[1] S. A., Hartnoll, “Lectures on holographic methods for condensed matter physics,” Class. Quant. Grav. 26, 224002 (2009), arXiv:0903.3246 [hep-th].
[2] N., Iqbal, H., Liu, and M., Mezei, “Lectures on holographic non-Fermi liquids and quantum phase transitions,” arXiv:1110.3814 [hep-th].
[3] C. P., Herzog, “Lectures on holographic superfluidity and superconductivity,” J. Phys. A 42, 343001 (2009), arXiv:0904.1975 [hep-th].
[4] J., McGreevy, “Holographic duality with a view toward many-body physics,” Adv. High Energy Phys. 2010, 723105 (2010), arXiv:0909.0518 [hep-th].
[5] J., Zaanen, Y. W., Sun, Y., Liu, and K., Schalm, Holographic Duality in Condensed Matter Physics, Cambridge University Press, 2016.
[6] C., Kittel, Introduction to Solid State Physics, John Wiley and Sons, 2005.
[7] P., Phillips, Advanced Solid State Physics, Westview Press, 2003.
[8] H., Năstase, Introduction to the AdS/CFT Correspondence, Cambridge University Press, 2015.
[9] L. D., Faddeev, “How algebraic Bethe ansatz works for integrable model,” arXiv:hepth/ 9605187.
[10] T. R., Klassen and E., Melzer, “The thermodynamics of purely elastic scattering theories and conformal perturbation theory,” Nucl. Phys. B 350, 635 (1991).
[11] J., Polchinski, String Theory, vol. I, Cambridge University Press, 2000.
[12] S., Sachdev, Quantum Phase Transitions, Cambridge University Press, 2011.
[13] G. V., Dunne, “Aspects of Chern-Simons theory,” arXiv:hep-th/9902115.
[14] A., Stern, “Anyons and the quantum Hall effect – A pedagogical review,” Ann. Phys. 323, 204 (2008).
[15] S., Rao, “An Anyon primer,” arXiv:hep-th/9209066.
[16] E., Witten, “Three lectures on topological phases of matter,” arXiv:1510.07698 [cond-mat.mes-hall].
[17] G. W., Moore and N., Read, “Nonabelions in the fractional quantum Hall effect,” Nucl. Phys. B 360, 362 (1991).
[18] X.-L., Qi and S.-C., Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys 83 (2011) 1057, arXiv:1008.2026 [cond-mat.mes-hall].
[19] X. L., Qi, E., Witten, and S. C., Zhang, “Axion topological field theory of topological superconductors,” Phys. Rev. B 87, 134519 (2013), arXiv:1206.1407 [cond-mat.supr-con].
[20] X. L., Qi, T., Hughes, and S. C., Zhang, “Topological field theory of timereversal invariant insulators,” Phys. Rev. B 78, 195424 (2008), arXiv:0802.3537 [cond-mat.mes-hall].
[21] P., Coleman, “Heavy fermions and the Kondo lattice: A 21st century perspective,” arXiv:1509.05769 [cond-mat.str-el].
[22] L. D., Landau and E. M., Lifshitz, Course of Theoretical Physics Course of Theoretical Physics, vol. 6, Fluid Mechanics Fluid Mechanics, 2nd ed., Elsevier, 1987.
[23] M., Rangamani, “Gravity and hydrodynamics: lectures on the fluid-gravity correspondence,” Class. Quant. Grav. 26, 224003 (2009), arXiv:0905.4352 [hep-th].
[24] V. E., Hubeny, S., Minwalla, and M., Rangamani, “The fluid-gravity correspondence,” arXiv:1107.5780 [hep-th].
[25] P. J. E., Peebles, Principles of Physical Cosmology, Princeton University Press, 1993.
[26] R. M., Wald, General Relativity, University of Chicago Press, 1984.
[27] C.W., Misner, K. S., Thorne, and J. A., Wheeler, Gravitation, Freeman and Co., 1973.
