Skip to main content Accessibility help
×
  • Cited by 131
Publisher:
Cambridge University Press
Online publication date:
June 2011
Print publication year:
1992
Online ISBN:
9780511564000

Book description

This is an updated and expanded second edition of a successful and well-reviewed text presenting a detailed exposition of the modern theory of supermanifolds, including a rigorous account of the super-analogs of all the basic structures of ordinary manifold theory. The exposition opens with the theory of analysis over supernumbers (Grassman variables), Berezin integration, supervector spaces and the superdeterminant. This basic material is then applied to the theory of supermanifolds, with an account of super-analogs of Lie derivatives, connections, metric, curvature, geodesics, Killing flows, conformal groups, etc. The book goes on to discuss the theory of super Lie groups, super Lie algebras, and invariant geometrical structures on coset spaces. Complete descriptions are given of all the simple super Lie groups. The book then turns to applications. Chapter 5 contains an account of the Peierals bracket for superclassical dynamical systems, super Hilbert spaces, path integration for fermionic quantum systems, and simple models of Bose–Fermi supersymmetry. The sixth and final chapter, which is new in this revised edition, examines dynamical systems for which the topology of the configuration supermanifold is important. A concise but complete account is given of the pathintegral derivation of the Chern–Gauss–Bonnet formula for the Euler–Poincaré characteristic of an ordinary manifold, which is based on a simple extension of a point particle moving freely in this manifold to a supersymmetric dynamical system moving in an associated supermanifold. Many exercises are included to complement the text.

Reviews

‘Supermanifolds is destined to become the standard work for all serious study of super-symmetric theories of physics.’

Source: Nature

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.