Skip to main content Accessibility help
×
  • Cited by 20
Publisher:
Cambridge University Press
Online publication date:
September 2015
Print publication year:
2015
Online ISBN:
9781139600286

Book description

This innovative and modular textbook combines classical topics in thermodynamics, statistical mechanics and many-body theory with the latest developments in condensed matter physics research. Written by internationally renowned experts and logically structured to cater for undergraduate and postgraduate students and researchers, it covers the underlying theoretical principles and includes numerous problems and worked examples to put this knowledge into practice. Three main streams provide a framework for the book; beginning with thermodynamics and classical statistical mechanics, including mean field approximation, fluctuations and the renormalization group approach to critical phenomena. The authors then examine quantum statistical mechanics, covering key topics such as normal Fermi and Luttinger liquids, superfluidity and superconductivity. Finally, they explore classical and quantum kinetics, Anderson localization and quantum interference, and disordered Fermi liquids. Unique in providing a bridge between thermodynamics and advanced topics in condensed matter, this textbook is an invaluable resource to all students of physics.

Reviews

'… a coherent presentation of classical thermodynamics and statistical physics on [the] one hand, and more recent developments and the front of contemporary research on the other … it [is] well suited for students and graduates as well as researchers. I recommend it!'

Peter Fulde - Max Planck Institute for the Physics of Complex Systems, Dresden

'An excellent textbook which starts from the basics, classical thermodynamics and quantum statistical mechanics, and proceeds to an insightful exposition of a wide range of modern topics.'

Maurice Rice - Institute for Theoretical Physics, ETH Zurich

'With its exceptionally broad range of topics, from basic theoretical techniques to numerous applications, ranging from phase transitions to quantum gases and disordered electron systems, this textbook is a most valuable asset for the condensed matter community. Two renowned experts have conflated their expertise, for the benefit of students and researchers alike.'

Ulrich Eckern - University of Augsburg

'This book amply fulfils the promise in the preface that it will provide 'a bridge from thermodynamics and statistical mechanics towards many-body theory and its applications'. Students, teachers and researchers will all benefit from it.'

Joel Lebowitz - Rutgers, The State University of New Jersey

'With exceptional clarity this book treats every topic from the beginning. It thus succeeds in being pedagogically effective while still capturing the interest of the expert. It is truly unique in connecting key ideas of statistical mechanics, [such as] the renormalization group, to many-body theories of electronic systems.'

Giovanni Vignale - University of Missouri, Columbia

'… this remarkable book provides access to several modern subject areas in condensed matter physics within a single monograph. Both authors are internationally acknowledged experts in condensed matter theory, with Carlo Di Castro being one of the founding fathers of the field-theoretic renormalization group approach to critical phenomena. In view of the broad spectrum of topics the author’s suggestions of how to use the book for regular courses on, for example, introductory statistical mechanics, critical phenomena, dissipative phenomena in classical and quantum systems, or modern trends in quantum statistical mechanics, are very helpful. This book is an impressive achievement. It will be very useful not only to graduate students but also to experienced researchers in modern condensed matter physics. I recommend it highly - it belongs in every physics library.'

Dieter Vollhardt - Universität Augsburg

'The authors, whose competence is beyond doubt, employ a well-considered approach to bridge background statistical mechanics topics, standard condensed matter physics applications, and a limited but inspiring choice of advanced and timely many-body themes … Statistical Mechanics and Applications in Condensed Matter is a well-designed, user-friendly text that represents an impressive and successful effort to synthesize modern aspects of condensed matter and many-body phenomena. I have no doubt that this book will soon be found - and deservedly so - in physics libraries and on the bookshelves of many students and researchers.'