[28] S. W., Hawking and G. F. R., Ellis, The Large Scale Structure of Space-time, Cambridge University Press, 1973.
[29] S. W., Hawking, “Particle creation by black holes,” Commun. Math. Phys 43, 199 (1975), Commun. Math. Phys. 46, 206 (1976).
[30] J. M., Bardeen, B., Carter, and S. W., Hawking, “The four laws of black hole mechanics,” Commun. Math. Phys. 31, 161 (1973).
[31] M. J., Duff, B. E. W., Nilsson, and C. N., Pope, “Kaluza-Klein supergravity,” Phys. Rept. 130, 1 (1986).
[32] H., Năstase, D., Vaman, and P., van Nieuwenhuizen, “Consistency of the AdS(7) × S(4) reduction and the origin of selfduality in odd dimensions,” Nucl. Phys. B 581, 179 (2000), arXiv:hep-th/9911238.
[33] R. I., Nepomechie, “Magnetic monopoles from antisymmetric tensor gauge fields,” Phys. Rev. D 31, 1921 (1985).
[34 C., Teitelboim, “Gauge invariance for extended objects,” Phys. Lett. B 167, 63 (1986).
[35 C., Teitelboim, “Monopoles of higher rank,” Phys. Lett. B 167, 69 (1986).
[36] M. J., Duff, R. R., Khuri, and J. X., Lu, “String solitons,” Phys. Rept. 259, 213 (1995), arXiv:hep-th/9412184.
[37] A. A., Tseytlin, “Harmonic superpositions of M-branes,” Nucl. Phys. B 475, 149 (1996), arXiv:hep-th/9604035.
[38 M., Cvetic and A. A., Tseytlin, “Nonextreme black holes from nonextreme intersecting M-branes,” Nucl. Phys. B 478, 181 (1996), arXiv:hep-th/9606033.
[39] C. P., Burgess and F., Quevedo, “Bosonization as duality,” Nucl. Phys. B 421, 373 (1994), arXiv:hep-th/9401105.
[40 J., Murugan and H., Năstase, “A nonabelian particle-vortex duality,” Phys. Lett. B 753, 401 (2016), arXiv:1506.04090 [hep-th].
[41] L., Alvarez-Gaume and S. F., Hassan, “Introduction to S duality in N=2 supersymmetric gauge theories: A pedagogical review of the work of Seiberg and Witten,” Fortsch. Phys. 45, 159 (1997), arXiv:hep-th/9701069.
[42] M. B., Green, J. H., Schwarz, and E., Witten, Superstring Theory, Cambridge University Press, 1987.
[43] B., Zwiebach, A First Course in String Theory, Cambridge University Press, 2009.
[44] C., Johnson, D-Branes, Cambridge University Press, 2003.
[45] K., Becker, M., Becker, and J. H., Schwarz, String Theory and M-Theory, Cambridge University Press, 2007.
[46] M., Ammon and J., Erdmenger, Gauge/Gravity Duality: Foundations and Applications, Cambridge University Press, 2015.
[47] O., Aharony, S. S., Gubser, J.M.Maldacena, H., Ooguri, and Y., Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323, 183 (2000), arXiv:hep-th/9905111.
[48] J. M., Maldacena, “The large N limit of superconformal field theories and supergravity,” Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)], arXiv:hep-th/9711200.
[49] E., Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998), arXiv:hep-th/9802150.
[50] S. S., Gubser, I. R., Klebanov, and A. M., Polyakov, “Gauge theory correlators from noncritical string theory,” Phys. Lett. B 428, 105 (1998), arXiv:hep-th/9802109.
[51] D. E., Berenstein, J. M., Maldacena, and H. S. Năstase, “Strings in flat space and pp waves from N=4 superYang-Mills,” JHEP 0204, 013 (2002), arXiv:hep-th/0202021.
[52] J. C., Plefka, “Lectures on the plane wave string gauge theory duality,” Fortsch. Phys. 52, 264 (2004), arXiv:hep-th/0307171.
