Skip to main content Accessibility help
×
  • Cited by 75
Publisher:
Cambridge University Press
Online publication date:
September 2012
Print publication year:
2012
Online ISBN:
9781139248563

Book description

Twenty-five years ago, Michael Green, John Schwarz, and Edward Witten wrote two volumes on string theory. Published during a period of rapid progress in this subject, these volumes were highly influential for a generation of students and researchers. Despite the immense progress that has been made in the field since then, the systematic exposition of the foundations of superstring theory presented in these volumes is just as relevant today as when first published. A self-contained introduction to superstrings, Volume 1 begins with an elementary treatment of the bosonic string, before describing the incorporation of additional degrees of freedom: fermionic degrees of freedom leading to supersymmetry and internal quantum numbers leading to gauge interactions. A detailed discussion of the evaluation of tree-approximation scattering amplitudes is also given. Featuring a new preface setting the work in context in light of recent advances, this book is invaluable for graduate students and researchers in general relativity and elementary particle theory.

Reviews

‘Both volumes of Superstring Theory are likely to remain standard reference works for years to come.'

Paul K. Townsend Source: Nature

'… these books still belong on the essential reading list for anyone wanting to gain a deep understanding of the subject.'

Douglas J. Smith Source: Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
1. Ademollo, M., Rubinstein, H.R., Veneziano, G. and Virasoro, M.A. (1968), ‘Bootstrap of meson trajectories from superconvergence’, Phys. Rev. 176, 1904 CrossRef | Google Scholar.
2. Ademollo, M., Veneziano, G. and Weinberg, S. (1969), ‘Quantization conditions for Regge intercepts and hadron masses’, Phys. Rev. Lett. 22 CrossRef | Google Scholar, 83.
3. Ademollo, M., Del Giudice, E., Di Vecchia, P. and Fubini, S. (1974), 'Couplings of three excited particles in the dual-resonance model', Nuovo Cim. 19A CrossRef | Google Scholar, 181.
4. Ademollo, M., D'Adda, A., D'Auria, R., Napolitano, E., Sciuto, S., Di Vecchia, P., Gliozzi, F., Musto, R. and Nicodemi, F. (1974), ‘Theory of an interacting string and dual-resonance model’, Nuovo Cim. 21A CrossRef | Google Scholar, 77.
5. Ademollo, M., Brink, L., D'Adda, A., D'Auria, R., Napolitano, E., Sciuto, S., Del Giudice, E., Di Vecchia, P., Ferrara, S., Gliozzi, F., Musto, R., Pettorini, R. and Schwarz, J. (1976), ‘Dual string with U(l) colour symmetry’, Nucl. Phys. B111 CrossRef | Google Scholar, 77.
6. Ademollo, M., Brink, L., D'Adda, A., D'Auria, R., Napolitano, E., Sciuto, S., Del Giudice, E., Di Vecchia, P., Ferrara, S., Gliozzi, F., Musto, R. and Pettorino, R. (1976), ‘Dual string models with nonAbelian colour and flavour symmetries’, Nucl. Phys. B114 CrossRef | Google Scholar, 297.
7. Ademollo, M., Brink, L., D'Adda, A., D'Auria, R., Napolitano, E., Sciuto, S., Del Giudice, E., Di Vecchia, P., Ferrara, S., Gliozzi, F., Musto, R., and Pettorino, R. (1976), ‘Supersymmetric strings and color confinement’, Phys. Lett. 62B CrossRef | Google Scholar, 105.
8. Affleck, Ian. (1985), ‘Critical behavior of two-dimensional systems with continuous symmetries’, Phys. Rev. Lett. 55 CrossRef | Google Scholar | PubMed, 1355.
9. Aharonov, Y., Casher, A. and Susskind, L. (1971), ‘Dual-parton model for mesons and baryons’, Phys. Lett. 35B CrossRef | Google Scholar, 512.
10. Aharonov, Y., Casher, A. and Susskind, L. (1972), ‘Spin-½ partons in a dual model of hadrons’, Phys. Rev. D5 Google Scholar, 988.
11. Alessandrini, V., Amati, D., Le Bellac, M. and Olive, D. (1970), ‘Duality and gauge properties of twisted propagators in multi-Veneziano theory’, Phys. Lett. 32B CrossRef | Google Scholar, 285.
12. Alessandrini, V., Amati, D., Le Bellac, M. and Olive, D. (1971), ‘The operator approach to dual multiparticle theory’, Phys. Reports Cl CrossRef | Google Scholar, 269.
