E. A. & Daily, G. C. (2014) Predicting biodiversity change and averting collapse in agricultural landscapes. Nature, 509, 213217.Google Scholar
Moran, E. F., Lopez, M. C., Moore, N., Müller, N. & Hyndman, D. W. (2018) Sustainable hydropower in the 21st century. Proceedings of the National Academy of Sciences USA, 115, 1189111898.Google Scholar
Palmeirim, A. F., Benchimol, M., Vieira, M. V. & Peres, C. A. (2018) Small mammal responses to Amazonian forest islands are modulated by their forest dependence. Oecologia, 187, 191204.Google Scholar
Palmeirim, A. F., Vieira, M. V. & Peres, C. A. (2017) Non-random lizard extinctions in land-bridge Amazonian forest islands after 28 years of isolation. Biological Conservation, 214, 5565.Google Scholar
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G. & Ciais, P. (2011) A large and persistent carbon sink in the world’s forests. Science, 333, 988993.Google Scholar
Peres, C. A. (2001) Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conservation Biology, 15, 14901505.Google Scholar
R Core Team (2018) R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. www.R-project.orgGoogle Scholar
Ritter, C. D., McCrate, G., Nilsson, R. H., Fearnside, P. M., Palme, U. & Antonelli, A. (2017) Environmental impact assessment in Brazilian Amazonia: Challenges and prospects to assess biodiversity. Biological Conservation, 206, 161168.Google Scholar
Sonter, L. J., Gourevitch, J., Koh, I., Nicholson, C. C., Richardson, L. L., Schwartz, A. J., Singh, N. K., Watson, K. B., Maron, M. & Ricketts, T. H. (2018) Biodiversity offsets may miss opportunities to mitigate impacts on ecosystem services. Frontiers in Ecology and the Environment, 16, 143148.Google Scholar
Storck-Tonon, D. & Peres, C. A. (2017) Forest patch isolation drives local extinctions of Amazonian orchid bees in a 26 years old archipelago. Biological Conservation, 214, 270277.Google Scholar
Terborgh, J., Feeley, K., Silman, M., Nuñez, P. & Balukjian, B. (2006) Vegetation dynamics of predator-free land-bridge islands. Journal of Ecology, 94, 253263.Google Scholar
Terborgh, J., Lopez, L., Nuñez, P., Rao, M., Shahabuddin, G., Orihuela, G., Riveros, M., Ascanio, R., Adler, G. H., Lambert, T. D. & Balbas, L. (2001) Ecological meltdown in predator-free forest fragments. Science, 294, 19231926.Google Scholar
Terborgh, J., Lopez, L. & Tello, J. S. (1997) Bird communities in transition: The Lago Guri islands. Ecology, 78, 14941501.Google Scholar
Timpe, K. & Kaplan, D. (2017) The changing hydrology of a dammed Amazon. Science Advances, 3, 114.Google Scholar
Trussart, S., Messier, D., Roquet, V. & Aki, S. (2002) Hydropower projects: A review of most effective mitigation measures. Energy Policy, 30, 12511259.Google Scholar
Watling, J. I. & Donnelly, M. A. (2006) Fragments as islands: A synthesis of faunal responses to habitat patchiness. Conservation Biology, 20, 10161025.Google Scholar
Watson, D. M. (2002) A conceptual framework for studying species composition in fragments, islands and other patchy ecosystems. Journal of Biogeography, 29, 823834.Google Scholar
WCD (2000) Dams and development: A new framework for decision-making. London: Earthscan Publications.Google Scholar
Winemiller, K. O., McIntyre, P. B., Castello, L., Fluet-Chouinard, E., Giarrizzo, T., Nam, S., Baird, I. G., Darwall, W., Lujan, N. K., Harrison, I. & Stiassny, M. L. J. (2016) Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science, 351, 128129.Google Scholar
Wolfe, J. D., Stouffer, P. C., Mokross, K., Powell, L. L. & Anciães, M. M. (2015) Island vs. countryside biogeography: An examination of how Amazonian birds respond to forest clearing and fragmentation. Ecosphere, 6, 114.Google Scholar
