Skip to main content Accessibility help
×
  • Cited by 21
Publisher:
Cambridge University Press
Online publication date:
October 2017
Print publication year:
2017
Online ISBN:
9781316847978

Book description

The discovery of a duality between Anti-de Sitter spaces (AdS) and Conformal Field Theories (CFT) has led to major advances in our understanding of quantum field theory and quantum gravity. String theory methods and AdS/CFT correspondence maps provide new ways to think about difficult condensed matter problems. String theory methods based on the AdS/CFT correspondence allow us to transform problems so they have weak interactions and can be solved more easily. They can also help map problems to different descriptions, for instance mapping the description of a fluid using the Navier–Stokes equations to the description of an event horizon of a black hole using Einstein's equations. This textbook covers the applications of string theory methods and the mathematics of AdS/CFT to areas of condensed matter physics. Bridging the gap between string theory and condensed matter, this is a valuable textbook for students and researchers in both fields.

Reviews

'This book is an excellent reference for students willing to bridge the gap between condensed matter physics and gravity by using holography.'

Juan Maldacena - Institute for Advanced Study, New Jersey

'A nice survey of holographic techniques applied to condensed matter systems. It should provide a smooth entryway to novices desiring to work in this fascinating field.'

Diego Trancanelli - Universidade de São Paulo

'In this, his second book on applied string theory, Nastase gives a wonderfully telescopic account of one of the most exhilarating developments in the field: holographic condensed matter. In 48 chapters, he takes the reader from the very basics of condensed matter and string theory right up to the very latest progress. With a number of well-constructed exercises in addition to detailed computations, it has a little bit for everyone from graduate students of both high energy and condensed matter physics to seasoned researchers looking to expand their horizons.'

Jeff Murugan - University of Cape Town

'The gauge/gravity duality, which arose from studies in string theory in the late 1990s, is one of the most important modern tools to understand the behavior of quantum field theories at strong coupling. This book builds a bridge between the physics of condensed matter systems and the string theory ideas that can be used to understand them better. The book will be very useful both for students of condensed matter physics that want to apply the gauge/gravity duality to their field as well as for string theory students who want to understand better the connections between string theory and condensed matter systems.'

David Berenstein - University of California

'In this ambitious advanced textbook, Horaţiu Năstase, a member of the Institute for Theoretical Physics at the State University of São Paulo, Brazil, aims to introduce graduate students and researchers to the application of string theory to condensed-matter physics. String Theory Methods for Condensed Matter Physics assumes previous graduate coursework in quantum field theory and some knowledge of solid-state physics and general relativity. However, Năstase writes that he intends for the book to be accessible to readers who are just beginning to learn about string theory and its relation to condensed matter. Each chapter includes exercises and a summary of important concepts.'