13. Altschüler, D. and Nilles, H.P. (1985), ‘String models with lower critical dimension, compactification and nonabelian symmetries’, Phys. Lett. 154B CrossRef | Google Scholar, 135.
14. Alvarez, E. (1986), ‘Strings at finite temperature’, Nucl. Phys. B269 CrossRef | Google Scholar, 596.
15. Alvarez, O. (1983), ‘Theory of strings with boundaries: Fluctuations, topology and quantum geometry’, Nucl. Phys. B216 CrossRef | Google Scholar, 125.
16. Alvarez, O. (1986), ‘Differential geometry in string models’, in Workshop on Unified String Theories, 29 July – 16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore Google Scholar), p. 103.
17. Alvarez-Gaumé, L. and Freedman, D.Z. (1980), ‘Kahler geometry and the renormalization of supersymmetric σ models’, Phys. Rev. D22 Google Scholar, 846.
18. Alvarez-Gaumé, L. and Freedman, D.Z. (1980), ‘Geometrical structure and ultraviolet finiteness in the supersymmetric σ-model’, Commun. Math. Phys. 80 CrossRef | Google Scholar, 443.
19. Alvarez-Gaumé, L., Freedman, D.Z. and Mukhi, S. (1981), ‘The background field method and the ultraviolet structure of the supersymmetric nonlinear σ-model’, Ann. Phys. 134 CrossRef | Google Scholar, 85.
20. Alvarez-Gaumé, L. and Witten, E. (1983) ‘Gravitational anomalies’, Nucl. Phys. B234 Google Scholar, 269.
21. Amati, D., Le Bellac, M. and Olive, D. (1970), ‘The twisting operator in multi-Veneziano theory’, Nuovo Cim. 66A CrossRef | Google Scholar, 831.
22. Ambjør, J., Durhuus, B., Frohlich, J. and Orland, P. (1986), ‘The appearance of critical dimensions in regulated string theories’, Nucl. Phys. B270 CrossRef | Google Scholar[FS16], 457.
23. Antoniadis, I., Bachas, C., Kounnas, C. and Windey, P. (1986), ‘Supersymmetry among free fermions and superstrings’, Phys. Lett. 171B CrossRef | Google Scholar, 51.
24. Aoyama, H., Dhar, A. and Namazie, M.A. (1986), ‘Covariant amplitudes in Polyakov string theory’, Nucl. Phys. B267 CrossRef | Google Scholar, 605.
25. Appelquist, T., Chodos, A. and Freund, P., (1987), Modem Kaluza-Klein Theory and Applications Google Scholar (Benjamin/Cummings).
26. Ardalan, F. and Mansouri, F. (1986), ‘Interacting parastrings’, Phys. Rev. Lett. 56 CrossRef | Google Scholar | PubMed, 2456.
27. Atick, J.J., Dhar, A. and Ratra, B. (1986), ‘Superstring propagation in curved superspace in the presence of background super Yang–Mills fields’, Phys. Lett. 169B CrossRef | Google Scholar, 54.
28. Atick, J.J., Dhar, A. and Ratra, B. (1986), ‘Superspace formulation of ten dimensional supergravity coupled to N = 1 super-Yang-Mills theory’, Phys. Rev. D33 Google Scholar, 2824.
29. Balázs, L.P. (1986), ‘Could there be a Planck-scale unitary bootstrap underlying the superstring?’, Phys. Rev. Lett. 56 CrossRef | Google Scholar | PubMed, 1759.
30. Banks, T., Horn, D. and Neuberger, H. (1976), ‘Bosonization of the SU(N) Thirring models’, Nucl. Phys. B108 CrossRef | Google Scholar, 119.
31. Bardakçi, K. and Ruegg, H. (1968), ‘Reggeized resonance model for the production amplitude’, Phys. Lett. 28B CrossRef | Google Scholar, 342.
32. Bardakçi, K. and Ruegg, H. (1969), ‘Reggeized resonance model for arbitrary production processes’, Phys. Rev. 181 CrossRef | Google Scholar, 1884.
33. Bardakçi, K. and Mandelstam, S. (1969), ‘Analytic solution of the linear-trajectory bootstrap’, Phys. Rev. Google Scholar184, 1640.