Erio Tosatti Source: Physics Today

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


References
Abanov, Ar., Chubukov, A. V. and Schmalian, J. 2003. Quantum-critical theory of the spinfermion model and its application to cuprates: normal state analysis. Adv. Phys., 52, 119.
Abbamonte, P., Rusydi, A., Smadici, S., Gu, G. D., Sawatzky, G. A. and Feng, D. L. 2005. Spatially modulated ‘Mottness’ in La2−xBaxCuO4. Nature Physics, 1, 155.
Abel, W. R., Anderson, A. C. and Wheatley, J. C. 1966. Propagation of zero sound in liquid He3 at low temperatures. Phys. Rev. Lett., 17, 74.
Abrahams, E., Anderson, P. W., Licciardello, D. C. and Ramakrishnan, T. V. 1979. Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett., 42, 673.
Abramowitz, M. and Stegun, I. A. 1965. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover.
Abrikosov, A. A. 1957. On the magnetic properties of superconductors of the second group. Sov. Phys. JETP, 5, 1174.
Abrikosov, A. A., Gorkov, L. P. and Dzyaloshinski, I. E. 1963. Methods of Quantum Field Theory in Statistical Physics. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.
Ahlers, G. 1968. Thermal conductivity of He I near the superfluid transition. Phys. Rev. Lett., 21, 1159.
Akhmetov, D. G. 2009. Vortex Rings. Berlin & Heidelberg: Springer.
Allen, J. F. and Misener, A. D. 1938. Flow of liquid helium II. Nature, 141, 75.
Altshuler, B. L. and Aronov, A. G. 1970. Contribution to the theory of disordered metals in strongly doped semiconductors. Zh. Eksp. Teor. Fiz, 77, 2028 (JETP, 50, 968).
Altshuler, B. L. and A. G., Aronov 1985. Electron–electron interaction in disordered conductors. In Pollak, M. and Efros, A. L. (eds.), Electron–Electron Interactions in Disordered Systems. Amsterdam: North-Holland.
Altshuler, B. L., Aronov, A. G. and Lee, P. A. 1980a. Interaction effects in disordered Fermi systems in two dimensions. Phys. Rev. Lett., 44, 1288.
Altshuler, B. L., Khmel'nitzkii, D., Larkin, A. I. and Lee, P. A. 1980b. Magnetoresistance and Hall effect in a disordered two-dimensional electron gas. Phys. Rev. B, 22, 5142.
Alvesalo, T. A., Anufriyev, Yu. D., Collan, H. K., Lounasmaa, O. V. and Wennerström, P. 1973. Evidence for superfluidity in the newly found phases of 3He. Phys. Rev. Lett., 30, 962.
Amit, D. J. and Martín-Mayor, V. 2005. Field Theory, the Renormalization Group, and Critical Phenomena. Singapore: World Scientific.
Andergassen, S., Caprara, S., Di Castro, C. and Grilli, M. 2001. Anomalous isotopic effect near the charge-ordering quantum criticality. Phys. Rev. Lett., 87, 056401.
Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. and Cornell, E. A. 1995. Observation of Bose–Einstein condensation in dilute atomic vapor. Science, 269, 198.
Anderson, P. W. 1958. Absence of diffusion in certain random lattices. Phys. Rev., 109, 1492.
Anderson, P. W. 1966. Considerations on the flow of superfluid helium. Rev. Mod. Phys., 38, 298.
Anderson, P. W. 2007. Is there glue in cuprate superconductors? Science, 316, 1705.
Anderson, P. W. and Brinkman, W. F. 1973. Anisotropic superfluidity in 3He: a possible interpretation of its stability as a spin-fluctuation effect. Phys. Rev. Lett., 30, 1108.
Anderson, P. W. and Morel, P. 1961. Generalized Bardeen–Cooper–Schrieffer states and the proposed low-temperature phase of liquid He3. Phys. Rev., 123, 1911.
Ando, Y., Komiya, S., Segawa, K., Ono, S. and Kurita, Y. 2004. Electronic phase diagram of high-Tc cuprate superconductors from a mapping of the in-plane resistivity curvature. Phys. Rev. Lett., 93, 267001.
Andronikashvili, E. L. 1946. A direct observation of two kinds of motion in helium II. J. Phys. (USSR), 10, 201.
Aslamazov, L. G. and Larkin, A. I. 1968. The influence of fluctuation pairing of electrons on the conductivity of normal metal. Phys. Lett. A, 26, 238.
Atkins, K. R. 1959. Liquid Helium. Cambridge: Cambridge University Press.
Balian, R. and Werthamer, N. R. 1963. Superconductivity with pairs in a relative p Wave. Phys. Rev., 131, 1553.
Bardeen, J., Cooper, L. N. and Schrieffer, J. R. 1957. Theory of superconductivity. Phys. Rev., 108, 1175.
Baym, G. and Pethick, C. 1978. Low temperature properties of dilute solutions of 3He in superfluid 4He. Page 123 of: Bennemann, K. H. and Ketterson, J. B. (eds.), The Physics of Liquid and Solid Helium. New York: Wiley.
Baym, G. and Pethick, C. 1991. Landau Fermi-liquid Theory: Concepts and Applications. New York: Wiley.
Bednorz, J. G., Müller, K. A. and Takashige, M. 1987. Superconductivity in alkaline earthsubstituted La2CuO4−y. Science, 236, 73.
Belitz, D. and Kirkpatrick, T. R. 1994. The Anderson–Mott transition. Rev. Mod. Phys., 66, 261.
Benettin, G., Di Castro, C., Jona-Lasinio, G., Peliti, L. and Stella, A. 1977. On the equivalence of different renormalization groups. In Lévy, M. and Mitter, P. (eds.), New Developments in Quantum Theory and Statistical Mechanics. New York: Plenum Press.
Bergmann, G. 1984. Weak localization in thin films: a time-of-flight experiment with conduction electrons. Physics Reports, 107, 1.
Bernoulli, D. and Bernoulli, J. 2005. Hydrodynamics and Hydraulics. Mineola (N.Y.): Dover.
Biondi, M. A., Garfunkel, M. P. and Mc Coubrey, A. O. 1957a. Microwave measurements of the energy gap in superconducting aluminum. Phys. Rev., 108, 495.
Biondi, M. A., Forrester, A. T. and Garfunkel, M. P. 1957b. Millimeter wave studies of superconducting tin. Phys. Rev., 108, 497.
Bloch, I., Dalibard, J. and Zwerger, W. 2008. Many-body physics with ultracold gases. Rev. Mod. Phys., 80, 885.
Blume, M., Emery, V. J. and Griffiths, R. B. 1971. Ising model for the λ transition and phase separation in 3He–4He mixtures. Phys. Rev. A, 4, 1071.
Bogoliubov, N. N. 1947. On the theory of superfluidity. J. Phys., 11, 23.
Bogoliubov, N. N. and Shirkov, D. V. 1959. Introduction to the Theory of Quantized Fields. New York: Wiley-Interscience.
Boltzmann, L. 1964. Lectures on Gas Theory. New York: Dover.
Bonch-Bruevich, V. L. and Tyablikov, S. V. 1962. The Green FunctionMethod in Statistical Physics. Amsterdam: North-Holland Publishing Company.
Bose, S. N. 1924. Plancks Gesetz und Lichtquantenhypothese. Z. Phys., 26, 178.
Bradley, C. C., Sackett, C. A., Tollett, J. J. and Hulet, R. G. 1995. Evidence of Bose– Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett., 75, 1687.
