Skip to main content Accessibility help
×
  • Cited by 21
Publisher:
Cambridge University Press
Online publication date:
October 2017
Print publication year:
2017
Online ISBN:
9781316847978

Book description

The discovery of a duality between Anti-de Sitter spaces (AdS) and Conformal Field Theories (CFT) has led to major advances in our understanding of quantum field theory and quantum gravity. String theory methods and AdS/CFT correspondence maps provide new ways to think about difficult condensed matter problems. String theory methods based on the AdS/CFT correspondence allow us to transform problems so they have weak interactions and can be solved more easily. They can also help map problems to different descriptions, for instance mapping the description of a fluid using the Navier–Stokes equations to the description of an event horizon of a black hole using Einstein's equations. This textbook covers the applications of string theory methods and the mathematics of AdS/CFT to areas of condensed matter physics. Bridging the gap between string theory and condensed matter, this is a valuable textbook for students and researchers in both fields.

Reviews

'This book is an excellent reference for students willing to bridge the gap between condensed matter physics and gravity by using holography.'

Juan Maldacena - Institute for Advanced Study, New Jersey

'A nice survey of holographic techniques applied to condensed matter systems. It should provide a smooth entryway to novices desiring to work in this fascinating field.'

Diego Trancanelli - Universidade de São Paulo

'In this, his second book on applied string theory, Nastase gives a wonderfully telescopic account of one of the most exhilarating developments in the field: holographic condensed matter. In 48 chapters, he takes the reader from the very basics of condensed matter and string theory right up to the very latest progress. With a number of well-constructed exercises in addition to detailed computations, it has a little bit for everyone from graduate students of both high energy and condensed matter physics to seasoned researchers looking to expand their horizons.'

Jeff Murugan - University of Cape Town

'The gauge/gravity duality, which arose from studies in string theory in the late 1990s, is one of the most important modern tools to understand the behavior of quantum field theories at strong coupling. This book builds a bridge between the physics of condensed matter systems and the string theory ideas that can be used to understand them better. The book will be very useful both for students of condensed matter physics that want to apply the gauge/gravity duality to their field as well as for string theory students who want to understand better the connections between string theory and condensed matter systems.'

David Berenstein - University of California

'In this ambitious advanced textbook, Horaţiu Năstase, a member of the Institute for Theoretical Physics at the State University of São Paulo, Brazil, aims to introduce graduate students and researchers to the application of string theory to condensed-matter physics. String Theory Methods for Condensed Matter Physics assumes previous graduate coursework in quantum field theory and some knowledge of solid-state physics and general relativity. However, Năstase writes that he intends for the book to be accessible to readers who are just beginning to learn about string theory and its relation to condensed matter. Each chapter includes exercises and a summary of important concepts.'