Melinda Baldwin Source: Physics Today

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


References
[1] S. A., Hartnoll, “Lectures on holographic methods for condensed matter physics,” Class. Quant. Grav. 26, 224002 (2009 Google Scholar), arXiv:0903.3246 [hep-th].
[2] N., Iqbal, H., Liu, and M., Mezei Google Scholar, “Lectures on holographic non-Fermi liquids and quantum phase transitions,” arXiv:1110.3814 [hep-th].
[3] C. P., Herzog, “Lectures on holographic superfluidity and superconductivity,” J. Phys. A 42, 343001 (2009 Google Scholar), arXiv:0904.1975 [hep-th].
[4] J., McGreevy, “Holographic duality with a view toward many-body physics,” Adv. High Energy Phys. 2010, 723105 (2010 Google Scholar), arXiv:0909.0518 [hep-th].
[5] J., Zaanen, Y. W., Sun, Y., Liu, and K., Schalm, Holographic Duality in Condensed Matter Physics, Cambridge University Press, 2016 Google Scholar.
[6] C., Kittel, Introduction to Solid State Physics, John Wiley and Sons, 2005 Google Scholar.
[7] P., Phillips, Advanced Solid State Physics, Westview Press, 2003 Google Scholar.
[8] H., Năstase, Introduction to the AdS/CFT Correspondence, Cambridge University Press, 2015 Google Scholar.
[9] L. D., Faddeev Google Scholar, “How algebraic Bethe ansatz works for integrable model,” arXiv:hepth/ 9605187.
[10] T. R., Klassen and E., Melzer, “The thermodynamics of purely elastic scattering theories and conformal perturbation theory,” Nucl. Phys. B 350, 635 (1991 Google Scholar).
[11] J., Polchinski, String Theory, vol. I, Cambridge University Press, 2000 Google Scholar.
[12] S., Sachdev, Quantum Phase Transitions, Cambridge University Press, 2011 Google Scholar.
[13] G. V., Dunne Google Scholar, “Aspects of Chern-Simons theory,” arXiv:hep-th/9902115.
[14] A., Stern, “Anyons and the quantum Hall effect – A pedagogical review,” Ann. Phys. 323, 204 (2008 Google Scholar).
[15] S., Rao Google Scholar, “An Anyon primer,” arXiv:hep-th/9209066.
[16] E., Witten Google Scholar, “Three lectures on topological phases of matter,” arXiv:1510.07698 [cond-mat.mes-hall].
[17] G. W., Moore and N., Read, “Nonabelions in the fractional quantum Hall effect,” Nucl. Phys. B 360, 362 (1991 Google Scholar).
[18] X.-L., Qi and S.-C., Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys 83 (2011 CrossRef | Google Scholar) 1057, arXiv:1008.2026 [cond-mat.mes-hall].
[19] X. L., Qi, E., Witten, and S. C., Zhang, “Axion topological field theory of topological superconductors,” Phys. Rev. B 87, 134519 (2013 Google Scholar), arXiv:1206.1407 [cond-mat.supr-con].
[20] X. L., Qi, T., Hughes, and S. C., Zhang, “Topological field theory of timereversal invariant insulators,” Phys. Rev. B 78, 195424 (2008 Google Scholar), arXiv:0802.3537 [cond-mat.mes-hall].
[21] P., Coleman Google Scholar, “Heavy fermions and the Kondo lattice: A 21st century perspective,” arXiv:1509.05769 [cond-mat.str-el].
[22] L. D., Landau and E. M., Lifshitz, Course of Theoretical Physics Course of Theoretical Physics, vol. 6, Fluid Mechanics Fluid Mechanics, 2nd ed., Elsevier, 1987 Google Scholar.
[23] M., Rangamani, “Gravity and hydrodynamics: lectures on the fluid-gravity correspondence,” Class. Quant. Grav. 26, 224003 (2009 Google Scholar), arXiv:0905.4352 [hep-th].
[24] V. E., Hubeny, S., Minwalla, and M., Rangamani Google Scholar, “The fluid-gravity correspondence,” arXiv:1107.5780 [hep-th].
