Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-09T12:18:53.119Z Has data issue: false hasContentIssue false

8 - Oscillations and synchrony

Published online by Cambridge University Press:  05 June 2012

Wulfram Gerstner
Affiliation:
École Polytechnique Fédérale de Lausanne
Werner M. Kistler
Affiliation:
Erasmus Universiteit Rotterdam
Get access

Summary

Oscillations are a prevalent phenomenon in biological neural networks and manifest themselves experimentally in electroencephalograms (EEG), recordings of local field potentials (LFP), and multiunit recordings. Oscillations of the spike activity are particularly interesting from a functional point of view. Synchronization of different populations of neurons has, for example, been proposed as a potential solution to the binding problem (Eckhorn et al., 1988; Gray et al., 1989; Wang et al., 1990; König and Schillen, 1991; Eckhorn et al., 1993; Singer, 1994). Oscillations play an important role in the coding of sensory information. In the olfactory system an ongoing oscillation of the population activity provides a temporal frame of reference for neurons coding information about the odorant (Laurent, 1996; Desmaison et al., 1999). Similarly, place cells in the hippocampus exhibit phase-dependent firing activity relative to a background oscillation (O'Keefe, 1993). Finally, rhythmic spike patterns in the inferior olive may be involved in various timing tasks and motor coordination (Llinás, 1991; Welsh et al., 1995; Kistler et al., 2000).

In this chapter we do not discuss all the interesting computational applications, but restrict ourselves to the analysis of mechanisms underlying oscillatory activity and synchronization. We start in Section 8.1 with a stability analysis of the state of asynchronous firing encountered in Section 6.4. In recurrent networks of spiking neurons we find that a state of asynchronous activity is unstable in the absence of noise.

Type
Chapter
Information
Spiking Neuron Models
Single Neurons, Populations, Plasticity
, pp. 285 - 314
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×