[53] J., Kowalski-Glikman, “Vacuum states in Supersymmetric Kaluza-Klein theory,” Phys. Lett. B 134, 194 (1984).
[54] R., Penrose, “Any spacetime has a plane wave as a limit,” Differential Geometry and Relativity, Reidel, 1974, pp. 271–275.
[55] M., Blau, J. M., Figueroa-O'Farrill, C., Hull, and G., Papadopoulos, “A new maximally supersymmetric background of IIB superstring theory,” JHEP 0201, 047 (2002), arXiv:hep-th/0110242.
[56] M., Blau, J. M., Figueroa-O'Farrill, C., Hull, and G., Papadopoulos, “Penrose limits and maximal supersymmetry,” Class. Quant. Grav. 19, L87 (2002), arXiv:hepth/ 0201081.
[57] P. C., Aichelburg and R. U., Sexl, “On the gravitational field of a massless particle,” Gen. Rel. Grav. 2, 303 (1971).
[58] G. T., Horowitz and A. R., Steif, “Space-time singularities in string theory,” Phys. Rev. Lett. 64, 260 (1990).
[59] J. A., Minahan and K., Zarembo, “The Bethe ansatz for N = 4 superYang-Mills,” JHEP 0303, 013 (2003), arXiv:hep-th/0212208.
[60] J., Plefka, “Spinning strings and integrable spin chains in the AdS/CFT correspondence,” Living Rev. Rel. 8, 9 (2005), arXiv:0507136 [hep-th].
[61] K., Zarembo, “Semiclassical Bethe ansatz and AdS/CFT,” Comptes Rendus Physique 5, 1081 (2004) [Fortsch. Phys. 53, 647 (2005)], arXiv:hep-th/0411191.
[62] M. F., Paulos, J., Penedones, J., Toledo, B. C. van Rees, and P., Vieira, “The S-matrix bootstrap I: QFT in AdS,” arXiv:1607.06109 [hep-th].
[63] D., Bernard, “An introduction to Yangian symmetries,” Int. J. Mod. Phys. B 7, 3517 (1993), arXiv:hep-th/9211133.
[64] L., Dolan, C. R., Nappi, and E., Witten, “Yangian symmetry in D = 4 superconformal Yang-Mills theory,” arXiv:hep-th/0401243.
[65] N., Beisert, V., Dippel, and M., Staudacher, “A novel long range spin chain and planar N = 4 super Yang-Mills,” JHEP 0407, 075 (2004), arXiv:hep-th/0405001.
[66] N., Beisert, “The SU(2–2) dynamic S-matrix,” Adv. Theor. Math. Phys. 12, 948 (2008), arXiv:hep-th/0511082.
[67] N., Beisert, B., Eden, and M., Staudacher, “Transcendentality and crossing,” J. Stat. Mech. 0701, P01021 (2007), arXiv:hep-th/0610251.
[68] S., Kachru, X., Liu, and M., Mulligan, “Gravity duals of Lifshitz-like fixed points,” Phys. Rev. D 78, 106005 (2008), arXiv:0808.1725 [hep-th].
[69] M., Taylor, “Non-relativistic holography,” arXiv:0812.0530 [hep-th].
[70] T., Griffin, P., Horava, and C. M., Melby-Thompson, “Lifshitz gravity for Lifshitz holography,” Phys. Rev. Lett. 110, no. 8, 081602 (2013), arXiv:1211.4872 [hep-th].
[71] C. P., Herzog, M., Rangamani, and S. F., Ross, “Heating up Galilean holography,” JHEP 0811, 080 (2008), arXiv:0807.1099 [hep-th].
[72] A., Adams, K., Balasubramanian, and J., McGreevy, “Hot spacetimes for cold atoms,” JHEP 0811, 059 (2008), arXiv:0807.1111 [hep-th].