34. Bardakiç, K. and Halpern, M.B. (1971), ‘New dual quark models’, Phys. Rev. D3 Google Scholar, 2493.
35. Batalin, I.A. and Vilkovisky, G.A. (1977), ‘Relativistic S-matrix of dynamical systems with boson and fermion constraints’, Phys. Lett. 69B CrossRef | Google Scholar, 309.
36. Becchi, C., Rouet, A. and Stora, R. (1974), ‘The abelian Higgs Kibble model, unitarity of the S-operator’, Phys. Lett. 52B CrossRef | Google Scholar, 344.
37. Becchi, C., Rouet, A. and Stora, R. (1976), ‘Renormalization of gauge theories’, Ann. Phys. 98 CrossRef | Google Scholar, 287.
38. Belavin, A.A., Polyakov, A.M. and Zamolodchikov, A.B. (1984), ‘Infinite conformal symmetry in two-dimensional quantum field theory“, Nucl. Phys. B241 CrossRef | Google Scholar, 333.
39. Bengtsson, I. and Cederwall, M. (1984), ‘Covariant superstrings do not admit covariant gauge fixing Google Scholar’, Göteborg preprint 84-21-Rev.
40. Bergshoeff, E., Nishino, H. and Sezgin, E. (1986), ‘Heterotic σ-models and conformal supergravity in two dimensions’, Phys. Lett. 166B CrossRef | Google Scholar, 141.
41. Bergshoeff, E., Sezgin, E. and Townsend, P.K. (1986), ‘Superstring actions in D = 3,4,6,10 curved superspace’, Phys. Lett. 169B CrossRef | Google Scholar, 191.
42. Bergshoeff, E., Randjbar-Daemi, S., Salam, A., Sarmadi, H. and Sezgin, E. (1986), ‘Locally supersymmetric σ-model with Wess-Zumino term in two dimensions and critical dimensions for strings’, Nucl. Phys. B269 CrossRef | Google Scholar, 77.
43. Bershadsky, M.A., Knizhnik, V.G. and Teitelman, M.G. (1985), ‘Superconformal symmetry in two dimensions’, Phys. Lett. 151B CrossRef | Google Scholar, 31.
44. Bershadsky, M. (1986), ‘Superconformal algebras in two dimensions with arbitrary N’, Phys. Lett. 174B CrossRef | Google Scholar, 285.
45. Bjorken, J.D., Kogut, J.B. and Soper, D.E. (1971), ‘Quantum electrodynamics at infinite momentum: Scattering from an external field’, Phys. Rev. D3 Google Scholar, 1382.
46. Boucher, W., Friedan, D. and Kent, A. (1986), ‘Determinant formulae and unitarity for the N = 2 superconformal algebras in two dimensions or exact results on string compactification’, Phys. Lett. 172B CrossRef | Google Scholar, 316.
47. Boulware, D.G. and Newman, E.T. (1986), ‘The geometry of open bosonic strings’, Phys. Lett. 174B CrossRef | Google Scholar, 378.
48. Bouwknegt, P. and Van Nieuwenhuizen, P. (1986), ‘Critical dimensions of the N=l and N=2 spinning string derived from Fujikawa's approach’, Class. Quant. Grav. 3 CrossRef | Google Scholar, 207.
49. Bowick, M.J. and Wijewardhana, L.C.R. (1985), ‘Superstrings at high temperature’, Phys. Rev. Lett. 54 CrossRef | Google Scholar | PubMed, 2485.
50. Bowick, M. and Giirsey, F. (1986), ‘The algebraic structure of BRST quantization’, Phys. Lett. 175B CrossRef | Google Scholar, 182.
51. Braaten, E., Curtright, T.L. and Zachos, C.K. (1985), ‘Torsion and geometrostasis in nonlinear σ models’, Nucl. Phys. B260 CrossRef | Google Scholar, 630.
52. Brink, L. and Olive, D. (1973), ‘The physical state projection operator in dual resonance models for the critical dimension of space-time’, Nucl. Phys. B56 CrossRef | Google Scholar, 253.
53. Brink, L. and Nielsen, H.B. (1973), ‘A simple physical interpretation of the critical dimension of space-time in dual models’, Phys. Lett. 45B CrossRef | Google Scholar, 332.
54. Brink, L., Olive, D., Rebbi, C. and Scherk, J. (1973), ‘The missing gauge conditions for the dual fermion emission vertex and their consequences’, Phys. Lett. 45B CrossRef | Google Scholar, 379.