Melinda Baldwin Source: Physics Today

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


References
[1] S. A., Hartnoll, “Lectures on holographic methods for condensed matter physics,” Class. Quant. Grav. 26, 224002 (2009), arXiv:0903.3246 [hep-th].
[2] N., Iqbal, H., Liu, and M., Mezei, “Lectures on holographic non-Fermi liquids and quantum phase transitions,” arXiv:1110.3814 [hep-th].
[3] C. P., Herzog, “Lectures on holographic superfluidity and superconductivity,” J. Phys. A 42, 343001 (2009), arXiv:0904.1975 [hep-th].
[4] J., McGreevy, “Holographic duality with a view toward many-body physics,” Adv. High Energy Phys. 2010, 723105 (2010), arXiv:0909.0518 [hep-th].
[5] J., Zaanen, Y. W., Sun, Y., Liu, and K., Schalm, Holographic Duality in Condensed Matter Physics, Cambridge University Press, 2016.
[6] C., Kittel, Introduction to Solid State Physics, John Wiley and Sons, 2005.
[7] P., Phillips, Advanced Solid State Physics, Westview Press, 2003.
[8] H., Năstase, Introduction to the AdS/CFT Correspondence, Cambridge University Press, 2015.
[9] L. D., Faddeev, “How algebraic Bethe ansatz works for integrable model,” arXiv:hepth/ 9605187.
[10] T. R., Klassen and E., Melzer, “The thermodynamics of purely elastic scattering theories and conformal perturbation theory,” Nucl. Phys. B 350, 635 (1991).
[11] J., Polchinski, String Theory, vol. I, Cambridge University Press, 2000.
[12] S., Sachdev, Quantum Phase Transitions, Cambridge University Press, 2011.
[13] G. V., Dunne, “Aspects of Chern-Simons theory,” arXiv:hep-th/9902115.
[14] A., Stern, “Anyons and the quantum Hall effect – A pedagogical review,” Ann. Phys. 323, 204 (2008).
[15] S., Rao, “An Anyon primer,” arXiv:hep-th/9209066.
[16] E., Witten, “Three lectures on topological phases of matter,” arXiv:1510.07698 [cond-mat.mes-hall].
[17] G. W., Moore and N., Read, “Nonabelions in the fractional quantum Hall effect,” Nucl. Phys. B 360, 362 (1991).
[18] X.-L., Qi and S.-C., Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys 83 (2011) 1057, arXiv:1008.2026 [cond-mat.mes-hall].
[19] X. L., Qi, E., Witten, and S. C., Zhang, “Axion topological field theory of topological superconductors,” Phys. Rev. B 87, 134519 (2013), arXiv:1206.1407 [cond-mat.supr-con].
[20] X. L., Qi, T., Hughes, and S. C., Zhang, “Topological field theory of timereversal invariant insulators,” Phys. Rev. B 78, 195424 (2008), arXiv:0802.3537 [cond-mat.mes-hall].
[21] P., Coleman, “Heavy fermions and the Kondo lattice: A 21st century perspective,” arXiv:1509.05769 [cond-mat.str-el].
[22] L. D., Landau and E. M., Lifshitz, Course of Theoretical Physics Course of Theoretical Physics, vol. 6, Fluid Mechanics Fluid Mechanics, 2nd ed., Elsevier, 1987.
[23] M., Rangamani, “Gravity and hydrodynamics: lectures on the fluid-gravity correspondence,” Class. Quant. Grav. 26, 224003 (2009), arXiv:0905.4352 [hep-th].
[24] V. E., Hubeny, S., Minwalla, and M., Rangamani, “The fluid-gravity correspondence,” arXiv:1107.5780 [hep-th].
[25] P. J. E., Peebles, Principles of Physical Cosmology, Princeton University Press, 1993.
[26] R. M., Wald, General Relativity, University of Chicago Press, 1984.
[27] C.W., Misner, K. S., Thorne, and J. A., Wheeler, Gravitation, Freeman and Co., 1973.
[28] S. W., Hawking and G. F. R., Ellis, The Large Scale Structure of Space-time, Cambridge University Press, 1973.
[29] S. W., Hawking, “Particle creation by black holes,” Commun. Math. Phys 43, 199 (1975), Commun. Math. Phys. 46, 206 (1976).
[30] J. M., Bardeen, B., Carter, and S. W., Hawking, “The four laws of black hole mechanics,” Commun. Math. Phys. 31, 161 (1973).