Brezin, E., Le Guillou, J. C. and Zinn-Justin, J. 1973. Approach to scaling in renormalized perturbation theory. Phys. Rev. D, 8, 2418.
Brooks, J. S. and Donnelly, R. J. 1977. The calculated thermodynamic properties of superfluid helium-4. J. Phys. Chem. Ref. Data, 6, 51.
Brueckner, K. A., Soda, T., Anderson, P. W. and Morel, P. 1960. Level structure of nuclear matter and liquid He3. Phys. Rev., 118, 1442.
Byers, N. and Yang, C. N. 1961. Theoretical considerations concerning quantized magnetic flux in superconducting cylinders. Phys. Rev. Lett., 7, 46.
Callen, H. B. and Welton, T. A. 1951. Irreversibility and generalized noise. Phys. Rev., 83, 34.
Campisi, M., Hänggi, P. and Talkner, P. 2011. Quantum fluctuation relations: foundations and applications. Rev. Mod. Phys., 83, 771.
Castellani, C. and Di Castro, C. 1986. Effective Landau theory for disordered interacting electron systems: specific-heat behavior. Phys. Rev. B, 34, 5935.
Cassandro, M. and Gallavotti, G. 1975. The Lavoisier law and the critical point. Nuovo Cimento B, 25, 691.
Cassandro, M. and Jona-Lasinio, G. 1978. Critical point behaviour and probability theory. Advances in Physics, 27, 913.
Castellani, C., Di Castro, C., Forgacs, G. and Tabet, E. 1983. Gauge invariance and the multiplicative renormalisation group in the Anderson transition. J. Phys. C Solid State Physics, 16, 159.
Castellani, C., Di Castro, C., Lee, P. A. and Ma, M. 1984a. Interaction-driven metal– insulator transitions in disordered fermion systems. Phys. Rev. B, 30, 527.
Castellani, C., Di Castro, C., Lee, P. A., Ma, M., Sorella, S. and Tabet, E. 1984b. Spin fluctuations in disordered interacting electrons. Phys. Rev. B, 30, 1596.
Castellani, C., Di Castro, C., Lee, P. A., Ma, M., Sorella, S. and Tabet, E. 1986. Enhancement of the spin susceptibility in disordered interacting electrons and the metal–insulator transition. Phys. Rev. B, 33, 6169.
Castellani, C., Di Castro, C. and Grilli, M. 1995. Singular quasiparticle scattering in the proximity of charge instabilities. Phys. Rev. Lett., 75, 4650.
Castellani, C., Di Castro, C., Pistolesi, F. and Strinati, G. C. 1997. Infrared behavior of interacting bosons at zero temperature. Phys. Rev. Lett., 78, 1612.
Castellani, C., Di Castro, C. and Lee, P. A. 1998. Metallic phase and metal–insulator transition in two-dimensional electronic systems. Phys. Rev. B, 57, 9381.
Chaikin, P. M. and Lubensky, T. C. 1995. Principles of Condensed Matter Physics. Cambridge: Cambridge University Press.
Chang, J., Blackburn, E., Holmes, A. T., et al. 2012. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nature Physics, 8, 871.
Chapman, S. and Cowling, T. G. 1970. The Mathematical Theory of Non-uniform Gases. Cambridge: Cambridge University Press.
Chin, C., Grimm, R., Julienne, P. and Tiesinga, E. 2010. Feshbach resonances in ultracold gases. Rev. Mod. Phys., 82, 1225.
Chu, S. 1998. Nobel Lecture: The manipulation of neutral particles. Rev. Mod. Phys., 70, 685.
Clausius, R. 1857. Über die Art der Bewegung, welche wir Wärme nennen. Ann. Phys., 176, 353.
Clausius, R. 1858. Über die mittlere Läge der Wege, welche bei Molecularbewegung gasförmigen Körper von den einzelnen Molecülen zurücklegen werden, nebst anderen Bemerkungen über der mechanischen Wärmetheorie. Ann. Phys., 181, 239.
Cohen, D. and Imry, Y. 2012. Straightforward quantum-mechanical derivation of the Crooks fluctuation theorem and the Jarzynski equality. Phys. Rev. E, 86, 011111.
Cohen-Tannoudji, C. N. 1998. Nobel Lecture: Manipulating atoms with photons. Rev. Mod. Phys., 70, 707.
Comin, R., Frano, A., Yee, M. M., et al. 2014. Charge order driven by Fermi-arc instability in Bi2Sr2?xLaxCuO6+δ. Science, 343, 390.
Corak, W. S., Goodman, B. B., Satterthwaite, C. B. and Wexler, A. 1956. Atomic heats of normal and superconducting vanadium. Phys. Rev., 102, 656.
Crooks, G. E. 1999. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E, 60, 2721.
da Silva Neto, E. H., Aynajian, P., Frano, A., et al. 2014. Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates. Science, 343, 393.
Dalfovo, F., Giorgini, S., Pitaevskii, L. P. and Stringari, S. 1999. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys., 71, 463.
Dash, J. G. and Taylor, R. D. 1957. Hydrodynamics of oscillating disks in viscous fluids: density and viscosity of normal fluid in pure He4 from 1.2 K to the lambda point. Phys. Rev., 105, 7.
Davis, K. B., Mewes, M. O., Andrews, M. R., et al. 1995. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75, 3969.
De Gennes, P. G. 1966. Superconductivity of Metals and Alloys. NewYork:W. A. Benjamin.
de Groot, S. R., Hooman, G. J. and Seldam, C. A. T. 1950. On the Bose–Einstein condensation. Proc. R. Soc. Lond. A, 203, 266.
Deaver, B. S. and Fairbank, W. M. 1961. Experimental evidence for quantized flux in superconducting cylinders. Phys. Rev. Lett., 7, 43.
Debye, P. 1912. Zur Theorie der spezifischen Wärmen. Ann. Phys., 344, 789.
DeMarco, B. and Jin, D. S. 1999. Onset of Fermi degeneracy in a trapped atomic gas. Science, 285, 1703.
DeMarco, B., Papp, S. B. and Jin, D. S. 2001. Pauli blocking of collisions in a quantum degenerate atomic Fermi gas. Phys. Rev. Lett., 86, 5409.
Di Castro, C. 1972. The multiplicative renormalization group and the critical behavior in d = 4 − ∊ dimensions. Lett. Nuovo Cimento, 5, 69.
Di Castro, C. and Jona-Lasinio, G. 1969. On the microscopic foundation of scaling laws. Phys. Lett. A, 29, 322.
Di Castro, C. and Metzner, W. 1991. Ward identities and the β function in the Luttinger liquid. Phys. Rev. Lett., 67, 3852.
Di Castro, C. and Raimondi, R. 2004. Disordered electron systems. In Giuliani, G. F. and Vignale, G. (eds.), The Electron Liquid Paradigm in Condensed Matter Physics. Amsterdam: IOS Press.
Dingle, R. B. 1973. Asymptotic Expansions: Their Derivation and Interpretation. London and New York: Academic Press.
Dirac, P. A. M. 1926. On the theory of quantum mechanics. Proc. R. Soc. Lond. A, 112, 661.
Dobrosavljević, V., Trivedi, N. and Valles, J. M. Jr. (eds.). 2012. Conductor–Insulator Quantum Phase Transitions. Oxford: Oxford University Press.
Dolan, G. J. and Osheroff, D. D. 1979. Nonmetallic conduction in thin metal films at low temperatures. Phys. Rev. Lett., 43, 721.