55. Brink, L. and Winnberg, J.O. (1976), ‘The superoperator formalism of the Neveu-Schwarz-Ramond model’, Nucl. Phys. B103 CrossRef | Google Scholar, 445.
56. Brink, L., Di Vecchia, P. and Howe, P. (1976), ‘A locally supersymmetric and reparametrization invariant action for the spinning string’, Phys. Lett. 65B CrossRef | Google Scholar, 471.
57. Brink, L., Schwarz, J.H. and Scherk, J. (1977), ‘Supersymmetric Yang-Mills theories’, Nucl. Phys. B121 CrossRef | Google Scholar, 77.
58. Brink, L. and Schwarz, J.H. (1977), ‘Local complex supersymmetry in two dimensions’, Nucl. Phys. B121 CrossRef | Google Scholar, 285.
59. Brink, L. and Schwarz, J.H. (1981), ‘Quantum superspace’, Phys. Lett. 100B CrossRef | Google Scholar, 310.
60. Brink, L. and Green, M.B. (1981), ‘Point-like particles and off-shell supersymmetry algebras’, Phys. Lett. 106B CrossRef | Google Scholar, 393.
61. Brink, L., Lindgren, O. and Nilsson, B.E.W. (1983), ‘N = 4 Yang-Mills theory on the light cone’, Nucl. Phys. B212 CrossRef | Google Scholar, 401.
62. Brink, L. (1985), ‘Superstrings Google Scholar’, Lectures delivered at the 1985 Les Houches summer school; Göteborg preprint 85–68.
63. Brooks, R., Muhammad, F. and Gates, S.J. (1986), ‘Unidexterous D = 2 supersymmetry in superspace’, Nucl. Phys. B268 CrossRef | Google Scholar, 599.
64. Brower, R.C. and Thorn, C.B. (1971), ‘Eliminating spurious states from the dual resonance model’, Nucl. Phys. B31 CrossRef | Google Scholar, 163.
65. Brower, R.C. and Goddard, P. (1972), ‘Collinear algebra for the dual model’, Nucl. Phys. B40 CrossRef | Google Scholar, 437.
66. Brower, R.C. (1972), ‘Spectrum-generating algebra and no-ghost theorem for the dual model’, Phys. Rev. D6 Google Scholar, 1655.
67. Brower, R.C. and Friedman, K.A. (1973), ‘Spectrum-generating algebra and no-ghost theorem for the Neveu-Schwarz model’, Phys. Rev. D7 Google Scholar, 535.
68. Bruce, D., Corrigan, E. and Olive, D. (1975), ‘Group theoretical calculation of traces and determinants occurring in dual theories’, Nucl. Phys. B95 CrossRef | Google Scholar, 427.
69. Callan, C.G., Friedan, D., Martinec, E.J. and Perry, M.J. (1985), ‘Strings in background fields’, Nucl. Phys. B262 CrossRef | Google Scholar, 593.
70. Callan, C.G. and Gan, Z. (1986), ‘Vertex operators in background fields’, Nucl. Phys. B272 CrossRef | Google Scholar, 647.
71. Campagna, P., Fubini, S., Napolitano, E. and Sciuto, S. (1971), ‘Amplitude for N nonspurious excited particles in dual resonance models’, Nuovo Cim. 2A CrossRef | Google Scholar, 911.
72. Candelas, P., Horowitz, G., Strominger, A. and Witten, E. (1985), ‘Vacuum configurations for superstrings’, Nucl. Phys. B258 CrossRef | Google Scholar, 46.
73. Caneschi, L., Schwimmer, A. and Veneziano, G. (1969), ‘Twisted propagator in the operatorial duality formalism’, Phys. Lett. 30B CrossRef | Google Scholar, 351.
74. Caneschi, L. and Schwimmer, A. (1970), ‘Ward identities and vertices in the operatorial duality formalism’, Nuovo Cim. Lett. 3 CrossRef | Google Scholar, 213.
75. Carbone, G. and Sciuto, S. (1970), ‘On amplitudes involving excited particles in dual-resonance models’, Nuovo Cim. Lett. 3 CrossRef | Google Scholar, 246.
76. Cardy, J.L. (1986), ‘Operator content of two-dimensional conformally invariant theories’, Nucl. Phys. B270 CrossRef | Google Scholar[FS16], 186.
77. Casalbuoni, R. (1976), ‘Relatively (sic.) and supersymmetries’, Phys. Lett. 62B CrossRef | Google Scholar, 49.
78. Casalbuoni, R. (1976), ‘The classical mechanics for Bose-Fermi systems’, Nuovo Cim. 33A CrossRef | Google Scholar, 389.