Zarfl, C., Lumsdon, A. E. & Tockner, K. (2015) A global boom in hydropower dam construction. Aquatic Sciences, 77, 161170.Google Scholar

References

Armbrust, E. V. (2009) The life of diatoms in the world’s oceans. Nature, 459, 186192.Google Scholar
Arntz, W. E. & Gallardo, V. A. (1994) Antarctic benthos: Present position and future prospects. Antarctic science (ed. by Hempel, G.), pp. 243277. Berlin: Springer Verlag.Google Scholar
Arntz, W. E., Gutt, J. & Klages, M. (1997) Antarctic marine biodiversity: An overview. Antarctic communities: Species structure and survival (ed. by Battaglia, B., Valencia, J. and Walton, D. W. H.), pp. 314. Cambridge: Cambridge University Press.Google Scholar
Arrhenius, O. (1921) Species and area. Journal of Ecology, 9, 9599.Google Scholar
Bluhm, B. A., Gebruk, A. V., Gradinger, R., Hopcroft, R. R., Huettmann, F., Kosobokova, K. N., Sirenko, B. & Weslawski, J. M. (2011) Arctic marine biodiversity: An update of species richness and examples of biodiversity change. Oceanography, 24, 232248.Google Scholar
Cermeno, P. & Falkowski, P. (2009) Controls on diatom biogeography in the ocean. Science, 325, 15391541.Google Scholar
Clarke, A. (2008) Antarctic marine benthic diversity: Patterns and processes. Journal of Experimental Marine Biology and Ecology, 366, 4855.Google Scholar
Clarke, A. & Crame, J. A. (1997) Diversity, latitude and time: Patterns in shallow seas. Marine biodiversity: Patterns and processes (ed. by Ormond, R. F. G., Gage, J. D. and Angel, M. V.), pp. 122147. Cambridge: Cambridge University Press.Google Scholar
Clarke, A. & Johnston, N. M. (2003) Antarctic marine benthic diversity. Oceanography and Marine Biology: An Annual Review, 41, 47114.Google Scholar
Dayton, P. K. (1990) Polar benthos. Polar oceanography Part B: Chemistry, biology and geology (ed. by Smith, W. O. Jr.), pp. 631686. San Diego, CA: Academic Press.Google Scholar
Dayton, P. K., Mordida, B. J. & Bacon, F. (1994) Polar marine communities. American Zoologist, 34, 9099.Google Scholar
Dell, R. K. (1972) Antarctic benthos. Advances in Marine Biology, 10, 1216.Google Scholar
Denton, G. H., Anderson, R. F., Toggweiler, J. R., Edwards, R. L., Schaefer, J. M. & Putnam, A. E. (2010) The last glacial termination. Science, 328, 16521656.Google Scholar
Drakare, S., Lennon, J. J. & Hillebrand, H. (2006) The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecology Letters, 9, 215227.Google Scholar
Dunton, K. (1992) Arctic biogeography: The paradox of the marine benthic fauna and flora. Trends in Ecology & Evolution, 7, 183189.Google Scholar
Ellison, A. M., Farnsworth, E. J. & Merkt, R. E. (1999) Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Global Ecology & Biogeography, 8, 95115.Google Scholar
Foster, N. L., Foggo, A. & Howell, K. L. (2013) Using species–area relationships to inform baseline conservation targets for the deep North East Atlantic. PLoS ONE, 8, e58941.Google Scholar
Gray, J. S. (2000) The measurement of marine species diversity, with an application to the benthic fauna of the Norwegian continental shelf. Journal of Experimental Marine Biology and Ecology, 250, 2349.Google Scholar
Gray, J. S., Ugland, K. I. & Lambshead, J. (2004) Species accumulation and species−area curves – a comment on Scheiner (2003). Global Ecology & Biogeography, 13, 473476.Google Scholar
Grebmeier, J. M. & Barry, J. P. (1991) The influence of oceanographic processes on pelagic benthic coupling in polar regions: A benthic perspective. Journal of Marine Systems, 2, 498518.Google Scholar