[25] P. J. E., Peebles, Principles of Physical Cosmology, Princeton University Press, 1993 Google Scholar.
[26] R. M., Wald, General Relativity, University of Chicago Press, 1984 Google Scholar.
[27] C.W., Misner, K. S., Thorne, and J. A., Wheeler, Gravitation, Freeman and Co., 1973 Google Scholar.
[28] S. W., Hawking and G. F. R., Ellis, The Large Scale Structure of Space-time, Cambridge University Press, 1973 Google Scholar.
[29] S. W., Hawking, “Particle creation by black holes,” Commun. Math. Phys 43, 199 (1975 Google Scholar), Commun. Math. Phys. 46, 206 (1976).
[30] J. M., Bardeen, B., Carter, and S. W., Hawking, “The four laws of black hole mechanics,” Commun. Math. Phys. 31, 161 (1973 Google Scholar).
[31] M. J., Duff, B. E. W., Nilsson, and C. N., Pope, “Kaluza-Klein supergravity,” Phys. Rept. 130, 1 (1986 Google Scholar).
[32] H., Năstase, D., Vaman, and P., van Nieuwenhuizen, “Consistency of the AdS(7) × S(4) reduction and the origin of selfduality in odd dimensions,” Nucl. Phys. B 581, 179 (2000 Google Scholar), arXiv:hep-th/9911238.
[33] R. I., Nepomechie, “Magnetic monopoles from antisymmetric tensor gauge fields,” Phys. Rev. D 31, 1921 (1985 Google Scholar).
[34 C., Teitelboim, “Gauge invariance for extended objects,” Phys. Lett. B 167, 63 (1986 Google Scholar).
[35 C., Teitelboim, “Monopoles of higher rank,” Phys. Lett. B 167, 69 (1986 Google Scholar).
[36] M. J., Duff, R. R., Khuri, and J. X., Lu, “String solitons,” Phys. Rept. 259, 213 (1995 Google Scholar), arXiv:hep-th/9412184.
[37] A. A., Tseytlin, “Harmonic superpositions of M-branes,” Nucl. Phys. B 475, 149 (1996 Google Scholar), arXiv:hep-th/9604035.
[38 M., Cvetic and A. A., Tseytlin, “Nonextreme black holes from nonextreme intersecting M-branes,” Nucl. Phys. B 478, 181 (1996 Google Scholar), arXiv:hep-th/9606033.
[39] C. P., Burgess and F., Quevedo, “Bosonization as duality,” Nucl. Phys. B 421, 373 (1994 Google Scholar), arXiv:hep-th/9401105.
[40 J., Murugan and H., Năstase, “A nonabelian particle-vortex duality,” Phys. Lett. B 753, 401 (2016 Google Scholar), arXiv:1506.04090 [hep-th].
[41] L., Alvarez-Gaume and S. F., Hassan, “Introduction to S duality in N=2 supersymmetric gauge theories: A pedagogical review of the work of Seiberg and Witten,” Fortsch. Phys. 45, 159 (1997 Google Scholar), arXiv:hep-th/9701069.
[42] M. B., Green, J. H., Schwarz, and E., Witten, Superstring Theory, Cambridge University Press, 1987 Google Scholar.
[43] B., Zwiebach, A First Course in String Theory, Cambridge University Press, 2009 Google Scholar.
[44] C., Johnson, D-Branes, Cambridge University Press, 2003 Google Scholar.
[45] K., Becker, M., Becker, and J. H., Schwarz, String Theory and M-Theory, Cambridge University Press, 2007 Google Scholar.
[46] M., Ammon and J., Erdmenger, Gauge/Gravity Duality: Foundations and Applications, Cambridge University Press, 2015 Google Scholar.
[47] O., Aharony, S. S., Gubser, J.M.Maldacena, H., Ooguri, and Y., Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323, 183 (2000 Google Scholar), arXiv:hep-th/9905111.
[48] J. M., Maldacena, “The large N limit of superconformal field theories and supergravity,” Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998 Google Scholar)], arXiv:hep-th/9711200.
[49] E., Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998 Google Scholar), arXiv:hep-th/9802150.
[50] S. S., Gubser, I. R., Klebanov, and A. M., Polyakov, “Gauge theory correlators from noncritical string theory,” Phys. Lett. B 428, 105 (1998 Google Scholar), arXiv:hep-th/9802109.