Domb, C. and Green, M. S. (eds.). 1976. Phase Transitions and Critical Phenomena: Volume 6. San Diego: Academic Press Inc.
Drude, P. 1900. Zur Elektronentheorie der Metalle. Ann. Phys., 306, 566.
Dzyaloshinskii, I. E. and Larkin, A. I. 1973. Correlation functions for a one-dimensional Fermi system with long-range interaction (Tomonaga model). Zh. Eksp. Teor. Fiz., 65, 411 (Sov. Phys. JETP, 38, 202 (1974)).
Edwards, J. T. and Thouless, D. J. 1972. Numerical studies of localization in disordered systems. J. Phys. C, 5, 807.
Efetov, K. B., Larkin, A. I. and Khmel'nitskii, D. E. 1980. Interaction of diffusion modes in the theory of localization. Zh. Eksp. Teor. Fiz., 79, 1120 (JETP, 52, 568).
Ehrenfest, P. 1933. Phasenumwandlungen im ueblichen und erweiterten Sinn, classifiziert nach den entsprechenden Singularitaeten des thermodynamischen Potentiales. Proceedings Koninklijke Akademie van Wetenschappen, 36, 153.
Einstein, A. 1905. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys., 322, 549.
Einstein, A. 1907. Berichtigung zu meiner Arbeit: die Plancksche Theorie der Strahlung. Ann. Phys., 327, 800.
Einstein, A. 1910. Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes. Ann. Phys., 338, 1275.
Einstein, A. 1924. Quantentheorie des einatomigen idealen Gases / Quantum theory of ideal monoatomic gases. Sitz. Ber. Preuss. Akad. Wiss., 22, 261.
Einstein, A. 1925. Quantentheorie des einatomigen idealen Gases, 2. Sitz. Preuss. Akad. Wiss., 1, 3.
Emery, V. J. and Kivelson, S. A. 1993. Frustrated electronic phase separation and hightemperature superconductors. Physica C, 209, 597.
Emery, V. J. and Sessler, A. M. 1960. Possible phase transition in Liquid He3. Phys. Rev., 119, 43.
Esposito, M., Harbola, U. and Mukamel, S. 2009. Nonequilibrium fluctuations, fluctuation theorems and counting statistics in quantum systems. Rev. Mod. Phys., 81, 1665.
Fauqué, B., Sidis, Y., Hinkov, V., et al. 2006. Magnetic order in the pseudogap phase of high-TC superconductors. Phys. Rev. Lett., 96, 197001.
Fermi, E. 1926a. Sulla quantizzazione del gas perfetto monoatomico. Rendiconti della R. Accademia Nazionale dei Lincei, 3, 145.
Fermi, E. 1926b. Zur Quantelung des idealen einatomigen Gases. Z. Phys., 36, 902.
Ferrell, R. A., Màenyhàrd, N., Schmidt, H., Schwabl, F. and Szépfalusy, P. 1968. Fluctuations and lambda phase transition in liquid helium. Ann. Phys., 47, 565.
Ferrenberg, A. M. and Landau, D. P. 1991. Critical behavior of the three-dimensional Ising model: a high-resolution Monte Carlo study. Phys. Rev. B, 44, 5081.
Ferrier-Barbut, I., Delehaye, M., Laurent, S., et al. 2014. A mixture of Bose and Fermi superfluids. Science, 345, 1035.
Fetter, A. L. and Walecka, J. D. 1971. Quantum Theory of Many-particle Systems. New York: McGraw-Hill.
Feynman, R. P. 1953a. Atomic theory of liquid helium near absolute zero. Phys. Rev., 91, 1301.
Feynman, R. P. 1953b. Atomic theory of the λ transition in helium. Phys. Rev., 91, 1291.
Feynman, R. P. 1954. Atomic theory of the two-fluid model of liquid helium. Phys. Rev., 94, 262.
Feynman, R. P. 1972. Statistical Mechanics. Reading, Mass.: W. A. Benjamin.
Feynman, R. P. and Cohen, M. 1956. Energy spectrum of the excitations in liquid helium. Phys. Rev., 102, 1189.
Finkelstein, A. M. 1983. Influence of Coulomb interaction on the properties of disordered metals. Zh. Eksp. Teor. Fiz., 84, 168 (Sov. Phys. JETP, 57, 97).
Finkelstein, A. M. 1984.Weak localization and Coulomb interaction in disordered systems. Z. Phys. B, 56, 189.
Finkelstein, A. M. 1990. Electron liquid in disordered conductors. Sov. Sci. Rev., 14, 1.
Fisher, M. E. 1967. The theory of equilibrium critical phenomena. Rep. Prog. Phys, 30, 615.
Fokker, A. D. 1914. Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann. Phys., 348, 810.
Gao, L., Xue, Y. Y., Chen, F., et al. 1994. Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+δ (m = 1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B, 50, 4260.
Gavoret, J. and Nozières, P. 1964. Structure of the perturbation expansion for the Bose liquid at zero temperature. Ann. Phys., 28(3), 349.
Gell-Mann, M. and Low, F. E. 1954. Quantum electrodynamics at small distances. Phys. Rev., 95, 1300.
Ghiringhelli, G., Le Tacon, M., Minola, M., et al. 2012. Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3O6+x. Science, 337, 821.
Giamarchi, T. 2004. Quantum Physics in One Dimension. New York: Oxford University Press.
Gibbs, J. W. 1902. Elementary Principles in Statistical Mechanics. New York: Charles Scribner's Sons.
Giorgini, S., Pitaevskii, L. P. and Stringari, S. 2008. Theory of ultracold Fermi gases. Rev. Mod. Phys., 80, 1215.
Glover, R. E. 1967. Ideal resistive transition of a superconductor. Phys. Lett. A, 25, 542.
Glover, R. E. and Tinkham, M. 1957. Conductivity of superconducting films for photon energies between 0.3 and 40kTc. Phys. Rev., 108, 243.
Goldner, L. S. and Ahlers, G. 1992. Superfluid fraction of 4He very close to Tλ. Phys. Rev. B, 45, 13129.
Gor'kov, L. P., Larkin, A. I. and Khmel'nitskii, D. E. 1979. Particle conductivity in a two-dimensional random potential. JETP Lett., 30, 228.
Graf, E. H., Lee, D. M. and Reppy, John D. 1967. Phase separation and the superfluid transition in liquid 3He-4He mixtures. Phys. Rev. Lett., 19, 417.
Griffiths, R. B. 1970. Thermodynamics near the two-fluid critical mixing point in 3He-4He. Phys. Rev. Lett., 24, 715.
Griffiths, R. B. and Pearce, P. A. 1978. Position-space renormalization-group transformations: some proofs and some problems. Phys. Rev. Lett., 41, 917.
Gross, E. P. 1961. Structure of a quantized vortex in boson systems. Nuovo Cimento, 20, 454.
Haldane, F. D. M. 1981. ‘Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C Solid State Phys., 14, 2585.
Halperin, B. I. and Hohenberg, P. C. 1969a. Hydrodynamic theory of spin waves. Phys. Rev., 188, 898.
Halperin, B. I. and Hohenberg, P. C. 1969b. Scaling laws for dynamic critical phenomena. Phys. Rev., 177, 952.
Hebard, A. F., Rosseinsky, M. J., Haddon, R. C., et al. 1991. Superconductivity at 18 K in potassium-doped C60. Nature, 350, 600.
Heisenberg, W. 1926. Mehrkörperproblem und Resonanz in der Quantenmechanik. Z. Phys., 38, 411.
Henshaw, D. G. and Woods, A. D. B. 1961. Modes of atomic motions in liquid helium by inelastic scattering of neutrons. Phys. Rev., 121, 1266.