[73] J., Maldacena, D., Martelli, and Y., Tachikawa, “Comments on string theory backgrounds with non-relativistic conformal symmetry,” JHEP 0810, 072 (2008), arXiv:0807.1100 [hep-th].
[74] D. T., Son, “Toward an AdS/cold atoms correspondence: A geometric realization of the Schrödinger symmetry,” Phys. Rev. D 78, 046003 (2008), arXiv:0804.3972 [hep-th].
[75] K., Balasubramanian and J., McGreevy, “Gravity duals for non-relativistic CFTs,” Phys. Rev. Lett. 101, 061601 (2008), arXiv:0804.4053 [hep-th].
[76] E., Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” Adv. Theor. Math. Phys. 2, 505 (1998), arXiv:hep-th/9803131.
[77] J., Casalderrey-Solana, H. Liu, D., Mateos, K., Rajagopal, and U. A., Wiedemann, “Gauge/string duality, hot QCD and heavy ion collisions,” arXiv:1101.0618 [hep-th].
[78] S. A., Hartnoll and P., Kovtun, “Hall conductivity from dyonic black holes,” Phys. Rev. D 76, 066001 (2007), arXiv:0704.1160 [hep-th].
[79] S. S., Gubser, A., Nellore, S. S., Pufu, and F. D., Rocha, “Thermodynamics and bulk viscosity of approximate black hole duals to finite temperature quantum chromodynamics,” Phys. Rev. Lett. 101, 131601 (2008), arXiv:0804.1950 [hep-th].
[80] O., DeWolfe, S. S., Gubser, and C., Rosen, “A holographic critical point,” Phys. Rev. D 83, 086005 (2011), arXiv:1012.1864 [hep-th].
[81] H. A., Chamblin and H. S., Reall, “Dynamic dilatonic domain walls,” Nucl. Phys. B 562, 133 (1999), arXiv:hep-th/9903225.
[82] D. T., Son and A. O., Starinets, “Minkowski space correlators in AdSCFT correspondence: Recipe and applications,” JHEP 0209, 042 (2002), arXiv:hep-th/0205051.
[83] N., Iqbal and H., Liu, “Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm,” Phys. Rev. D 79, 025023 (2009), arXiv:0809.3808 [hep-th].
[84] C., Lopez-Arcos, H., Nastase, F., Rojas, and J., Murugan, “Conductivity in the gravity dual to massive ABJM and the membrane paradigm,” JHEP 1401, 036 (2014), arXiv:1306.1263 [hep-th].
[85] S. S., Gubser, “Momentum fluctuations of heavy quarks in the gauge-string duality,” Nucl. Phys. B 790, 175 (2008), arXiv:hep-th/0612143.
[86] J., Casalderrey-Solana and D., Teaney, “Heavy quark diffusion in strongly coupled N = 4 Yang-Mills,” Phys. Rev. D 74, 085012 (2006), arXiv:hep-th/0605199.
[87] U., Gursoy, E., Kiritsis, L., Mazzanti, and F., Nitti, “Langevin diffusion of heavy quarks in non-conformal holographic backgrounds,” JHEP 1012, 088 (2010), arXiv:1006.3261 [hep-th].
[88] G. T., Horowitz and V. E., Hubeny, “Quasinormal modes of AdS black holes and the approach to thermal equilibrium,” Phys. Rev. D 62, 024027 (2000), arXiv:hepth/ 9909056.
[89] S. S., Gubser, “Breaking an Abelian gauge symmetry near a black hole horizon,” Phys. Rev. D 78, 065034 (2008), arXiv:0801.2977 [hep-th].
[90] S. A., Hartnoll, C. P., Herzog, and G. T., Horowitz, “Holographic superconductors,” JHEP 0812, 015 (2008), arXiv:0810.1563 [hep-th].
[91] G. T., Horowitz, J. E., Santos, and B.Way, “A holographic Josephson Junction,” Phys. Rev. Lett. 106, 221601 (2011), arXiv:1101.3326 [hep-th].