[51] D. E., Berenstein, J. M., Maldacena, and H. S. Năstase, “Strings in flat space and pp waves from N=4 superYang-Mills,” JHEP 0204, 013 (2002 Google Scholar), arXiv:hep-th/0202021.
[52] J. C., Plefka, “Lectures on the plane wave string gauge theory duality,” Fortsch. Phys. 52, 264 (2004 Google Scholar), arXiv:hep-th/0307171.
[53] J., Kowalski-Glikman, “Vacuum states in Supersymmetric Kaluza-Klein theory,” Phys. Lett. B 134, 194 (1984 Google Scholar).
[54] R., Penrose, “Any spacetime has a plane wave as a limit,” Differential Geometry and Relativity, Reidel, 1974 Google Scholar, pp. 271–275.
[55] M., Blau, J. M., Figueroa-O'Farrill, C., Hull, and G., Papadopoulos, “A new maximally supersymmetric background of IIB superstring theory,” JHEP 0201, 047 (2002 Google Scholar), arXiv:hep-th/0110242.
[56] M., Blau, J. M., Figueroa-O'Farrill, C., Hull, and G., Papadopoulos, “Penrose limits and maximal supersymmetry,” Class. Quant. Grav. 19, L87 (2002 Google Scholar), arXiv:hepth/ 0201081.
[57] P. C., Aichelburg and R. U., Sexl, “On the gravitational field of a massless particle,” Gen. Rel. Grav. 2, 303 (1971 Google Scholar).
[58] G. T., Horowitz and A. R., Steif, “Space-time singularities in string theory,” Phys. Rev. Lett. 64, 260 (1990 Google Scholar).
[59] J. A., Minahan and K., Zarembo, “The Bethe ansatz for N = 4 superYang-Mills,” JHEP 0303, 013 (2003 Google Scholar), arXiv:hep-th/0212208.
[60] J., Plefka, “Spinning strings and integrable spin chains in the AdS/CFT correspondence,” Living Rev. Rel. 8, 9 (2005 Google Scholar), arXiv:0507136 [hep-th].
[61] K., Zarembo, “Semiclassical Bethe ansatz and AdS/CFT,” Comptes Rendus Physique 5, 1081 (2004) [Fortsch. Phys. 53, 647 (2005 Google Scholar)], arXiv:hep-th/0411191.
[62] M. F., Paulos, J., Penedones, J., Toledo, B. C. van Rees, and P., Vieira Google Scholar, “The S-matrix bootstrap I: QFT in AdS,” arXiv:1607.06109 [hep-th].
[63] D., Bernard, “An introduction to Yangian symmetries,” Int. J. Mod. Phys. B 7, 3517 (1993 Google Scholar), arXiv:hep-th/9211133.
[64] L., Dolan, C. R., Nappi, and E., Witten Google Scholar, “Yangian symmetry in D = 4 superconformal Yang-Mills theory,” arXiv:hep-th/0401243.
[65] N., Beisert, V., Dippel, and M., Staudacher, “A novel long range spin chain and planar N = 4 super Yang-Mills,” JHEP 0407, 075 (2004 Google Scholar), arXiv:hep-th/0405001.
[66] N., Beisert, “The SU(2–2) dynamic S-matrix,” Adv. Theor. Math. Phys. 12, 948 (2008 Google Scholar), arXiv:hep-th/0511082.
[67] N., Beisert, B., Eden, and M., Staudacher, “Transcendentality and crossing,” J. Stat. Mech. 0701, P01021 (2007 Google Scholar), arXiv:hep-th/0610251.
[68] S., Kachru, X., Liu, and M., Mulligan, “Gravity duals of Lifshitz-like fixed points,” Phys. Rev. D 78, 106005 (2008 Google Scholar), arXiv:0808.1725 [hep-th].
[69] M., Taylor Google Scholar, “Non-relativistic holography,” arXiv:0812.0530 [hep-th].
[70] T., Griffin, P., Horava, and C. M., Melby-Thompson, “Lifshitz gravity for Lifshitz holography,” Phys. Rev. Lett. 110, no. 8, 081602 (2013 Google Scholar), arXiv:1211.4872 [hep-th].
[71] C. P., Herzog, M., Rangamani, and S. F., Ross, “Heating up Galilean holography,” JHEP 0811, 080 (2008 Google Scholar), arXiv:0807.1099 [hep-th].
[72] A., Adams, K., Balasubramanian, and J., McGreevy, “Hot spacetimes for cold atoms,” JHEP 0811, 059 (2008 Google Scholar), arXiv:0807.1111 [hep-th].