Hertel, G., Bishop, D. J., Spencer, E. G., Rowell, J. M. and Dynes, R. C. 1983. Tunneling and transport measurements at the metal-insulator transition of amorphous Nb: Si. Phys. Rev. Lett., 50, 743.
Hewson, A. C. 1997. The Kondo Problem to Heavy Fermions. Cambridge: Cambridge University Press.
Hikami, S. 1981. Anderson localization in a nonlinear σ-model representation. Phys. Rev. B, 24, 2671.
Hikami, S., Larkin, A. I. and Nagaoka, Y. 1980. Spin–orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys., 63(2), 707.
Hohenberg, P. C. 1967. Existence of long-range order in one and two dimensions. Phys. Rev., 158, 383.
Hohenberg, P. C. and Halperin, B. I. 1977. Theory of dynamic critical phenomena. Rev.Mod. Phys., 49, 435.
Hohenberg, P. C. and Martin, P. C. 1965. Microscopic theory of superfluid helium. Ann. Phys., 34, 291.
Holm, C. and Janke, W. 1993. Critical exponents of the classical three-dimensional Heisenberg model: a single-cluster Monte Carlo study. Phys. Rev. B, 48, 936.
Hor, P. H., Gao, L., Meng, R. L., et al. 1987. High-pressure study of the new Y-Ba-Cu-O superconducting compound system. Phys. Rev. Lett., 58, 911.
Huang, K. 1963. Statistical Mechanics. New York: J. Wiley & Sons.
Hubbard, J. 1963. Electron correlations in narrow energy bands. Proc. Roy. Soc. A, 276, 238.
Ioffe, A. F. and Regel, A. R. 1960. Non-crystalline, amorphous and liquid electronic semiconductors. Prog. Semicond., 4, 237.
Ishida, K., Nakaii, Y. and Hosono, H. 2009. To what extent iron-pnictide new superconductors have been clarified: a progress report. J. Phys. Soc. Jpn., 78, 062001.
Ito, T., Takenaka, K. and Uchida, S. 1993. Systematic deviation from T -linear behavior in the in-plane resistivity of YBa2Cu3O7−y : evidence for dominant spin scattering. Phys. Rev. Lett., 70, 3995.
Jaklevic, R. C., Lambe, J., Silver, A. H. and Mercereau, J. E. 1964. Quantum interference effects in Josephson tunneling. Phys. Rev. Lett., 12, 159.
Jarzynski, C. 1997. Nonequilibrium equality for free energy differences. Phys. Rev. Lett., 78, 2690.
Jasnow, D. and Wortis, M. 1968. High-temperature critical indices for the classical anisotropic Heisenberg model. Phys. Rev., 176, 739.
Johnson, J. B. 1928. Thermal agitation of electricity in conductors. Phys. Rev., 32, 97.
Jona-Lasinio, G. 1973. Generalized renormalization transformations. In Lundquist, B. and Lundquist, S. (eds.), Collective Properties of Physical Systems. New York: Academic Press,.
Josephson, B. D. 1964. Coupled superconductors. Rev. Mod. Phys., 36, 216.
Josephson, B. D. 1966. Relation between the superfluid density and order parameter for superfluid He near Tc. Phys. Lett., 21(6), 608–9.
Kac, M. 1959. Probability and Related Topics in the Physical Sciences. New York: Interscience.
Kadanoff, L. P. 1966. Scaling laws for Ising models near Tc. Physics, 2, 263.
Kadanoff, L. P., Götze, W., Hamblen, D., et al. 1967. Static phenomena near critical points: theory and experiment. Rev. Mod. Phys., 39, 395.
Kamerling-Onnes, H. 1911. Further experiments with liquid helium. C. On the change of electric resistance of pure metals at very low temperatures etc. IV. The resistance of pure mercury at helium temperatures. KNAW, Proceedings, 13, 1274.
Kamihara, Y., Watanabe, T., Hirano, M. and Osono, H. 2008. Iron-based layered superconductors La[O1−xFx] FeAs (x = 0.05 ÷ 0.12) with Tc = 26. J. Am. Chem. Soc., 130, 3296.
Kaminski, A., Rosenkranz, S., Fretwell, H. M., et al. 2002. Spontaneous breaking of timereversal symmetry in the pseudogap state of a high-Tc superconductor. Nature, 416, 610.
Kapitza, P. L. 1938. Viscosity of liquid helium below the λ-point. Nature, 141, 74.
Katsumoto, S. 1988. Themetal–insulator transition in a persistent photoconductor. In Ando, T. and Fukuyama, H. (eds.), Anderson Localization. Proceedings of the International Symposium, Tokyo, Japan, 1987. Berlin and New York: Springer.
Katsumoto, S., Komori, F., Sano, N. and Kobayashi, S.-I. 1987. Fine tuning of metal– insulator transition in Al0.3Ga0.7As using persistent photoconductivity. J. Phys. Soc. Jpn., 56, 2259.
Keesom, W.H. and Clusius, K. 1932. Über die spezifische Wärme des flüssigen Heliums. Proc. R. Acad. Amsterdam, 35.
Keesom, W. H. and MacWood, G. E. 1938. The viscosity of liquid helium. Physica, 5, 737.
Keesom, W. H. and van den Ende, J. N. 1930. The specific heat of substances at the temperature obtained with the aid of helium. II Measurements of the atomic heats of lead and of bismath. Proc. R. Acad. Amsterdam, 33, 243.
Kerrisk, J. F. and Keller, W. E. 1967. Thermal conductivity of liquid helium I. Bull. Am. Phys. Soc. Ser. II, 12, 550.
Ketterle, W. and Zwierlein|M. W. 2008. Making, probing and understanding ultracold Fermi gases. In Inguscio, M., Ketterle, W. and Salomon, C. (eds.), Ultra-cold Fermi Gases. International School of Physics Enrico Fermi. Amsterdam: IOS Press.
Ketterle, W., Durfee, D. S. and Stamper-Kurn, D. M. 1999. Making, probing and understanding Bose–Einstein condensates. In Inguscio, M., Stringari, S. and Wieman, C. (eds.), Bose–Einstein Condensation in Atomic Gases. International School of Physics Enrico Fermi. Amsterdam: IOS Press.
Khalatnikov, I. M. 1965. An Introduction to the Theory of Superfluidity. New York, Amsterdam: W. A. Benjamin.
Khinchin, A. I. 1949. Mathematical Foundations of Statistical Mechanics. New York: Dover.
Khorana, B. M. and Chandrasekhar, B. S. 1967. AC Josephson effect in superfluid helium. Phys. Rev. Lett., 18, 230.
Kordyuk, A. A. 2012. Iron-based superconductors: magnetism, superconductivity, and electronic structure. Low Temp. Phys., 38, 888.
Krönig, A. 1856. Grundzüge einer Theorie der Gase. Annalen der Physik und Chemie, 99, 315.
Lamb, H. 1945. Hydrodynamics. New York: Dover.
Landau L., D. 1937a. Theory of phase transformations. I. Zh. Eksp. Teor. Fiz., 7, 19 (Sov. Phys. JETP, 11, 26 (1937)).
Landau, L. D. 1937b. Theory of phase transformations. II. Zh. Eksp. Teor. Fiz., 7, 627 (Sov. Phys. JETP, 11, 545 (1937)).
Landau, L. D. 1941. The theory of superfluidity on Helium II. Zh. Eksp. Teor. Fiz., 11, 542 (J. Phys. USSR, 5, 71 (1941)).
Landau, L. D. 1947. On the Theory of Superfluidity of Helium II. J. Phys. (USSR), 11, 91.
Landau, L. D. 1956. The theory of a Fermi liquid. Zh. Eksp. Teor. Fiz., 30, 1058 (Sov. Phys. JETP, 3, 920 (1957)).