[92] S. K., Domokos, C., Hoyos, and J., Sonnenschein, “Holographic Josephson Junctions and Berry holonomy from D-branes,” JHEP 1210, 073 (2012), arXiv:1207.2182 [hep-th].
[93] K. S., Thorne, R. H., Price, and D. A., MacDonald, Black Holes: The Membrane Paradigm, Yale University Press, 1986.
[94] C., Eling, I., Fouxon, and Y., Oz, “The incompressible Navier-Stokes equations from membrane dynamics,” Phys. Lett. B 680, 496 (2009), arXiv:0905.3638 [hep-th].
[95] C., Eling and Y., Oz, “Relativistic CFT Hydrodynamics from the membrane paradigm,” JHEP 1002, 069 (2010), arXiv:0906.4999 [hep-th].
[96] C., Eling, I., Fouxon, and Y., Oz, “Gravity and a geometrization of turbulence: an intriguing correspondence,” arXiv:1004.2632 [hep-th].
[97] C., Eling, Y., Neiman, and Y., Oz, “Membrane paradigm and holographic hydrodynamics,” J. Phys. Conf. Ser. 314, 012032 (2011), arXiv:1012.2572 [hep-th].
[98] S., Bhattacharyya, S., Minwalla, and S. R., Wadia, “The incompressible nonrelativistic Navier-Stokes equation from gravity,” JHEP 0908, 059 (2009), arXiv:0810.1545 [hep-th].
[99] S., Bhattacharyya, V. E., Hubeny, S., Minwalla, and M., Rangamani, “Nonlinear fluid dynamics from gravity,” JHEP 0802, 045 (2008), arXiv:0712.2456 [hep-th].
[100] M. P., Heller, R. A., Janik, and R., Peschanski, “Hydrodynamic flow of the quarkgluon plasma and gauge/gravity correspondence,” Acta Phys. Polon. B 39, 3183 (2008), arXiv:0811.3113 [hep-th].
[101] I., Bredberg, C., Keeler, V., Lysov, and A., Strominger, “Wilsonian approach to fluid/gravity duality,” JHEP 1103, 141 (2011), arXiv:1006.1902 [hep-th].
[102] I., Bredberg, C., Keeler, V., Lysov, and A., Strominger, “From Navier-Stokes to Einstein,” JHEP 1207, 146 (2012), arXiv:1101.2451 [hep-th].
[103] E., Brezin, C., Itzykson, G., Parisi, and J. B., Zuber, “Planar diagrams,” Commun. Math. Phys. 59, 35 (1978). 600 References
[104] H., Lin, O., Lunin, and J. M., Maldacena, “Bubbling AdS space and 1/2 BPS geometries,” JHEP 0410, 025 (2004), arXiv:hep-th/0409174.
[105] M., Cubrovic, J., Zaanen, and K., Schalm, “String theory, quantum phase transitions and the emergent Fermi-Liquid,” Science 325, 439 (2009), arXiv:0904.1993 [hep-th].
[106] S. A., Hartnoll and A., Tavanfar, “Electron stars for holographic metallic criticality,” Phys. Rev. D 83, 046003 (2011), arXiv:1008.2828 [hep-th].
[107] J., de Boer, K., Papadodimas, and E., Verlinde, “Holographic neutron stars,” JHEP 1010, 020 (2010), arXiv:0907.2695 [hep-th].
[108] M., Cubrovic, Y., Liu, K., Schalm, Y. W., Sun, and J., Zaanen, “Spectral probes of the holographic Fermi groundstate: Dialing between the electron star and AdS Dirac hair,” Phys. Rev. D 84, 086002 (2011), arXiv:1106.1798 [hep-th].
[109] L., Susskind, “The Quantum Hall fluid and noncommutative Chern-Simons theory,” arXiv:hep-th/0101029.
[110] S., Hellerman and L., Susskind, “Realizing the quantum Hall system in string theory,” arXiv:hep-th/0107200.