[73] J., Maldacena, D., Martelli, and Y., Tachikawa, “Comments on string theory backgrounds with non-relativistic conformal symmetry,” JHEP 0810, 072 (2008 Google Scholar), arXiv:0807.1100 [hep-th].
[74] D. T., Son, “Toward an AdS/cold atoms correspondence: A geometric realization of the Schrödinger symmetry,” Phys. Rev. D 78, 046003 (2008 Google Scholar), arXiv:0804.3972 [hep-th].
[75] K., Balasubramanian and J., McGreevy, “Gravity duals for non-relativistic CFTs,” Phys. Rev. Lett. 101, 061601 (2008 Google Scholar), arXiv:0804.4053 [hep-th].
[76] E., Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” Adv. Theor. Math. Phys. 2, 505 (1998 Google Scholar), arXiv:hep-th/9803131.
[77] J., Casalderrey-Solana, H. Liu, D., Mateos, K., Rajagopal, and U. A., Wiedemann Google Scholar, “Gauge/string duality, hot QCD and heavy ion collisions,” arXiv:1101.0618 [hep-th].
[78] S. A., Hartnoll and P., Kovtun, “Hall conductivity from dyonic black holes,” Phys. Rev. D 76, 066001 (2007 Google Scholar), arXiv:0704.1160 [hep-th].
[79] S. S., Gubser, A., Nellore, S. S., Pufu, and F. D., Rocha, “Thermodynamics and bulk viscosity of approximate black hole duals to finite temperature quantum chromodynamics,” Phys. Rev. Lett. 101, 131601 (2008 Google Scholar), arXiv:0804.1950 [hep-th].
[80] O., DeWolfe, S. S., Gubser, and C., Rosen, “A holographic critical point,” Phys. Rev. D 83, 086005 (2011 Google Scholar), arXiv:1012.1864 [hep-th].
[81] H. A., Chamblin and H. S., Reall, “Dynamic dilatonic domain walls,” Nucl. Phys. B 562, 133 (1999 Google Scholar), arXiv:hep-th/9903225.
[82] D. T., Son and A. O., Starinets, “Minkowski space correlators in AdSCFT correspondence: Recipe and applications,” JHEP 0209, 042 (2002 Google Scholar), arXiv:hep-th/0205051.
[83] N., Iqbal and H., Liu, “Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm,” Phys. Rev. D 79, 025023 (2009 Google Scholar), arXiv:0809.3808 [hep-th].
[84] C., Lopez-Arcos, H., Nastase, F., Rojas, and J., Murugan, “Conductivity in the gravity dual to massive ABJM and the membrane paradigm,” JHEP 1401, 036 (2014 Google Scholar), arXiv:1306.1263 [hep-th].
[85] S. S., Gubser, “Momentum fluctuations of heavy quarks in the gauge-string duality,” Nucl. Phys. B 790, 175 (2008 Google Scholar), arXiv:hep-th/0612143.
[86] J., Casalderrey-Solana and D., Teaney, “Heavy quark diffusion in strongly coupled N = 4 Yang-Mills,” Phys. Rev. D 74, 085012 (2006 Google Scholar), arXiv:hep-th/0605199.
[87] U., Gursoy, E., Kiritsis, L., Mazzanti, and F., Nitti, “Langevin diffusion of heavy quarks in non-conformal holographic backgrounds,” JHEP 1012, 088 (2010 Google Scholar), arXiv:1006.3261 [hep-th].
[88] G. T., Horowitz and V. E., Hubeny, “Quasinormal modes of AdS black holes and the approach to thermal equilibrium,” Phys. Rev. D 62, 024027 (2000 Google Scholar), arXiv:hepth/ 9909056.
[89] S. S., Gubser, “Breaking an Abelian gauge symmetry near a black hole horizon,” Phys. Rev. D 78, 065034 (2008 Google Scholar), arXiv:0801.2977 [hep-th].
[90] S. A., Hartnoll, C. P., Herzog, and G. T., Horowitz, “Holographic superconductors,” JHEP 0812, 015 (2008 Google Scholar), arXiv:0810.1563 [hep-th].
[91] G. T., Horowitz, J. E., Santos, and B.Way, “A holographic Josephson Junction,” Phys. Rev. Lett. 106, 221601 (2011 Google Scholar), arXiv:1101.3326 [hep-th].