79. Casher, A., Englert, F., Nicolai, H. and Taormina, A. (1985), ‘Consistent superstrings as solutions of the D = 26 bosonic string theory’, Phys. Lett. 162B CrossRef | Google Scholar, 121.
80. Chan, H.M. (1969), ‘A generalized Veneziano model for the N - point function’, Phys. Lett. 28B Google Scholar, 425.
81. Chan, H.M. and Tsou, S.T. (1969), ‘Explicit construction of the N - point function in the generalized Veneziano model’, Phys. Lett. 28B CrossRef | Google Scholar, 485.
82. Chang, L.N. and Mansouri, F. (1972), ‘Dynamics underlying duality and gauge invariance in the dual-resonance models’, Phys. Rev. D5 Google Scholar, 2535.
83. Chang, L.N., Macrae, K.I. and Mansouri, F. (1976), ‘Geometrical approach to local gauge and supergauge invariance: Local gauge theories and supersymmetric strings’, Phys. Rev. D13 Google Scholar 235.
84. Chapline, G. (1985), ‘Unification of gravity and elementary particle interactions in 26 dimensions?’, Phys. Lett. 158B CrossRef | Google Scholar, 393.
85. Chiu, C.B., Matsuda, S. and Rebbi, C. (1969), ‘Factorization properties of the dual resonance model: A general treatment of linear dependences’, Phys. Rev. Lett. 23 CrossRef | Google Scholar, 1526.
86. Chiu, C.B., Matsuda, S. and Rebbi, C. (1970), ‘A general approach to the symmetry and the factorization properties of the N-point dual amplitudes’, Nuovo Cim. 67A CrossRef | Google Scholar, 437.
87. Chodos, A. and Thorn, C.B. (1974), ‘Making the massless string massive’, Nucl. Phys. B72 CrossRef | Google Scholar, 509.
88. Christensen, S.M. and Duff, M.J. (1978), ‘Quantum gravity in 2 + ϵ dimensions’, Phys. Lett. 79B CrossRef | Google Scholar, 213.
89. Clavelli, L. and Ramond, P. (1970), ‘SU(1,1) analysis of dual resonance models’, Phys. Rev. D2 Google Scholar, 973.
90. Clavelli, L. and Ramond, P. (1971), ‘Group-theoretical construction of dual amplitudes’, Phys. Rev. D3 Google Scholar, 988.
91. Cohen, A., Moore, G., Nelson, P. and Polchinski, J. (1986), ‘An offshell propagator for string theory’, Nucl. Phys. B267 CrossRef | Google Scholar, 143.
92. Cohen, E., Gomez, C. and Mansfield, P. (1986), ‘BRS invariance of the interacting Polyakov string’, Phys. Lett. 174B CrossRef | Google Scholar, 159.
93. Coleman, S., Gross, D. and Jackiw, R. (1969), ‘Fermion avatars of the Sugawara model’, Phys. Rev. Google Scholar180, 1359.
94. Coleman, S. (1975), ‘Quantum sine-Gordon equation as the massive Thirring model’, Phys. Rev. Dll Google Scholar, 2088.
95. Collins, P.A. and Tucker, R.W. (1977), ‘An action principle for the Neveu-Schwarz-Ramond string and other systems using supernumerary variables’, Nucl. Phys. B121 CrossRef | Google Scholar, 307.
96. Corrigan, E.F. and Olive, D. (1972), ‘Fermion-meson vertices in dual theories’, Nuovo Cim. 11 A CrossRef | Google Scholar, 749
97. Corrigan, E.F. and Goddard, P. (1973), ‘Gauge conditions in the dual fermion model’, Nuovo Cim. 18A CrossRef | Google Scholar, 339.
98. Corrigan, E.F. and Goddard, P. (1973), ‘The off-mass shell physical state projection operator for the dual resonance model’, Phys. Lett. B44 CrossRef | Google Scholar, 502.
99. Corrigan, E.F., Goddard, P., Smith, R.A. and Olive, D.I. (1973), ‘Evaluation of the scattering amplitude for four dual fermions’, Nucl. Phys. B67 CrossRef | Google Scholar, 477.
100. Corrigan, E.F. and Goddard, P. (1974), ‘The absence of ghosts in the dual fermion model’, Nucl. Phys. B68 CrossRef | Google Scholar, 189.