[31] M. J., Duff, B. E. W., Nilsson, and C. N., Pope, “Kaluza-Klein supergravity,” Phys. Rept. 130, 1 (1986).
[32] H., Năstase, D., Vaman, and P., van Nieuwenhuizen, “Consistency of the AdS(7) × S(4) reduction and the origin of selfduality in odd dimensions,” Nucl. Phys. B 581, 179 (2000), arXiv:hep-th/9911238.
[33] R. I., Nepomechie, “Magnetic monopoles from antisymmetric tensor gauge fields,” Phys. Rev. D 31, 1921 (1985).
[34 C., Teitelboim, “Gauge invariance for extended objects,” Phys. Lett. B 167, 63 (1986).
[35 C., Teitelboim, “Monopoles of higher rank,” Phys. Lett. B 167, 69 (1986).
[36] M. J., Duff, R. R., Khuri, and J. X., Lu, “String solitons,” Phys. Rept. 259, 213 (1995), arXiv:hep-th/9412184.
[37] A. A., Tseytlin, “Harmonic superpositions of M-branes,” Nucl. Phys. B 475, 149 (1996), arXiv:hep-th/9604035.
[38 M., Cvetic and A. A., Tseytlin, “Nonextreme black holes from nonextreme intersecting M-branes,” Nucl. Phys. B 478, 181 (1996), arXiv:hep-th/9606033.
[39] C. P., Burgess and F., Quevedo, “Bosonization as duality,” Nucl. Phys. B 421, 373 (1994), arXiv:hep-th/9401105.
[40 J., Murugan and H., Năstase, “A nonabelian particle-vortex duality,” Phys. Lett. B 753, 401 (2016), arXiv:1506.04090 [hep-th].
[41] L., Alvarez-Gaume and S. F., Hassan, “Introduction to S duality in N=2 supersymmetric gauge theories: A pedagogical review of the work of Seiberg and Witten,” Fortsch. Phys. 45, 159 (1997), arXiv:hep-th/9701069.
[42] M. B., Green, J. H., Schwarz, and E., Witten, Superstring Theory, Cambridge University Press, 1987.
[43] B., Zwiebach, A First Course in String Theory, Cambridge University Press, 2009.
[44] C., Johnson, D-Branes, Cambridge University Press, 2003.
[45] K., Becker, M., Becker, and J. H., Schwarz, String Theory and M-Theory, Cambridge University Press, 2007.
[46] M., Ammon and J., Erdmenger, Gauge/Gravity Duality: Foundations and Applications, Cambridge University Press, 2015.
[47] O., Aharony, S. S., Gubser, J.M.Maldacena, H., Ooguri, and Y., Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323, 183 (2000), arXiv:hep-th/9905111.
[48] J. M., Maldacena, “The large N limit of superconformal field theories and supergravity,” Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)], arXiv:hep-th/9711200.
[49] E., Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998), arXiv:hep-th/9802150.
[50] S. S., Gubser, I. R., Klebanov, and A. M., Polyakov, “Gauge theory correlators from noncritical string theory,” Phys. Lett. B 428, 105 (1998), arXiv:hep-th/9802109.
[51] D. E., Berenstein, J. M., Maldacena, and H. S. Năstase, “Strings in flat space and pp waves from N=4 superYang-Mills,” JHEP 0204, 013 (2002), arXiv:hep-th/0202021.
[52] J. C., Plefka, “Lectures on the plane wave string gauge theory duality,” Fortsch. Phys. 52, 264 (2004), arXiv:hep-th/0307171.
[53] J., Kowalski-Glikman, “Vacuum states in Supersymmetric Kaluza-Klein theory,” Phys. Lett. B 134, 194 (1984).
[54] R., Penrose, “Any spacetime has a plane wave as a limit,” Differential Geometry and Relativity, Reidel, 1974, pp. 271–275.
[55] M., Blau, J. M., Figueroa-O'Farrill, C., Hull, and G., Papadopoulos, “A new maximally supersymmetric background of IIB superstring theory,” JHEP 0201, 047 (2002), arXiv:hep-th/0110242.
[56] M., Blau, J. M., Figueroa-O'Farrill, C., Hull, and G., Papadopoulos, “Penrose limits and maximal supersymmetry,” Class. Quant. Grav. 19, L87 (2002), arXiv:hepth/ 0201081.
[57] P. C., Aichelburg and R. U., Sexl, “On the gravitational field of a massless particle,” Gen. Rel. Grav. 2, 303 (1971).