[92] S. K., Domokos, C., Hoyos, and J., Sonnenschein, “Holographic Josephson Junctions and Berry holonomy from D-branes,” JHEP 1210, 073 (2012 Google Scholar), arXiv:1207.2182 [hep-th].
[93] K. S., Thorne, R. H., Price, and D. A., MacDonald, Black Holes: The Membrane Paradigm, Yale University Press, 1986 Google Scholar.
[94] C., Eling, I., Fouxon, and Y., Oz, “The incompressible Navier-Stokes equations from membrane dynamics,” Phys. Lett. B 680, 496 (2009 Google Scholar), arXiv:0905.3638 [hep-th].
[95] C., Eling and Y., Oz, “Relativistic CFT Hydrodynamics from the membrane paradigm,” JHEP 1002, 069 (2010 Google Scholar), arXiv:0906.4999 [hep-th].
[96] C., Eling, I., Fouxon, and Y., Oz Google Scholar, “Gravity and a geometrization of turbulence: an intriguing correspondence,” arXiv:1004.2632 [hep-th].
[97] C., Eling, Y., Neiman, and Y., Oz, “Membrane paradigm and holographic hydrodynamics,” J. Phys. Conf. Ser. 314, 012032 (2011 Google Scholar), arXiv:1012.2572 [hep-th].
[98] S., Bhattacharyya, S., Minwalla, and S. R., Wadia, “The incompressible nonrelativistic Navier-Stokes equation from gravity,” JHEP 0908, 059 (2009 Google Scholar), arXiv:0810.1545 [hep-th].
[99] S., Bhattacharyya, V. E., Hubeny, S., Minwalla, and M., Rangamani, “Nonlinear fluid dynamics from gravity,” JHEP 0802, 045 (2008 Google Scholar), arXiv:0712.2456 [hep-th].
[100] M. P., Heller, R. A., Janik, and R., Peschanski, “Hydrodynamic flow of the quarkgluon plasma and gauge/gravity correspondence,” Acta Phys. Polon. B 39, 3183 (2008 Google Scholar), arXiv:0811.3113 [hep-th].
[101] I., Bredberg, C., Keeler, V., Lysov, and A., Strominger, “Wilsonian approach to fluid/gravity duality,” JHEP 1103, 141 (2011 Google Scholar), arXiv:1006.1902 [hep-th].
[102] I., Bredberg, C., Keeler, V., Lysov, and A., Strominger, “From Navier-Stokes to Einstein,” JHEP 1207, 146 (2012 Google Scholar), arXiv:1101.2451 [hep-th].
[103] E., Brezin, C., Itzykson, G., Parisi, and J. B., Zuber, “Planar diagrams,” Commun. Math. Phys. 59, 35 (1978 Google Scholar). 600 References
[104] H., Lin, O., Lunin, and J. M., Maldacena, “Bubbling AdS space and 1/2 BPS geometries,” JHEP 0410, 025 (2004 Google Scholar), arXiv:hep-th/0409174.
[105] M., Cubrovic, J., Zaanen, and K., Schalm, “String theory, quantum phase transitions and the emergent Fermi-Liquid,” Science 325, 439 (2009 Google Scholar), arXiv:0904.1993 [hep-th].
[106] S. A., Hartnoll and A., Tavanfar, “Electron stars for holographic metallic criticality,” Phys. Rev. D 83, 046003 (2011 Google Scholar), arXiv:1008.2828 [hep-th].
[107] J., de Boer, K., Papadodimas, and E., Verlinde, “Holographic neutron stars,” JHEP 1010, 020 (2010 Google Scholar), arXiv:0907.2695 [hep-th].
[108] M., Cubrovic, Y., Liu, K., Schalm, Y. W., Sun, and J., Zaanen, “Spectral probes of the holographic Fermi groundstate: Dialing between the electron star and AdS Dirac hair,” Phys. Rev. D 84, 086002 (2011 Google Scholar), arXiv:1106.1798 [hep-th].
[109] L., Susskind Google Scholar, “The Quantum Hall fluid and noncommutative Chern-Simons theory,” arXiv:hep-th/0101029.
[110] S., Hellerman and L., Susskind Google Scholar, “Realizing the quantum Hall system in string theory,” arXiv:hep-th/0107200.
[111] N., Seiberg and E., Witten, “String theory and noncommutative geometry,” JHEP 9909, 032 (1999 Google Scholar), arXiv:hep-th/9908142.
[112] S., Ryu and T., Takayanagi, “Topological insulators and superconductors from Dbranes,” Phys. Lett. B 693, 175 (2010 Google Scholar), arXiv:1001.0763 [hep-th].