Griffiths, H. J. (2010) Antarctic marine biodiversity – what do we know about the distribution of life in the Southern Ocean? PLoS One, 5, e11683.Google Scholar
Gutt, J. (2001) On the direct impact of ice on marine benthic communities, a review. Polar Biology, 24, 553564.Google Scholar
Gutt, J., Griffiths, H. J. & Jones, C. D. (2013) Circumpolar overview and spatial heterogeneity of Antarctic macrobenthic communities. Marine Biodiversity, 43, 481487.Google Scholar
Hawkins, S. J. & Hartnoll, R. G. (1980) A study of the small-scale relationship between species number and area on a rocky shore. Estuarine and Coastal Marine Science, 10, 201214.Google Scholar
Howell, K. I., Billet, D. S. M. & Tyler, P. A. (2002) Depth-related distribution and abundance of seastars (Echinodermata: Asteroidea) in the Porcupine Seabight and Porcupine Abyssal Plain, N.E. Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 49, 19011920.Google Scholar
Hubert, C., Loy, A., Nickel, M., Arnosti, C., Baranyi, C., Brüchert, V., Ferdelman, T., Finster, K., Christensen, F. M., de Rezende, J. R., Vandieken, V. & Jörgensen, B. B. (2009) A constant flux of diverse thermophilic bacteria into the cold Arctic seabed. Science, 325, 15411544.Google Scholar
Kendall, M. A. (1996) Are Arctic soft-sediment macrobenthic communities impoverished? Polar Biology, 16, 393399.Google Scholar
Kloster, M., Kauer, G., Esper, O., Fuchs, N. & Beszteri, B. (2018) Morphometry of the diatom Fragilariopsis kerguelensis from Southern Ocean sediment: High-throughput measurements show second morphotype occurring during glacials. Marine Micropaleontology, 143, 7079.Google Scholar
Kooistra, H. C. F., Sarno, D., Balzano, S., Gu, H., Anderson, R. A. & Zingone, A. (2008) Global diversity and biogeography of Skeletonema species (Bacillariophyta). Protist, 159, 177193.Google Scholar
Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. (2014) Sea level and global ice volumes from the last glacial maximum to the holocene. Proceedings of the National Academy of Sciences USA, 11, 1529615303.Google Scholar
Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R., Tilman, D., Loreau, M. & Gonzalez, A. (2004) The metacommunity concept: A framework for multi-scale community ecology. Ecology Letters, 7, 601613.Google Scholar
Lomolino, M. V. (2001) The species−area relationship: New challenges for an old pattern. Progress in Physical Geography, 25, 121.Google Scholar
Lowe, J. J. & Walker, M. J. C. (1997) Reconstructing quaternary environments. London: Routledge.Google Scholar
MacArthur, R. H. & Wilson, E. O. (1967) The theory of island biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Malviya, S., Scalco, E., Audic, S., Vincent, F., Veluchamy, A., Poulain, J., Wincker, P., Iudicone, D., de Vargas, C., Bittner, L., Zingone, A. & Bowler, D. E. (2016) Insights into global diatom distribution and diversity in the world’s ocean. Proceedings of the National Academy of Sciences USA, 113, E1516E1525.Google Scholar
Mann, D. G. & Vanormelingen, P. (2013) An inordinate fondness? The number, distributions and origins of diatom species. Eukaryotic Microbiology, 60, 414420.Google Scholar
Marques, A. C. & Pena Cantero, A. L. (2010) Areas of endemism in the Antarctic – a case study of the benthic hydrozoan genus Oswaldella (Cnidaria, Kirchenpaueriidae). Journal of Biogeography, 37, 617623.Google Scholar
McCallum, H. I., Kuris, A., Harvell, C. D., Lafferty, K. D., Smith, W. O. & Porter, J. (2004) Does terrestrial epidemiology apply to marine systems? Trends in Ecology & Evolution, 19, 586591.Google Scholar