[58] G. T., Horowitz and A. R., Steif, “Space-time singularities in string theory,” Phys. Rev. Lett. 64, 260 (1990).
[59] J. A., Minahan and K., Zarembo, “The Bethe ansatz for N = 4 superYang-Mills,” JHEP 0303, 013 (2003), arXiv:hep-th/0212208.
[60] J., Plefka, “Spinning strings and integrable spin chains in the AdS/CFT correspondence,” Living Rev. Rel. 8, 9 (2005), arXiv:0507136 [hep-th].
[61] K., Zarembo, “Semiclassical Bethe ansatz and AdS/CFT,” Comptes Rendus Physique 5, 1081 (2004) [Fortsch. Phys. 53, 647 (2005)], arXiv:hep-th/0411191.
[62] M. F., Paulos, J., Penedones, J., Toledo, B. C. van Rees, and P., Vieira, “The S-matrix bootstrap I: QFT in AdS,” arXiv:1607.06109 [hep-th].
[63] D., Bernard, “An introduction to Yangian symmetries,” Int. J. Mod. Phys. B 7, 3517 (1993), arXiv:hep-th/9211133.
[64] L., Dolan, C. R., Nappi, and E., Witten, “Yangian symmetry in D = 4 superconformal Yang-Mills theory,” arXiv:hep-th/0401243.
[65] N., Beisert, V., Dippel, and M., Staudacher, “A novel long range spin chain and planar N = 4 super Yang-Mills,” JHEP 0407, 075 (2004), arXiv:hep-th/0405001.
[66] N., Beisert, “The SU(2–2) dynamic S-matrix,” Adv. Theor. Math. Phys. 12, 948 (2008), arXiv:hep-th/0511082.
[67] N., Beisert, B., Eden, and M., Staudacher, “Transcendentality and crossing,” J. Stat. Mech. 0701, P01021 (2007), arXiv:hep-th/0610251.
[68] S., Kachru, X., Liu, and M., Mulligan, “Gravity duals of Lifshitz-like fixed points,” Phys. Rev. D 78, 106005 (2008), arXiv:0808.1725 [hep-th].
[69] M., Taylor, “Non-relativistic holography,” arXiv:0812.0530 [hep-th].
[70] T., Griffin, P., Horava, and C. M., Melby-Thompson, “Lifshitz gravity for Lifshitz holography,” Phys. Rev. Lett. 110, no. 8, 081602 (2013), arXiv:1211.4872 [hep-th].
[71] C. P., Herzog, M., Rangamani, and S. F., Ross, “Heating up Galilean holography,” JHEP 0811, 080 (2008), arXiv:0807.1099 [hep-th].
[72] A., Adams, K., Balasubramanian, and J., McGreevy, “Hot spacetimes for cold atoms,” JHEP 0811, 059 (2008), arXiv:0807.1111 [hep-th].
[73] J., Maldacena, D., Martelli, and Y., Tachikawa, “Comments on string theory backgrounds with non-relativistic conformal symmetry,” JHEP 0810, 072 (2008), arXiv:0807.1100 [hep-th].
[74] D. T., Son, “Toward an AdS/cold atoms correspondence: A geometric realization of the Schrödinger symmetry,” Phys. Rev. D 78, 046003 (2008), arXiv:0804.3972 [hep-th].
[75] K., Balasubramanian and J., McGreevy, “Gravity duals for non-relativistic CFTs,” Phys. Rev. Lett. 101, 061601 (2008), arXiv:0804.4053 [hep-th].
[76] E., Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” Adv. Theor. Math. Phys. 2, 505 (1998), arXiv:hep-th/9803131.
[77] J., Casalderrey-Solana, H. Liu, D., Mateos, K., Rajagopal, and U. A., Wiedemann, “Gauge/string duality, hot QCD and heavy ion collisions,” arXiv:1101.0618 [hep-th].
[78] S. A., Hartnoll and P., Kovtun, “Hall conductivity from dyonic black holes,” Phys. Rev. D 76, 066001 (2007), arXiv:0704.1160 [hep-th].
[79] S. S., Gubser, A., Nellore, S. S., Pufu, and F. D., Rocha, “Thermodynamics and bulk viscosity of approximate black hole duals to finite temperature quantum chromodynamics,” Phys. Rev. Lett. 101, 131601 (2008), arXiv:0804.1950 [hep-th].
[80] O., DeWolfe, S. S., Gubser, and C., Rosen, “A holographic critical point,” Phys. Rev. D 83, 086005 (2011), arXiv:1012.1864 [hep-th].
[81] H. A., Chamblin and H. S., Reall, “Dynamic dilatonic domain walls,” Nucl. Phys. B 562, 133 (1999), arXiv:hep-th/9903225.