[113] S., Ryu and T., Takayanagi, “Topological insulators and superconductors from string theory,” Phys. Rev. D 82, 086014 (2010 Google Scholar), arXiv:1007.4234 [hep-th].
[114] M., Fujita, W., Li, S., Ryu, and T., Takayanagi, “Fractional quantum Hall effect via holography: Chern-Simons, edge states, and hierarchy,” JHEP 0906, 066 (2009 Google Scholar), arXiv:0901.0924 [hep-th].
[115] Y., Hikida, W., Li, and T., Takayanagi, “ABJM with flavors and FQHE,” JHEP 0907, 065 (2009 Google Scholar), arXiv:0903.2194 [hep-th].
[116] J., Murugan and H. Năstase, “On abelianizations of the ABJM model and applications to condensed matter,” Braz. J. Phys. 45, no. 4, 481 (2015 Google Scholar), arXiv:1301.0229 [hep-th].
[117] O., Bergman, N., Jokela, G., Lifschytz, and M., Lippert, “Quantum Hall effect in a holographic model,” JHEP 1010, 063 (2010 Google Scholar), arXiv:1003.4965 [hep-th].
[118] A., Mohammed, J., Murugan, and H., Năstase, “Abelian-Higgs and vortices from ABJM: Towards a string realization of AdS/CMT,” JHEP 1211, 073 (2012 Google Scholar), arXiv:1206.7058 [hep-th].
[119] A., Mohammed, J., Murugan, and H., Nastase, “Towards a realization of the condensed-matter/gravity correspondence in string theory via consistent Abelian truncation,” Phys. Rev. Lett. 109, 181601 (2012 Google Scholar), arXiv:1205.5833 [hep-th].
[120] J., Murugan, H. Năstase, N., Rughoonauth, and J. P., Shock, “Particle-vortex and Maxwell duality in the AdS4 × CP3/ABJM correspondence,” JHEP 1410, 51 (2014 Google Scholar), arXiv:1404.5926 [hep-th].
[121] C. P., Burgess and B. P., Dolan, “Particle vortex duality and the modular group: Applications to the quantum Hall effect and other 2-D systems,” Phys. Rev. B 63, 155309 (2001 Google Scholar), arXiv:hep-th/0010246.
[122] N., Doroud, D., Tong, and C., Turner, “On superconformal anyons,” JHEP 1601, 138 (2016 Google Scholar), arXiv:1511.01491 [hep-th].
[123] K., Kang and H. Năstase, “Heisenberg saturation of the Froissart bound from AdSCFT,” Phys. Lett. B 624, 125 (2005 Google Scholar), arXiv:hep-th/0501038.
[124] H., Năstase Google Scholar, “The RHIC fireball as a dual black hole,” arXiv:hep-th/0501068.
[125] H., Năstase Google Scholar, “DBI skyrmion, high energy (large s) scattering and fireball production,” arXiv:hep-th/0512171.
[126] H., Năstase Google Scholar, “A black hole solution of scalar field theory,” arXiv:hep-th/0702037.
[127] H., Năstase, “AdS-CFT and the RHIC fireball,” Prog. Theor. Phys. Suppl. 174, 274 (2008 Google Scholar), arXiv:0805.3579 [hep-th].
[128] H., Năstase Google Scholar, “DBI scalar field theory for QGP hydrodynamics,” arXiv:1512.05257 [hep-th].
[129] S., Ryu and T., Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys. Rev. Lett. 96, 181602 (2006 Google Scholar), arXiv:hep-th/0603001.
[130] S., Ryu and T., Takayanagi, “Aspects of holographic entanglement entropy,” JHEP 0608, 045 (2006 Google Scholar), arXiv:hep-th/0605073.
[131] T., Nishioka, S., Ryu, and T., Takayanagi, “Holographic entanglement entropy: an overview,” J. Phys. A 42, 504008 (2009 Google Scholar), arXiv:0905.0932 [hep-th].
[132] N., Ogawa, T., Takayanagi, and T., Ugajin, “Holographic Fermi surfaces and entanglement entropy,” JHEP 1201, 125 (2012 Google Scholar), arXiv:1111.1023 [hep-th].
[133] L., Huijse, S., Sachdev, and B., Swingle, “Hidden Fermi surfaces in compressible states of gauge-gravity duality,” Phys. Rev. B 85, 035121 (2012 Google Scholar), arXiv:1112.0573 [cond-mat.str-el].
