Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-23T07:23:48.180Z Has data issue: true hasContentIssue false

8 - Improved Numerical Solutions to SDEs by Change of Measures

Published online by Cambridge University Press:  08 February 2018

Debasish Roy
Affiliation:
Indian Institute of Science, Bangalore
Get access

Summary

Introduction

Obtaining accurate numerical solutions to SDEs has been the focus of numerous studies owing to their relevance in many fields of engineering and science [Platen 1987, Kloeden and Platen 1992, Milstein 1995, Higham et al. 2002]. In the context of stochastic filtering (Chapters 6 and 7), it was seen that the process model is often a set of non-linear SDEs and imprecise integration techniques for these SDEs may precipitate significant numerical errors in the predicted particle locations leading to possible degradation in the filter performance. Determining solutions—strong or weak—of stochastically driven non-linear oscillators by direct numerical integration of the associated SDEs has been dealt with in Chapters 4 and 5. In particular, a universal framework for integration schemes is provided in Chapter 5 through an MC approach. There it has been shown that the Ito–Taylor expansion, which is based on an iterated Ito's formula, helps to construct integration schemes for SDEs. The possibility of developing higher order numerical integration schemes, e.g., the Milstein method [Milstein 1995], numeric–analytical techniques of LTL (locally transversal linearization) type [Roy 2000, 2001, 2004] and the stochastic Newmark method [Roy 2006], has been demonstrated along with the estimation of the order of accuracy of the higher order numerical integration schemes. However, unlike ordinary DEs, deriving higher order numerical schemes for SDEs is generally hindered by the difficulty of computing higher order MSIs. On the other hand, avoidance of the higher order MSIs, which implies retaining fewer terms in the hierarchical stochastic Taylor's approximation used to construct the integration scheme, naturally achieves relatively lower order accuracy. Most of the lower order explicit schemes (for instance, the explicit version of the EM scheme) may lose stability, for instance in the case of stiff SDEs, thus requiring impracticably low time steps to get stable solutions. Thanks to its computational expedience and ease of implementation, a lower order scheme would be ideal, were it not for a loss of integration accuracy.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×