101. Corrigan, E.F. (1974), ‘The scattering amplitude for four dual fermions’, Nucl. Phys. B69 CrossRef | Google Scholar, 325.
102. Corrigan, E.F. and Fairlie, D.B. (1975), ‘Off-shell states in dual resonance theory’, Nucl. Phys. B91 CrossRef | Google Scholar, 527.
103. Corrigan, E.F. (1986), ‘Twisted vertex operators and representations of the Virasoro algebra’, Phys. Lett. 169B CrossRef | Google Scholar, 259.
104. Corwin, L., Ne'eman, Y. and Sternberg, S. (1975), ‘Graded Lie algebras in mathematics and physics (Bose-Fermi symmetry)’, Rev. Mod. Phys. 47 CrossRef | Google Scholar, 573.
105. Craigie, N.S., Nahm, W. and Narain, K.S. (1985), ‘Realization of the Kac–Moody algebras of 2D QFTs through soliton operators’, Phys. Lett. 152B CrossRef | Google Scholar, 203.
106. Cremmer, E. and Scherk, J. (1974), ‘Spontaneous dynamical breaking of gauge symmetry in dual models’, Nucl. Phys. B72 CrossRef | Google Scholar, 117.
107. Cremmer, E. and Scherk, J. (1976), ‘Dual models in four dimensions with internal symmetries’, Nucl. Phys. B103 CrossRef | Google Scholar, 399.
108. Cremmer, E. and Scherk, J. (1976), ‘Spontaneous compactification of space in an Einstein–Yang–Mills–Higgs model’, Nucl. Phys. B108 CrossRef | Google Scholar, 409.
109. Cremmer, E. and Scherk, J. (1977), ‘Spontaneous compactification of extra space dimensions’, Nucl. Phys. B118 CrossRef | Google Scholar, 61.
110. Crnković, Č. (1986), ‘Many pictures of the superparticle’, Phys. Lett. 173B CrossRef | Google Scholar, 429.
111. Curtright, T.L. and Zachos, C.K. (1984), ‘Geometry, topology and supersymmetry in nonlinear sigma models’, Phys. Rev. Lett. 53 CrossRef | Google Scholar, 1799.
112. Curtright, T.L., Mezincescu, L. and Zachos, C.K. (1985), ‘Geometrostasis and torsion in covariant superstrings’, Phys. Lett. 161B CrossRef | Google Scholar, 79.
113. Curtright, T.L., Thorn, C.B. and Goldstone, J. (1986), ‘Spin content of the bosonic string’, Phys. Lett. 175B CrossRef | Google Scholar, 47.
114. Das, S.R. and Sathiapalan, B. (1986), ‘String propagation in a tachyon background’, Phys. Rev. Lett. 56 CrossRef | Google Scholar, 2664.
115. De Alwis, S.P. (1986), ‘The dilaton vertex in the path integral formulation of strings’, Phys. Lett. 168B CrossRef | Google Scholar, 59.
116. Del Giudice, E. and Di Vecchia, P. (1971), ‘Factorization and operator formalism in the generalized Virasoro model’, Nuovo Cim. 5A CrossRef | Google Scholar, 90.
117. Del Giudice, E., Di Vecchia, P. and Fubini, S. (1972), ‘General properties of the dual resonance model’, Ann. Phys. 70 CrossRef | Google Scholar, 378.
118. Delia Selva, A. and Saito, S. (1970), ‘A simple expression for the Sciuto three-reggeon vertex generating duality’, Nuovo Cim. Lett. 4 CrossRef | Google Scholar, 689.
119. Deser, S. and Zumino, B. (1976), ‘Consistent supergravity’, Phys. Lett. 62B CrossRef | Google Scholar, 335.
120. Deser, S. and Zumino, B. (1976), ‘A complete action for the spinning string’, Phys. Lett. 65B CrossRef | Google Scholar, 369.
121. DeWitt, B., (1964), ‘Dynamical theory of groups and fields’, in Relativity, Groups, and Topology, ed. B., DeWitt and C., DeWitt (New York Google Scholar, Gordon and Breach), p. 587.
122. Di Vecchia, P., Knizhnik, V.G., Petersen, J.L. and Rossi, P. (1985), ‘A supersymmetric Wess-Zumino Lagrangian in two dimensions’, Nucl. Phys. B253 CrossRef | Google Scholar, 701.