[134] X., Dong, S., Harrison, S., Kachru, G., Torroba, and H., Wang, “Aspects of holography for theories with hyperscaling violation,” JHEP 1206, 041 (2012 Google Scholar), arXiv:1201.1905 [hep-th].
[135] S. A., Hartnoll and C. P., Herzog, “Impure AdS/CFT correspondence,” Phys. Rev. D 77, 106009 (2008 Google Scholar), arXiv:0801.1693 [hep-th].
[136] S. A., Hartnoll and D. M., Hofman, “Locally critical resistivities from Umklapp scattering,” Phys. Rev. Lett. 108, 241601 (2012 Google Scholar), arXiv:1201.3917 [hep-th].
[137] G. T., Horowitz, J. E., Santos, and D., Tong, “Optical conductivity with holographic lattices,” JHEP 1207, 168 (2012 Google Scholar), arXiv:1204.0519 [hep-th].
[138] G. T., Horowitz, J. E., Santos, and D., Tong, “Further evidence for lattice-induced scaling,” JHEP 1211, 102 (2012 Google Scholar), arXiv:1209.1098 [hep-th].
[139] D., Vegh Google Scholar, “Holography without translational symmetry,” arXiv:1301.0537 [hep-th].
[140] M., Blake and D., Tong, “Universal resistivity from holographic massive gravity,” Phys. Rev. D 88, no. 10, 106004 (2013 Google Scholar), arXiv:1308.4970 [hep-th].
[141] M., Blake, D., Tong, and D., Vegh, “Holographic lattices give the graviton an effective mass,” Phys. Rev. Lett. 112, no. 7, 071602 (2014 Google Scholar), arXiv:1310.3832 [hep-th].
[142] A., Donos and S. A., Hartnoll, “Interaction-driven localization in holography,” Nature Phys. 9, 649 (2013 Google Scholar), arXiv:1212.2998 [hep-th].
[143] S. A., Hartnoll, P. K., Kovtun, M., Muller, and S., Sachdev, “Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes,” Phys. Rev. B 76, 144502 (2007 Google Scholar), arXiv:0706.3215 [cond-mat.str-el]. 602 References
[144] J., Zaanen, “Electrons go with the flow in exotic material systems,” Science 351, 1026 (2016 Google Scholar).
[145] A. H., Castro Neto, F., Guinea, N. M. R., Peres, K. S., Novoselov, and A. K., Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009 Google Scholar).
[146] R. A., Davison, K., Schalm, and J., Zaanen, “Holographic duality and the resistivity of strange metals,” Phys. Rev. B 89, no. 24, 245116 (2014 Google Scholar), arXiv:1311.2451 [hep-th].
[147] S. A., Hartnoll, “Theory of universal incoherent metallic transport,” Nature Phys. 11, 54 (2015 Google Scholar), arXiv:1405.3651 [cond-mat.str-el].
[148] C., Charmousis, B., Gouteraux, B. S., Kim, E., Kiritsis, and R., Meyer, “Effective holographic Theories for low-temperature condensed matter systems,” JHEP 1011, 151 (2010 Google Scholar), arXiv:1005.4690 [hep-th].
[149] S., Sachdev, “Strange metals and the AdS/CFT correspondence,” J. Stat. Mech. 1011, P11022 (2010 Google Scholar), arXiv:1010.0682 [cond-mat.str-el].
[150] S., Harrison, S., Kachru, and G., Torroba, “A maximally supersymmetric Kondo model,” Class. Quant. Grav. 29, 194005 (2012 Google Scholar), arXiv:1110.5325 [hep-th].
[151] J., Erdmenger, M., Flory, C., Hoyos,M. N., Newrzella, A., O'Bannon, and J., Wu Google Scholar, “Holographic impurities and Kondo effect,” arXiv:1511.09362 [hep-th].

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 18409 *
Loading metrics...

Book summary page views

Total views: 11519 *
Loading metrics...

* Views captured on Cambridge Core between 26th October 2017 - 3rd April 2025. This data will be updated every 24 hours.

Usage data cannot currently be displayed.