Landau, L. D. 1957. Oscillations in a Fermi liquid. Zh. Eksp. Teor. Fiz., 32, 59 (Sov. Phys. JETP, 5, 101 (1957)).
Landau, L. D. 1958. On the theory of the Fermi liquid. Zh. Eksp. Teor. Fiz., 35, 97 (Sov. Phys. JETP, 8, 70 (1959)).
Landau, L. D. and Lifshitz, E. M. 1959. Statistical Physics. London: Pergamon Press.
Lanford, O. E. 1975. Dynamical Systems, Theory and Applications, Lecture Notes in physics, vol. 38. Berlin: Springer.
Langevin, P. 1908. Sur la théorie du mouvement brownien. C.R. Acad. Sci. (Paris), 146, 530.
Larkin, A. I. and Varlamov, A. 2005. Theory of Fluctuations in Superconductors. Oxford: Oxford University Press.
LeBoeuf, D., Doiron-Leyraud, N., Levallois, J., et al. 2007. Electron pockets in the Fermi surface of hole-doped high-Tc superconductors. Nature, 450, 533.
Lee, D. M. and Leggett, A. J. 2011. Superfluid 3He – the early days. J. Low Temp. Phys., 164, 140.
Lee, P. A. and Ramakrishnan, T. V. 1985. Disordered electronic systems. Rev. Mod. Phys., 57, 287.
Lee, P. A., Nagaosa, N. and Wen, X. G. 2006. Doping a Mott insulator: physics of hightemperature superconductivity. Rev. Mod. Phys., 78, 17.
Lee, T.D. and Yang, C.N. 1952. Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev., 87, 410.
Leggett A., J. 1965. Theory of a superfluid Fermi liquid. I. General formalism and static properties. Phys. Rev., 140, A1869.
Leggett A., J. 1980. Diatomic molecules and Cooper pairs. In Pfôkalski, A. and Przystawa J., A. (eds.), Modern Trends in the Theory of Condensed Matter. Lecture Notes in Physics, vol. 115. Berlin: Springer.
Leggett A., J. 2006. Quantum Liquids. Oxford: Oxford University Press.
Leggett A., J. 1975. A theoretical description of the new phases of liquid 3He. Rev. Mod. Phys., 47, 331.
Leggett A., J. 2001. Bose–Einstein condensation in the alkali gases: some fundamental concepts. Rev. Mod. Phys., 73, 307.
Licciardello D., C. and Thouless D., J. 1975. Constancy of minimum metallic conductivity in two dimensions. Phys. Rev. Lett., 35, 1475.
Lipa J., A., Swanson, D., R., Nissen J., A., Chui T. C., P. and Israelsson U., E. 1996. Heat capacity and thermal relaxation of bulk helium very near the lambda point. Phys. Rev. Lett., 76, 944.
Livingston J., D. 1963. Magnetic properties of superconducting lead-base alloys. Phys. Rev., 129, 1943.
London, F. 1938. The λ-phenomenon of liquid helium and the Bose–Einstein degeneracy. Nature, 141, 643.
London, F. 1959. Superfluids II. New York: Wiley.
London, F. and London, H. 1935. The electromagnetic equations of the supraconductor. Proc. R. Soc. Lond. A, 149, 71.
Löw, U., Emery V., J., Fabricius, K. and Kivelson S., A. 1994. Study of an Ising model with competing long- and short-range interactions. Phys. Rev. Lett., 72, 1918.
Luther, A. and Peschel, I. 1974. Single-particle states, Kohn anomaly and pairing fluctuations in one dimension. Phys. Rev. B, 9, 2911–2919.
Luttinger J., M. 1963. An exactly soluble model of a many-fermion system. J. Math. Phys., 4, 1154.
Ma S., K. 1976. Modern Theory of Critical Phenomena. London: Benjamin.
Machida, K. 1989. Magnetism in La2CuO4 based compounds. Physica C, 158, 192.
Mahan G., D. 2000. Many-particle Physics. New York: Kluwer/Plenum.
Matsubara, T. 1955. A new approach to quantum-statistical mechanics. Prog. Theor. Phys., 14, 351.
Mattis D., C. and Lieb E., H. 1965. Exact solution of a many fermion system and its associated boson field. J. Math. Phys., 6, 304.
Maxwell J., C. 1860a. Illustrations of the dynamical theory of gases. Part II. Philos. Magazine, 20, 21.
Maxwell J., C. 1860b. Illustrations of the dynamical theory of gases. Part I. On the motions and collisions of perfectly elastic spheres. Philos. Magazine, 19, 19.
Maxwell J., C. 1875. On the dynamical evidence of the molecular constitution of Bodies. Nature, 11, 357.
McMillan W., L. and Mochel, J. 1981. Electron tunneling experiments on amorphous Ge1−xAux. Phys. Rev. Lett., 46, 556.
Meissner, W. and Ochsenfeld, R. 1933. Ein neuer Effekt bei Eintritt der Supraleitfähigkeit. Naturwissenschaften, 21, 787.
Mermin N., D. and Wagner, H. 1966. Absence of ferromagnetism or anti ferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 17, 1133.
Metzner, W. and Di Castro, C. 1993. Conservation laws and correlation functions in the Luttinger liquid. Phys. Rev. B, 47, 16107.
Metzner, W., Castellani, C. and Di Castro, C. 1998. Fermi systems with strong forward scattering. Adv. Phys., 47, 317.
Migdal, A. A. 1969. A diagram technique near the Curie point and the second order phase transition in a Bose liquid. Sov. Phys. JETP, 28, 1036.
Mott N., F. 1967. Electrons in disordered structures. Adv. Phys., 16, 49.
Mott N., F. 1972. Conduction in non-crystalline systems IX. The minimum metallic conductivity. Philos. Magazine, 26, 1015.
Nakamura, Y. and Uchida, S. 1993. Anisotropic transport properties of single crystal La2−x SrxCuO4: evidence for the dimensional crossover. Phys. Rev. B, 47, 8369
Nernst W., H. 1906. Über die Berechnung chemischer Gleichgewichte aus thermischen Messungen. Nachrichten von der Gesellschaft Wissenschaften zu Göttingen Matematisch-Physikalische Klasse, 1.
Nishida, N., Furubayashi, T., Yamaguchi, M., Morigaki, K. and Ishimoto, H. 1985. Metal– insulator transition in the amorphous Si1−xAux system with a strong spin–orbit interaction. Solid State Electronics, 28, 81.
Nozières, P. 1964. Theory of Interacting Fermi Systems. New York: W. A. Benjamin.
Nozières, P. and Pines, D. 1966. The Theory ofQuantum Liquids. NewYork: W.A.Benjamin.
Nozières, P. and Schmitt-Rink, S. 1985. Bose condensation in an attractive fermion gas: from weak to strong coupling superconductivity. J. L. Temp. Phys., 59, 195.
Nyquist, H. 1928. Thermal agitation of electric charge in conductors. Phys. Rev., 32, 110.
Okuma, S., Komori, F. and Kobayashi, S. 1988. Themetal–insulator transition in disordered metals. In Ando, T. and Fukuyama, H. (eds.), Anderson Localization. Proceedings of the International Symposium. Berlin: Springer.
Onsager, L. 1931a. Reciprocal relations in irreversible processes. I. Phys. Rev., 37, 405.
Onsager, L. 1931b. Reciprocal relations in irreversible processes. II. Phys. Rev., 38, 2265.