[111] N., Seiberg and E., Witten, “String theory and noncommutative geometry,” JHEP 9909, 032 (1999), arXiv:hep-th/9908142.
[112] S., Ryu and T., Takayanagi, “Topological insulators and superconductors from Dbranes,” Phys. Lett. B 693, 175 (2010), arXiv:1001.0763 [hep-th].
[113] S., Ryu and T., Takayanagi, “Topological insulators and superconductors from string theory,” Phys. Rev. D 82, 086014 (2010), arXiv:1007.4234 [hep-th].
[114] M., Fujita, W., Li, S., Ryu, and T., Takayanagi, “Fractional quantum Hall effect via holography: Chern-Simons, edge states, and hierarchy,” JHEP 0906, 066 (2009), arXiv:0901.0924 [hep-th].
[115] Y., Hikida, W., Li, and T., Takayanagi, “ABJM with flavors and FQHE,” JHEP 0907, 065 (2009), arXiv:0903.2194 [hep-th].
[116] J., Murugan and H. Năstase, “On abelianizations of the ABJM model and applications to condensed matter,” Braz. J. Phys. 45, no. 4, 481 (2015), arXiv:1301.0229 [hep-th].
[117] O., Bergman, N., Jokela, G., Lifschytz, and M., Lippert, “Quantum Hall effect in a holographic model,” JHEP 1010, 063 (2010), arXiv:1003.4965 [hep-th].
[118] A., Mohammed, J., Murugan, and H., Năstase, “Abelian-Higgs and vortices from ABJM: Towards a string realization of AdS/CMT,” JHEP 1211, 073 (2012), arXiv:1206.7058 [hep-th].
[119] A., Mohammed, J., Murugan, and H., Nastase, “Towards a realization of the condensed-matter/gravity correspondence in string theory via consistent Abelian truncation,” Phys. Rev. Lett. 109, 181601 (2012), arXiv:1205.5833 [hep-th].
[120] J., Murugan, H. Năstase, N., Rughoonauth, and J. P., Shock, “Particle-vortex and Maxwell duality in the AdS4 × CP3/ABJM correspondence,” JHEP 1410, 51 (2014), arXiv:1404.5926 [hep-th].
[121] C. P., Burgess and B. P., Dolan, “Particle vortex duality and the modular group: Applications to the quantum Hall effect and other 2-D systems,” Phys. Rev. B 63, 155309 (2001), arXiv:hep-th/0010246.
[122] N., Doroud, D., Tong, and C., Turner, “On superconformal anyons,” JHEP 1601, 138 (2016), arXiv:1511.01491 [hep-th].
[123] K., Kang and H. Năstase, “Heisenberg saturation of the Froissart bound from AdSCFT,” Phys. Lett. B 624, 125 (2005), arXiv:hep-th/0501038.
[124] H., Năstase, “The RHIC fireball as a dual black hole,” arXiv:hep-th/0501068.
[125] H., Năstase, “DBI skyrmion, high energy (large s) scattering and fireball production,” arXiv:hep-th/0512171.
[126] H., Năstase, “A black hole solution of scalar field theory,” arXiv:hep-th/0702037.
[127] H., Năstase, “AdS-CFT and the RHIC fireball,” Prog. Theor. Phys. Suppl. 174, 274 (2008), arXiv:0805.3579 [hep-th].
[128] H., Năstase, “DBI scalar field theory for QGP hydrodynamics,” arXiv:1512.05257 [hep-th].
[129] S., Ryu and T., Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys. Rev. Lett. 96, 181602 (2006), arXiv:hep-th/0603001.
[130] S., Ryu and T., Takayanagi, “Aspects of holographic entanglement entropy,” JHEP 0608, 045 (2006), arXiv:hep-th/0605073.
[131] T., Nishioka, S., Ryu, and T., Takayanagi, “Holographic entanglement entropy: an overview,” J. Phys. A 42, 504008 (2009), arXiv:0905.0932 [hep-th].