[82] D. T., Son and A. O., Starinets, “Minkowski space correlators in AdSCFT correspondence: Recipe and applications,” JHEP 0209, 042 (2002), arXiv:hep-th/0205051.
[83] N., Iqbal and H., Liu, “Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm,” Phys. Rev. D 79, 025023 (2009), arXiv:0809.3808 [hep-th].
[84] C., Lopez-Arcos, H., Nastase, F., Rojas, and J., Murugan, “Conductivity in the gravity dual to massive ABJM and the membrane paradigm,” JHEP 1401, 036 (2014), arXiv:1306.1263 [hep-th].
[85] S. S., Gubser, “Momentum fluctuations of heavy quarks in the gauge-string duality,” Nucl. Phys. B 790, 175 (2008), arXiv:hep-th/0612143.
[86] J., Casalderrey-Solana and D., Teaney, “Heavy quark diffusion in strongly coupled N = 4 Yang-Mills,” Phys. Rev. D 74, 085012 (2006), arXiv:hep-th/0605199.
[87] U., Gursoy, E., Kiritsis, L., Mazzanti, and F., Nitti, “Langevin diffusion of heavy quarks in non-conformal holographic backgrounds,” JHEP 1012, 088 (2010), arXiv:1006.3261 [hep-th].
[88] G. T., Horowitz and V. E., Hubeny, “Quasinormal modes of AdS black holes and the approach to thermal equilibrium,” Phys. Rev. D 62, 024027 (2000), arXiv:hepth/ 9909056.
[89] S. S., Gubser, “Breaking an Abelian gauge symmetry near a black hole horizon,” Phys. Rev. D 78, 065034 (2008), arXiv:0801.2977 [hep-th].
[90] S. A., Hartnoll, C. P., Herzog, and G. T., Horowitz, “Holographic superconductors,” JHEP 0812, 015 (2008), arXiv:0810.1563 [hep-th].
[91] G. T., Horowitz, J. E., Santos, and B.Way, “A holographic Josephson Junction,” Phys. Rev. Lett. 106, 221601 (2011), arXiv:1101.3326 [hep-th].
[92] S. K., Domokos, C., Hoyos, and J., Sonnenschein, “Holographic Josephson Junctions and Berry holonomy from D-branes,” JHEP 1210, 073 (2012), arXiv:1207.2182 [hep-th].
[93] K. S., Thorne, R. H., Price, and D. A., MacDonald, Black Holes: The Membrane Paradigm, Yale University Press, 1986.
[94] C., Eling, I., Fouxon, and Y., Oz, “The incompressible Navier-Stokes equations from membrane dynamics,” Phys. Lett. B 680, 496 (2009), arXiv:0905.3638 [hep-th].
[95] C., Eling and Y., Oz, “Relativistic CFT Hydrodynamics from the membrane paradigm,” JHEP 1002, 069 (2010), arXiv:0906.4999 [hep-th].
[96] C., Eling, I., Fouxon, and Y., Oz, “Gravity and a geometrization of turbulence: an intriguing correspondence,” arXiv:1004.2632 [hep-th].
[97] C., Eling, Y., Neiman, and Y., Oz, “Membrane paradigm and holographic hydrodynamics,” J. Phys. Conf. Ser. 314, 012032 (2011), arXiv:1012.2572 [hep-th].
[98] S., Bhattacharyya, S., Minwalla, and S. R., Wadia, “The incompressible nonrelativistic Navier-Stokes equation from gravity,” JHEP 0908, 059 (2009), arXiv:0810.1545 [hep-th].
[99] S., Bhattacharyya, V. E., Hubeny, S., Minwalla, and M., Rangamani, “Nonlinear fluid dynamics from gravity,” JHEP 0802, 045 (2008), arXiv:0712.2456 [hep-th].
[100] M. P., Heller, R. A., Janik, and R., Peschanski, “Hydrodynamic flow of the quarkgluon plasma and gauge/gravity correspondence,” Acta Phys. Polon. B 39, 3183 (2008), arXiv:0811.3113 [hep-th].
[101] I., Bredberg, C., Keeler, V., Lysov, and A., Strominger, “Wilsonian approach to fluid/gravity duality,” JHEP 1103, 141 (2011), arXiv:1006.1902 [hep-th].
[102] I., Bredberg, C., Keeler, V., Lysov, and A., Strominger, “From Navier-Stokes to Einstein,” JHEP 1207, 146 (2012), arXiv:1101.2451 [hep-th].
[103] E., Brezin, C., Itzykson, G., Parisi, and J. B., Zuber, “Planar diagrams,” Commun. Math. Phys. 59, 35 (1978). 600 References
[104] H., Lin, O., Lunin, and J. M., Maldacena, “Bubbling AdS space and 1/2 BPS geometries,” JHEP 0410, 025 (2004), arXiv:hep-th/0409174.