Ornstein, L. S. and Zernike, F. 1914. Accidental deviations of density and opalescence at the critical point of a single substance. KNAW, Proceedings, 17, 793.
Osheroff D., D., Richardson R., C. and Lee D., M. 1972a. Evidence for a new phase of solid He3. Phys. Rev. Lett., 28, 885.
Osheroff, D., D., Gully, W. J., Richardson R., C. and Lee D., M. 1972b. New magnetic phenomena in liquid He3 below 3 mK. Phys. Rev. Lett., 29, 920.
Paalanen M., A., Sachdev, S., Bhatt R., N. and Ruckenstein A., E. 1986. Spin dynamics of nearly localized electrons. Phys. Rev. Lett., 57, 2061.
Patashinskij A., Z. and Pokrovskij V., L. 1966. Behavior of ordered systems near the transition point. Sov. Phys. JETP, 23, 292.
Patashinskij A., Z. and Pokrovskij V., L. 1979. Fluctuations Theory of Phase Transitions. Oxford: Pergamon Press.
Paulson D., N., Kojima, H. and Wheatley J., C. 1974. Profound effect of a magnetic field on the phase diagram of superfluid 3He. Phys. Rev. Lett., 32, 1098.
Peliti, L. 2011. Statistical Mechanics in a Nutshell. Princeton: Princeton University Press.
Penrose, O. and Onsager, L. 1956. Bose–Einstein condensation and liquid helium. Phys. Rev., 104, 576.
Perali, A., Pieri, P., Pisani, L. and Strinati, G. C. 2004. BCS-BEC crossover at finite temperature for superfluid trapped Fermi atoms. Phys. Rev. Lett., 92, 220404.
Perrin, J. B. 1913. Les Atoms. Paris: Librairie Felix Alcan.
Pethick C., J. and Smith, H. 2008. Bose–Einstein Condensation in Dilute Gases. 2nd edn. Cambridge: Cambridge University Press.
Phillips N., E. 1959. Heat capacity of aluminum between 0.1 K and 4.0K. Phys. Rev., 114, 676.
Phillips W., D. 1998. Nobel Lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys., 70, 721.
Pippard A., B. 1955. Trapped flux in superconductors. Phil. Trans. R. Soc. Lond. A, 248, 97.
Pippard A., B. 1957. Elements of Classical Thermodynamics: for Advanced Students of Physics. Cambridge: Cambridge University Press.
Pitaevskii L., P. 1959. On the superfluidity of liquid 3He. Zh. Eksp. Teor. Fiz., 37, 1794 (Sov. Phys. JETP, 10, 1267 (1960)).
Pitaevskii L., P. 1961. Vortex lines in imperfect Bose gas. Zh. Eksp. Teor. Fiz., 40, 646 (Sov. Phys. JETP, 13, 451 (1961)).
Pitaevskii, L. P. and Stringari, S. 2003. Bose–Einstein Condensation. Oxford: Clarendon Press.
Planck, M. K. E. L. 1900a. Über eine Verbesserung der Wienschen Spectralgleichung. Verhandlungen der Deutschen Physikalischen Gesellschaft, 2, 202.
Planck, M. K. E. L. 1900b. Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum. Verhandlungen der Deutschen Physikalischen Gesellschaft, 2, 237.
Planck, M. K. E. L. 1917. Über einen Satz der statischen Dynamik und seine Erweiterung in der Quantentheorie. Sitzungberichte der Preussischen Akadademie der Wissenschaften, 324.
Polyakov, A.M. 1968. Microscopic description of critical phenomena. Zh. Eksp. Teor. Fiz., 55, 1026 (Sov. Phys. JETP, 28, 533 (1969)).
Polyakov, A.M. 1969. Properties of long and short range correlations in the critical region. Zh. Eksp. Teor. Fiz., 57, 271 (Sov. Phys. JETP, 30, 151 (1970)).
Punnoose, A. and Finkel'stein, A. M. 2002. Dilute electron gas near the metal–insulator transition: role of valleys in silicon inversion layers. Phys. Rev. Lett., 88, 016802.
Qian, Z., Vignale, G. and Marinescu, D. C. 2004. Spin mass of an electron liquid. Phys. Rev. Lett., 93, 106601.
Raffa, F., Ohno, T., Mali, M., et al. 1998. Isotope dependence of the spin gap in YBa2Cu4O8 as determined by Cu NQR relaxation. Phys. Rev. Lett., 81, 5912.
Rammer, J. 2007. Quantum Field Theory of Non-equilibrium States. Cambridge: Cambridge University Press.
Randeria, M. and Trivedi, N. 1998. Pairing correlations above Tc and pseudogaps in underdoped cuprates. J. Phys. Chem. Solids, 59, 1754.
Rayfield, G. W. and Reif, F. 1964. Quantized vortex rings in superfluid helium. Phys. Rev., 136, A1194.
Richards, P. L. and Anderson, P. W. 1965. Observation of the analog of the AC Josephson effect in superfluid helium. Phys. Rev. Lett., 14, 540.
Riedel, E. K. and Wegner, F. J. 1974. Effective critical and tricritical exponents. Phys. Rev. B, 9, 294.
Rohde, M. and Micklitz, H. 1987. Indication of universal behavior of Hall conductivity near the metal–insulator transition in disordered systems. Phys. Rev. B, 36, 7572.
Rosenbaum, T. F., Andres, K., Thomas, G. A. and Bhatt, R. N. 1980. Sharp metal–insulator transition in a random solid. Phys. Rev. Lett., 45, 1723.
Rosenbaum, T. F., Milligan, R. F., Paalanen, M. A., Thomas, G. A., Bhatt, R. N. and Lin, W. 1983. Metal–insulator transition in a doped semiconductor. Phys. Rev. B, 27, 7509.
Rubio Temprano, D., Mesot, J., Janssen, S., et al. 2000. Large isotope effect on the pseudogap in the high-temperature superconductor HoBa2Cu4O8. Phys. Rev. Lett., 84, 1990.
Schreck, F., Khaykovich, L., Corwin, K. L., et al. 2001. QuasipureBose–Einstein condensate immersed in a Fermi sea. Phys. Rev. Lett., 87, 080403.
Schrieffer, J. R. 1999. Theory of Superconductivity. Reading, Mass.: Pegasus Books.
Schrödinger, E. 1968. Statistical Thermodynamics. Cambridge: Cambridge University Press.
Schroer, B. 1973. Theory of critical phenomena based on the normal-product formalism. Phys. Rev. B, 8, 4200.
Sebastian, S. E., Harrison, N., Palm, E., et al. 2008. A multi-component Fermi surface in the vortex state of an underdoped high-Tc superconductor. Nature, 454, 200.
Seibold, G., Grilli, M. and Lorenzana, J. 2012. Stripes in cuprate superconductors: excitations and dynamic dichotomy. Physica C, 481, 132.
Serin, B., Reynold, C.A. and Nesbitt, L. B. 1950. Mass dependence of the superconducting transition temperature of mercury. Phys. Rev., 80, 761.
Shankar, R. 1994. Renormalization-group approach to interacting fermions. Rev. Mod. Phys., 66, 129.
Shapiro, S., Janus, A. R. and Holly, S. 1964. Effect of microwaves on Josephson currents in superconducting tunneling. Rev. Mod. Phys., 36, 223.
Simon, M. E. and Varma, C. M. 2002. Detection and implications of a time-reversal breaking state in underdoped cuprates. Phys. Rev. Lett., 89, 247003.
Sólyom, J. 1979. The Fermi gas model of one-dimensional conductors. Adv. Phys., 28, 201.
Stanley, H. E. 1987. Introduction to Phase Transitions and Critical Phenomena. Oxford: Oxford University Press.