[132] N., Ogawa, T., Takayanagi, and T., Ugajin, “Holographic Fermi surfaces and entanglement entropy,” JHEP 1201, 125 (2012), arXiv:1111.1023 [hep-th].
[133] L., Huijse, S., Sachdev, and B., Swingle, “Hidden Fermi surfaces in compressible states of gauge-gravity duality,” Phys. Rev. B 85, 035121 (2012), arXiv:1112.0573 [cond-mat.str-el].
[134] X., Dong, S., Harrison, S., Kachru, G., Torroba, and H., Wang, “Aspects of holography for theories with hyperscaling violation,” JHEP 1206, 041 (2012), arXiv:1201.1905 [hep-th].
[135] S. A., Hartnoll and C. P., Herzog, “Impure AdS/CFT correspondence,” Phys. Rev. D 77, 106009 (2008), arXiv:0801.1693 [hep-th].
[136] S. A., Hartnoll and D. M., Hofman, “Locally critical resistivities from Umklapp scattering,” Phys. Rev. Lett. 108, 241601 (2012), arXiv:1201.3917 [hep-th].
[137] G. T., Horowitz, J. E., Santos, and D., Tong, “Optical conductivity with holographic lattices,” JHEP 1207, 168 (2012), arXiv:1204.0519 [hep-th].
[138] G. T., Horowitz, J. E., Santos, and D., Tong, “Further evidence for lattice-induced scaling,” JHEP 1211, 102 (2012), arXiv:1209.1098 [hep-th].
[139] D., Vegh, “Holography without translational symmetry,” arXiv:1301.0537 [hep-th].
[140] M., Blake and D., Tong, “Universal resistivity from holographic massive gravity,” Phys. Rev. D 88, no. 10, 106004 (2013), arXiv:1308.4970 [hep-th].
[141] M., Blake, D., Tong, and D., Vegh, “Holographic lattices give the graviton an effective mass,” Phys. Rev. Lett. 112, no. 7, 071602 (2014), arXiv:1310.3832 [hep-th].
[142] A., Donos and S. A., Hartnoll, “Interaction-driven localization in holography,” Nature Phys. 9, 649 (2013), arXiv:1212.2998 [hep-th].
[143] S. A., Hartnoll, P. K., Kovtun, M., Muller, and S., Sachdev, “Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes,” Phys. Rev. B 76, 144502 (2007), arXiv:0706.3215 [cond-mat.str-el]. 602 References
[144] J., Zaanen, “Electrons go with the flow in exotic material systems,” Science 351, 1026 (2016).
[145] A. H., Castro Neto, F., Guinea, N. M. R., Peres, K. S., Novoselov, and A. K., Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009).
[146] R. A., Davison, K., Schalm, and J., Zaanen, “Holographic duality and the resistivity of strange metals,” Phys. Rev. B 89, no. 24, 245116 (2014), arXiv:1311.2451 [hep-th].
[147] S. A., Hartnoll, “Theory of universal incoherent metallic transport,” Nature Phys. 11, 54 (2015), arXiv:1405.3651 [cond-mat.str-el].
[148] C., Charmousis, B., Gouteraux, B. S., Kim, E., Kiritsis, and R., Meyer, “Effective holographic Theories for low-temperature condensed matter systems,” JHEP 1011, 151 (2010), arXiv:1005.4690 [hep-th].
[149] S., Sachdev, “Strange metals and the AdS/CFT correspondence,” J. Stat. Mech. 1011, P11022 (2010), arXiv:1010.0682 [cond-mat.str-el].
[150] S., Harrison, S., Kachru, and G., Torroba, “A maximally supersymmetric Kondo model,” Class. Quant. Grav. 29, 194005 (2012), arXiv:1110.5325 [hep-th].
[151] J., Erdmenger, M., Flory, C., Hoyos,M. N., Newrzella, A., O'Bannon, and J., Wu, “Holographic impurities and Kondo effect,” arXiv:1511.09362 [hep-th].