[105] M., Cubrovic, J., Zaanen, and K., Schalm, “String theory, quantum phase transitions and the emergent Fermi-Liquid,” Science 325, 439 (2009), arXiv:0904.1993 [hep-th].
[106] S. A., Hartnoll and A., Tavanfar, “Electron stars for holographic metallic criticality,” Phys. Rev. D 83, 046003 (2011), arXiv:1008.2828 [hep-th].
[107] J., de Boer, K., Papadodimas, and E., Verlinde, “Holographic neutron stars,” JHEP 1010, 020 (2010), arXiv:0907.2695 [hep-th].
[108] M., Cubrovic, Y., Liu, K., Schalm, Y. W., Sun, and J., Zaanen, “Spectral probes of the holographic Fermi groundstate: Dialing between the electron star and AdS Dirac hair,” Phys. Rev. D 84, 086002 (2011), arXiv:1106.1798 [hep-th].
[109] L., Susskind, “The Quantum Hall fluid and noncommutative Chern-Simons theory,” arXiv:hep-th/0101029.
[110] S., Hellerman and L., Susskind, “Realizing the quantum Hall system in string theory,” arXiv:hep-th/0107200.
[111] N., Seiberg and E., Witten, “String theory and noncommutative geometry,” JHEP 9909, 032 (1999), arXiv:hep-th/9908142.
[112] S., Ryu and T., Takayanagi, “Topological insulators and superconductors from Dbranes,” Phys. Lett. B 693, 175 (2010), arXiv:1001.0763 [hep-th].
[113] S., Ryu and T., Takayanagi, “Topological insulators and superconductors from string theory,” Phys. Rev. D 82, 086014 (2010), arXiv:1007.4234 [hep-th].
[114] M., Fujita, W., Li, S., Ryu, and T., Takayanagi, “Fractional quantum Hall effect via holography: Chern-Simons, edge states, and hierarchy,” JHEP 0906, 066 (2009), arXiv:0901.0924 [hep-th].
[115] Y., Hikida, W., Li, and T., Takayanagi, “ABJM with flavors and FQHE,” JHEP 0907, 065 (2009), arXiv:0903.2194 [hep-th].
[116] J., Murugan and H. Năstase, “On abelianizations of the ABJM model and applications to condensed matter,” Braz. J. Phys. 45, no. 4, 481 (2015), arXiv:1301.0229 [hep-th].
[117] O., Bergman, N., Jokela, G., Lifschytz, and M., Lippert, “Quantum Hall effect in a holographic model,” JHEP 1010, 063 (2010), arXiv:1003.4965 [hep-th].
[118] A., Mohammed, J., Murugan, and H., Năstase, “Abelian-Higgs and vortices from ABJM: Towards a string realization of AdS/CMT,” JHEP 1211, 073 (2012), arXiv:1206.7058 [hep-th].
[119] A., Mohammed, J., Murugan, and H., Nastase, “Towards a realization of the condensed-matter/gravity correspondence in string theory via consistent Abelian truncation,” Phys. Rev. Lett. 109, 181601 (2012), arXiv:1205.5833 [hep-th].
[120] J., Murugan, H. Năstase, N., Rughoonauth, and J. P., Shock, “Particle-vortex and Maxwell duality in the AdS4 × CP3/ABJM correspondence,” JHEP 1410, 51 (2014), arXiv:1404.5926 [hep-th].
[121] C. P., Burgess and B. P., Dolan, “Particle vortex duality and the modular group: Applications to the quantum Hall effect and other 2-D systems,” Phys. Rev. B 63, 155309 (2001), arXiv:hep-th/0010246.
[122] N., Doroud, D., Tong, and C., Turner, “On superconformal anyons,” JHEP 1601, 138 (2016), arXiv:1511.01491 [hep-th].
[123] K., Kang and H. Năstase, “Heisenberg saturation of the Froissart bound from AdSCFT,” Phys. Lett. B 624, 125 (2005), arXiv:hep-th/0501038.
[124] H., Năstase, “The RHIC fireball as a dual black hole,” arXiv:hep-th/0501068.
[125] H., Năstase, “DBI skyrmion, high energy (large s) scattering and fireball production,” arXiv:hep-th/0512171.
[126] H., Năstase, “A black hole solution of scalar field theory,” arXiv:hep-th/0702037.
[127] H., Năstase, “AdS-CFT and the RHIC fireball,” Prog. Theor. Phys. Suppl. 174, 274 (2008), arXiv:0805.3579 [hep-th].
[128] H., Năstase, “DBI scalar field theory for QGP hydrodynamics,” arXiv:1512.05257 [hep-th].