123. Di Vecchia, P., Petersen, J.L. and Zheng, H.B. (1985), ‘N = 2 extended superconformal theories in two dimensions’, Phys. Lett. 162B CrossRef | Google Scholar, 327.
124. Di Vecchia, P., Petersen, J.L. and Yu, M. (1986), ‘On the unitary representations of N = 2 superconformal theory’, Phys. Lett. 172B CrossRef | Google Scholar, 211.
125. Di Vecchia, P., Petersen, J.L., Yu, M. and Zheng, H.B. (1986), ‘Explicit construction of unitary representations of the N = 2 superconformal algebra’, Phys. Lett. 174B CrossRef | Google Scholar, 280.
126. Dolan, L. and Slansky, R. (1985), ‘Physical spectrum of compactified strings’, Phys. Rev. Lett. 54 CrossRef | Google Scholar | PubMed, 2075.
127. Dolen, R., Horn, D. and Schmid, C. (1967), ‘Prediction of Regge parameters of ρ poles from low-energy πN data’, Phys. Rev. Lett. 19 CrossRef | Google Scholar, 402.
128. Dolen, R., Horn, D. and Schmid, C. (1968), ‘Finite-energy sum rules and their application to πN charge exchange’, Phys. Rev. 166 CrossRef | Google Scholar, 1768.
129. Dotsenko, Vl.S. and Fateev, V.A. (1985), ‘Operator algebra of two-dimensional conformal theories with central charge C ≤ 1’, Phys. Lett. 154B CrossRef | Google Scholar, 291.
130. Duncan, A. and Moshe, M. (1986), ‘First-quantized superparticle action for the vector superfield’, Nucl. Phys. B268 CrossRef | Google Scholar, 706.
131. Duncan, A. and Meyer-Ortmanns, H. (1986), ‘Lattice formulation of the superstring’, Phys. Rev. D33 Google Scholar, 3155.
132. Durhuus, B., Nielsen, H.B., Olesen, P. and Petersen, J.L. (1982), ‘Dual models as saddle point approximations to Polyakov's quantized string’, Nucl. Phys. B196 CrossRef | Google Scholar, 498.
133. Durhuus, B., Olesen, P. and Petersen, J.L. (1982), ‘Polyakov's quantized string with boundary terms’, Nucl. Phys. 198 CrossRef | Google Scholar, 157.
134. Durhuus, B., Olesen, P. and Petersen, J.L. (1982), ‘Polyakov's quantized string with boundary terms (II)’, Nucl. Phys. 201 CrossRef | Google Scholar, 176.
135. Eastaugh, A., Mezincescu, L., Sezgin, E. and Van Nieuwenhuizen, P. (1986), ‘Critical dimensions of spinning strings on group manifolds from Fujikawa's method’, Phys. Rev. Lett. 57 CrossRef | Google Scholar | PubMed, 29.
136. Ecker, G. and Honerkamp, J. (1971), ‘Application of invariant renormalization to the non-linear chiral invariant pion lagrangian in the one-loop approximation’, Nucl. Phys. B35 CrossRef | Google Scholar, 481.
137. Eichenherr, H. (1985), 'Minimal operator algebras in superconformal quantum field theory', Phys. Lett. 151B CrossRef | Google Scholar, 26.
138. Einstein, A. and Mayer, W. (1931), ‘Einheitliche Theorie von Bravitation und Elektrizitat’, Setz. Preuss. Akad. Wiss. Google Scholar, 541.
139. Einstein, A. and Bergmann, P. (1938), ‘On a generalization of Kaluza's theory of electricity’, Ann. Math. 39 CrossRef | Google Scholar, 683.
140. Einstein, A., Bargmann, V. and Bergmann, P. (1941), in Theodore von Kármán Anniversary Volume (Pasadena) Google Scholar p. 212.
141. Englert, F. and Neveu, A. (1985), ‘Non-Abelian compactification of the interacting bosonic string’, Phys. Lett. 163B CrossRef | Google Scholar, 349.
142. Evans, M. and Ovrut, B.A. (1986), ‘The world sheet supergravity of the heterotic string’, Phys. Lett. 171B CrossRef | Google Scholar, 177.
143. Evans, M. and Ovrut, B.A. (1986), ‘A two-dimensional superfield formulation of the heterotic string’, Phys. Lett. 175B CrossRef | Google Scholar, 145.
144. Faddeev, L.D. and Popov, V.N. (1967), ‘Feynman diagrams for the Yang-Mills field’, Phys. Lett. 25B CrossRef | Google Scholar, 29.
