Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-25T21:02:31.314Z Has data issue: false hasContentIssue false

21 - Numerical simulations of the solar convection zone

Published online by Cambridge University Press:  11 November 2009

Julian R. Elliott
Affiliation:
Eurobios UK, Sir John Lyon House, 5 High Timber Street, London EC4V 3NX, UK
Michael J. Thompson
Affiliation:
Imperial College of Science, Technology and Medicine, London
Jørgen Christensen-Dalsgaard
Affiliation:
Aarhus Universitet, Denmark
Get access

Summary

Deep convection occurs in the outer one-third of the solar interior and transports energy generated by nuclear reactions to the surface. It leads to a characteristic pattern of time-averaged differential rotation, with the poles rotating approximately 20% slower than the equator. A particularly notable feature of the solar differential rotation is that it departs significantly from the Taylor-Proudman state of rotation constant on cylinders aligned with the rotation axis. Although this observation contrasts with results from early numerical simulations, such simulations provide the best hope of understanding the observations. Many studies have adopted the DNS (Direct Numerical Simulation) approach and justified the artificially large viscosities and thermal diffusivities used as modelling transport by unresolved eddies. LES (Large Eddy Simulation) techniques, which use a suitable turbulence closure model, offer a superior alternative but face the problem of choosing an appropriate turbulence closure; this can be difficult in the face of complicating factors such as stratification and rotation. An alternative approach is to shift responsibility for truncating the turbulent cascade to the numerical scheme itself. Since this approach abandons the rigorous notions of the LES approach, we refer to it as a VLES (Very Large Eddy Simulation). This paper compares results of DNS simulations carried out with a spherical harmonic code, and preliminary results obtained using a VLES-type code. Both make the anelastic approximation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×