[129] S., Ryu and T., Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys. Rev. Lett. 96, 181602 (2006), arXiv:hep-th/0603001.
[130] S., Ryu and T., Takayanagi, “Aspects of holographic entanglement entropy,” JHEP 0608, 045 (2006), arXiv:hep-th/0605073.
[131] T., Nishioka, S., Ryu, and T., Takayanagi, “Holographic entanglement entropy: an overview,” J. Phys. A 42, 504008 (2009), arXiv:0905.0932 [hep-th].
[132] N., Ogawa, T., Takayanagi, and T., Ugajin, “Holographic Fermi surfaces and entanglement entropy,” JHEP 1201, 125 (2012), arXiv:1111.1023 [hep-th].
[133] L., Huijse, S., Sachdev, and B., Swingle, “Hidden Fermi surfaces in compressible states of gauge-gravity duality,” Phys. Rev. B 85, 035121 (2012), arXiv:1112.0573 [cond-mat.str-el].
[134] X., Dong, S., Harrison, S., Kachru, G., Torroba, and H., Wang, “Aspects of holography for theories with hyperscaling violation,” JHEP 1206, 041 (2012), arXiv:1201.1905 [hep-th].
[135] S. A., Hartnoll and C. P., Herzog, “Impure AdS/CFT correspondence,” Phys. Rev. D 77, 106009 (2008), arXiv:0801.1693 [hep-th].
[136] S. A., Hartnoll and D. M., Hofman, “Locally critical resistivities from Umklapp scattering,” Phys. Rev. Lett. 108, 241601 (2012), arXiv:1201.3917 [hep-th].
[137] G. T., Horowitz, J. E., Santos, and D., Tong, “Optical conductivity with holographic lattices,” JHEP 1207, 168 (2012), arXiv:1204.0519 [hep-th].
[138] G. T., Horowitz, J. E., Santos, and D., Tong, “Further evidence for lattice-induced scaling,” JHEP 1211, 102 (2012), arXiv:1209.1098 [hep-th].
[139] D., Vegh, “Holography without translational symmetry,” arXiv:1301.0537 [hep-th].
[140] M., Blake and D., Tong, “Universal resistivity from holographic massive gravity,” Phys. Rev. D 88, no. 10, 106004 (2013), arXiv:1308.4970 [hep-th].
[141] M., Blake, D., Tong, and D., Vegh, “Holographic lattices give the graviton an effective mass,” Phys. Rev. Lett. 112, no. 7, 071602 (2014), arXiv:1310.3832 [hep-th].
[142] A., Donos and S. A., Hartnoll, “Interaction-driven localization in holography,” Nature Phys. 9, 649 (2013), arXiv:1212.2998 [hep-th].
[143] S. A., Hartnoll, P. K., Kovtun, M., Muller, and S., Sachdev, “Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes,” Phys. Rev. B 76, 144502 (2007), arXiv:0706.3215 [cond-mat.str-el]. 602 References
[144] J., Zaanen, “Electrons go with the flow in exotic material systems,” Science 351, 1026 (2016).
[145] A. H., Castro Neto, F., Guinea, N. M. R., Peres, K. S., Novoselov, and A. K., Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009).
[146] R. A., Davison, K., Schalm, and J., Zaanen, “Holographic duality and the resistivity of strange metals,” Phys. Rev. B 89, no. 24, 245116 (2014), arXiv:1311.2451 [hep-th].
[147] S. A., Hartnoll, “Theory of universal incoherent metallic transport,” Nature Phys. 11, 54 (2015), arXiv:1405.3651 [cond-mat.str-el].
[148] C., Charmousis, B., Gouteraux, B. S., Kim, E., Kiritsis, and R., Meyer, “Effective holographic Theories for low-temperature condensed matter systems,” JHEP 1011, 151 (2010), arXiv:1005.4690 [hep-th].
[149] S., Sachdev, “Strange metals and the AdS/CFT correspondence,” J. Stat. Mech. 1011, P11022 (2010), arXiv:1010.0682 [cond-mat.str-el].
[150] S., Harrison, S., Kachru, and G., Torroba, “A maximally supersymmetric Kondo model,” Class. Quant. Grav. 29, 194005 (2012), arXiv:1110.5325 [hep-th].
[151] J., Erdmenger, M., Flory, C., Hoyos,M. N., Newrzella, A., O'Bannon, and J., Wu, “Holographic impurities and Kondo effect,” arXiv:1511.09362 [hep-th].

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.