Stupp, H., Hornung, M., Lakner, M., Madel, O. and Löhneysen, H. V. 1993. Possible solution of the conductivity exponent puzzle for the metal-insulator transition in heavily doped uncompensated semiconductors. Phys. Rev. Lett., 71, 2634.
Tallon, J. L. and Loram, J. W. 2001. The doping dependence of T * – what is the real high-Tc phase diagram?Physica C: Superconductivity, 349, 53.
Thomas, G. A., Ootuka, Y., Kobayashi, S. and Sasaki, W. 1981. Comparison of the specific heat and conductivity of Si: P. Phys. Rev. B, 24, 4886.
Thomas, G. A., Ootuka, Y., Katsumoto, S., Kobayashi, S. and Sasaki, W. 1982. Evidence for localization effects in compensated semiconductors. Phys. Rev. B, 25, 4288.
Thompson, C. J. 1972. Mathematical Statistical Mechanics. Princeton: Princeton University Press.
Timusk, T. 2003. The mysterious pseudogap in high temperature superconductors: an infrared view. Solid State Comm., 127(5), 337.
Timusk, T. and Statt, B. 1999. The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys., 62, 61.
Tinkham, M. 1975. Introduction to Superconductivity. New York: McGraw-Hill.
Tino, G. M., Cataliotti, F. S., Cornell, E. A., Fort, C., Inguscio, M. and Prevedelli, M. 1999. Towards quantum degeneracy of bosonic and fermionic potassium atoms. In Inguscio, M., Stringari, S. and Wieman, C. (eds.), Bose–Einstein Condensation in Atomic Gases, Amsterdam: IOP Press.
Tisza, L. 1938. Transport phenomena in helium II. Nature, 141, 913.
Tomonaga, S. 1950. Remarks on Bloch's method of sound waves applied to many-fermion problems. Prog. Theor. Phys., 5, 544.
Tranquada, J. M. 2012. Cuprates get orders to charge. Science, 337, 811.
Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. and Uchida, S. 1995. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature, 375, 561.
Tranquada, J. M., Axe, J. D., Ichikawa, N., Nakamura, Y., Uchida, S. and Nachumi, B. 1996. Neutron-scattering study of stripe-phase order of holes and spins in La1.48Nd0.4Sr0.12CuO4. Phys. Rev. B, 54, 7489.
Tranquada, J. M., Axe, J. D., Ichikawa, N., Moodenbaugh, A. R., Nakamura, Y. and Uchida, S. 1997. Coexistence of and competition between, superconductivity and charge-stripe order in La1.6−xNd0.4SrxCuO4. Phys. Rev. Lett., 78, 338.
Truscott, A. G., Strecker, K. E., McAlexander, W. I., Partridge, G. B. and Hulet, R. G. 2001. Observation of Fermi pressure in a gas of trapped atoms. Science, 291, 2570.
Tsuei, C. C. and Kirtley, J. R. 2000. Pairing symmetry in cuprate superconductors. Rev. Mod. Phys., 72, 969.
Valatin, J. G. 1962. Superconducting electron and nucleon systems. In Lectures in Theoretical Physics, Boulder, Colorado (1961), vol. 4. New York: Interscience.
van der Waals, J. D. 1873. Over de Continuiteit van den Gasen Vloeistoftoestand. Leiden: A. W. Suthoff.
Van Hove, L. 1954. Time-dependent correlations between spins and neutron scattering in ferromagnetic crystals. Phys. Rev., 95, 1374.
Varma, C. M. 1993. Towards a theory of the marginal Fermi-liquid state. J. Phys. Chem. Solids, 54, 1081.
Varma, C. M. 1999. Pseudogap phase and the quantum-critical point in copper-oxide metals. Phys. Rev. Lett., 83, 3538.
Vojta, M. 2009. Lattice symmetry breaking in cuprate superconductors: stripes, nematics and superconductivity. Adv. Phys, 58, 699.
Vollhardt, D. 1998. Pair correlations in superfluid helium 3. In Kresin, V. (ed.), Pair Correlations in Many-Fermion Systems. New York: Plenum Press.
Wang, Y. and Chubukov, A. 2014. Charge-density-wave order with momentum (2Q, 0) and (0, 2Q) within the spin-fermion model: continuous and discrete symmetry breaking, preemptive composite order and relation to pseudogap in hole-doped cuprates. Phys. Rev. B, 90, 035149.
Webb, R. A., Greytak, T. J., Johnson, R. T. and Wheatley, J. C. 1973. Observation of a second-order phase transition and its associated P − T phase diagram in liquid He3. Phys. Rev. Lett., 30, 210.
Wegner, F. 1976. Electrons in disordered systems. Scaling near the mobility edge. Zeit. für Phys. B, 25, 327.
Wegner, F. 1979. The mobility edge problem: continuous symmetry and a conjecture. Zeit. für Phys. B, 35, 307.
Wegner, F. J. and Riedel, E.K. 1973. Logarithmic corrections to themolecular-field behavior of critical and tricritical systems. Phys. Rev. B, 7, 248.
Wheatley, J. C. 1966. Quantum Fluids: Proceedings of the Sussex University Symposium 16–20 August 1965. Amsterdam: North-Holland.
Wheatley, J. C. 1975. Experimental properties of superfluid 3He. Rev. Mod. Phys., 47, 415.
Widom, B. 1974. The critical point and scaling theory. Physica, 73, 107–118.
Wigner, E. P. 1957. Relativistic invariance and quantum phenomena. Rev. Mod. Phys., 29, 255.
Williams, G. V. M., Pringle, D. J. and Tallon, J. L. 2000. Contrasting oxygen and copper isotope effects in YBa2Cu4O8 superconducting and normal states. Phys. Rev. B, 61, R9257.
Wilson, K. G. 1971a. Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B, 4, 3174.
Wilson, K. G. 1971b. Renormalization group and critical phenomena. II. Phase-space cell analysis of critical behavior. Phys. Rev. B, 4, 3184.
Wilson, K. G. 1972. Feynman-graph expansion for critical exponents. Phys. Rev. Lett., 28, 548.
Wilson, K. G. and Fisher, M. E. 1972. Critical exponents in 3.99 dimensions. Phys. Rev. Lett., 28, 240.
Wilson, K. G. and Kogut, J. 1974. The renormalization group and the ∈ expansion. Phys. Rep., 12, 75.
Wu, M. K., Ashburn, J. R., Torng, C. J., et al. 1987. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett., 58, 908.
Wu, T., Mayaffre, H., Kramer, S., et al. 2011. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy. Nature, 477, 191.
Yamaguchi, M., Nishida, N., Furubayashi, T., Morigaki, K., Ishimoto, H. and Ono, K. 1983. Metal–nonmetal transition and superconductivity in amorphous Si1−x Aux System. Physica B+C, 117-118, 694.
Yamase, H., Oganesyan, V. and Metzner, W. 2005. Mean-field theory for symmetry-breaking Fermi surface deformations on a square lattice. Phys. Rev. B, 72, 035114.
Yang, C. N. 1962. Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors. Rev. Mod. Phys., 34, 694.
Yang, C.N. and Lee, T.D. 1952. Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev., 87, 404.
Zaanen, J. and Gunnarsson, O. 1989. Charged magnetic domain lines and the magnetism of high-Tc oxides. Phys. Rev. B, 40, 7391.
Zemansky, M. W. 1968. Heat and Thermodynamics. New York: MacGraw-Hill.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.