Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-18T07:32:40.751Z Has data issue: false hasContentIssue false

8 - Interlude: From Particle to Assembly

Published online by Cambridge University Press:  05 June 2012

Normand M. Laurendeau
Affiliation:
Purdue University, Indiana
Get access

Summary

In this chapter, we summarize and expand somewhat on those results from quantum mechanics and spectroscopy most germane to our study of statistical thermodynamics. We then prepare for revisiting intensive properties in Chapter 9 by considering the nature of thermodynamic calculations before the advent of quantum mechanics. From a pedagogical point of view, the previous three chapters have focused on the properties of a single atom or molecule. For our purposes, the most important such properties are the allowed energy levels and degeneracies corresponding to the translational, rotational, vibrational, and electronic energy modes of an independent particle. Exploiting this knowledge, we proceed to a macroscopic assembly of atoms or molecules, with a focus on calculations of thermodynamic properties for any pure ideal gas. Assemblies composed of different particle types subsequently permit the evaluation of properties for both nonreacting and reacting gaseous mixtures, including equilibrium constants for various chemical reactions. Finally, re-applying spectroscopy to such mixtures, we examine the utility of statistical thermodynamics for experimentally determining temperature or concentrations in realistic gaseous mixtures at high temperatures and pressures.

Energy and Degeneracy

Our foray into quantum mechanics and spectroscopy has led to relations giving the energy and degeneracy for all four energy modes – translation, rotation, vibration, and electronic. If we insist on mode independence, any consideration of diatomic molecules also mandates the simplex model, which presumes a combined rigid rotor and harmonic oscillator.

Type
Chapter
Information
Statistical Thermodynamics
Fundamentals and Applications
, pp. 157 - 168
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×