McClain, C. R. & Barry, J. P. (2010) Habitat heterogeneity, biogenic disturbance, and resource availability work in concert to regulate biodiversity in deep submarine canyons. Ecology, 91, 964976.Google Scholar
McManus, M. A. & Woodson, C. B. (2012) Plankton distribution and ocean dispersal. Journal of Experimental Biology, 215, 10081016.Google Scholar
Neigel, J. E. (2003) Species–area relationships and marine conservation. Ecological Applications, 13, S138S145.Google Scholar
Piepenburg, D. (2005) Recent research on Arctic benthos: Common notions need to be revised. Polar Biology, 28, 733755.Google Scholar
Preston, F. W. (1948) The commonness, and rarity, of species. Ecology, 29, 254283.Google Scholar
Preston, F. W. (1962) The canonical distribution of commonness and rarity: Part I. Ecology, 43, 185215.Google Scholar
Rosenzweig, M. L. (1995) Species diversity in space and time. New York: Cambridge University Press.Google Scholar
Rosenzweig, M. L. (1999) Heeding the warning in biodiversity’s basic law. Science, 284, 276277.Google Scholar
Roy, K., Jablonski, D., Valentine, J. W. & Rosenberg, G. (1998) Marine latitudinal diversity gradients: Tests of causal hypotheses. Proceedings of the National Academy of Sciences USA, 95, 36993702.Google Scholar
Sirenko, B. I. (2001) List of species of free-living invertebrates of Eurasian Arctic seas and adjacent deep waters. Exploration of the Fauna of the Seas, 51, pp. 1129. St. Petersburg: Russian Academy of Sciences.Google Scholar
Sirenko, B. I. & Piepenburg, D. (1994) Current knowledge on biodiversity and benthic zonation patterns of Eurasian Arctic shelf seas with special reference to the Laptev Sea. Russian−German cooperation in the Siberian shelf seas: Geo-system Laptev Sea. Berichte zur Polarforschung, 144 (ed. by Kassens, H., Hubberten, H. W., Prymikov, S. M. and Stein, R.), pp. 6977. Bremerhaven: Alfred Wegener Institute for Polar and Marine Research.Google Scholar
Sirenko, B. I., Clarke, C., Hopcroft, R. R., Huettmann, F., Bluhm, B. A. & Gradinger, R. (eds.) (2020) The Arctic Register of Marine Species (ARMS) compiled by the Arctic Ocean Diversity (ArcOD). www.marinespecies.org/armsGoogle Scholar
Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdana, Z. A., Finlayson, M., Halpern, B. S., Jorge, M. A., Lombana, A., Lourie, S. A., Martin, K. D., McManus, E., Molnar, J., Recchia, C. A. & Robertson, J. (2007) Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. BioScience, 57, 573583.Google Scholar
Stern, R., Kraberg, A. C., Bresnan, E., Kooistra, H. C. F., Lovejoy, C., Montresor, M., Morán, X. A., Not, F., Salas, R., Siano, R., Vaulot, D., Amaral-Zettler, L., Zingone, A. & Metfies, K. (2018) Molecular analyses of protists in long-term observation programmes – current status and future perspectives. Journal of Plankton Research, 40, 519536.Google Scholar
Ugland, K. I., Gray, J. S. & Ellingsen, K. E. (2003) The species accumulation curve and estimation of species richness. Journal of Animal Ecology, 72, 888897.Google Scholar
Vasconcelos, R. P., Henriques, S., França, S., Pasquaud, S., Cardoso, I., Laborde, M. & Cabral, H. N. (2015) Global patterns and predictors of fish species richness in estuaries. Journal of Animal Ecology, 84, 13311341.Google Scholar
Ward, D. M., Weller, R. & Bateson, M. M. (1990) 165 ribosomal RNA sequences reveal numerous uncultured microorganisms in a natural community. Nature, 345, 6365.Google Scholar
Webb, T. J. (2012) Marine and terrestrial ecology: Unifying concepts, revealing differences. Trends in Ecology & Evolution, 27, 535541.Google Scholar
WORMS (2019) The World Register of Marine Species. http://marinespecies.org.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×