145. Fairlie, D.B. and Nielsen, H.B. (1970), ‘An analogue model for KSV theory’, Nucl. Phys. B20 CrossRef | Google Scholar, 637.
146. Fairlie, D.B. and Martin, D. (1973), ‘New light on the Neveu-Schwarz model’, Nuovo Cim. 18A CrossRef | Google Scholar, 373.
147. Feigin, B.L. and Fuks, D.B. (1982), ‘Invariant skew-symmetric differential operators on the line and Verma modules over the Virasoro algebra’, Fund. Analys. Appl. 16 CrossRef | Google Scholar, 114.
148. Feingold, A. and Lepowsky, J. (1978) ‘The Weyl-Kac character formula and power series identities’, Adv. Math. 29 CrossRef | Google Scholar, 271.
149. Feynman, R.P. (1963), ‘Quantum theory of gravitation’, Acta Physica Polonica 24 Google Scholar, 697.
150. Fradkin, E.S. and Vilkovisky, G.A. (1975), ‘Quantization of relativistic systems with constraints’, Phys. Lett. 55B CrossRef | Google Scholar, 224.
151. Fradkin, E.S. and Fradkina, T.E. (1978), ‘Quantization of relativistic systems with boson and fermion first- and second-class constraints’, Phys. Lett. 72B CrossRef | Google Scholar, 343.
152. Fradkin, E.S. and Tseytlin, A.A. (1981), ‘Quantization of two-dimensional supergravity and critical dimensions for string models’, Phys. Lett. 106B CrossRef | Google Scholar, 63.
153. Fradkin, E.S. and Tseytlin, A.A. (1982), ‘Quantized string models’, Ann. Phys. 143 CrossRef | Google Scholar, 413.
154. Fradkin, E.S. and Tseytlin, A.A. (1985), ‘Fields as excitations of quantized coordinates’, JETP Lett. 41 Google Scholar, 206.
155. Fradkin, E.S. and Tseytlin, A.A. (1985), ‘Quantum string theory effective action’, Nucl. Phys. B261 CrossRef | Google Scholar, 1.
156. Fradkin, E.S. and Tseytlin, A.A. (1985), ‘Effective field theory from quantized strings’, Phys. Lett. 158B CrossRef | Google Scholar, 316.
157. Fradkin, E.S. and Tseytlin, A.A. (1985), ‘Effective action approach to superstring theory’, Phys. Lett. 160B CrossRef | Google Scholar, 69.
158. Fradkin, E.S. and Tseytlin, A.A. (1985), ‘Anomaly-free two-dimensional chiral supergravity-matter models and consistent string theories’, Phys. Lett. 162B CrossRef | Google Scholar, 295.
159. Fradkin, E.S. and Tseytlin, A.A. (1985), ‘Non-linear electrodynamics from quantized strings’, Phys. Lett. 163B CrossRef | Google Scholar, 123.
160. Frampton, P. (1974), Dual Resonance Models, (Benjamin Google Scholar).
161. Frautschi, S. (1971), ‘Statistical bootstrap model of hadrons’, Phys. Rev. D3 Google Scholar, 2821.
162. Freedman, D.Z., Van Nieuwenhuizen, P. and Ferrara, S. (1976), ‘Progress toward a theory of supergravity’, Phys. Rev. D13 Google Scholar, 3214.
163. Freedman, D.Z. and Townsend, P.K. (1981), ‘Antisymmetric tensor gauge theories and non-linear σ-models’, Nucl. Phys. B177 CrossRef | Google Scholar, 282.
164. Freeman, M.D. and Olive, D.I. (1986), ‘BRS cohomology in string theory and the no-ghost theorem’, Phys. Lett. 175B CrossRef | Google Scholar, 151.
165. Frenkel, I.B. and Kac, V.G. (1980), ‘Basic representations of affine Lie algebras and dual resonance models’, Inv. Math. 62 CrossRef | Google Scholar, 23.
166. Frenkel, I.B. (1981), ‘Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory’, J. Fund. Anal. 44 CrossRef | Google Scholar, 259.
167. Frenkel, I.B., Garland, H. and Zuckerman, G. (1986), ‘Semi-infinite cohomology and string theory Google Scholar | PubMed’, (Yale University preprint).
168. Freund, P.G.O. (1968), ‘Finite-energy sum rules and bootstraps’, Phys. Rev. Lett. 20 CrossRef | Google Scholar, 235.
169. Freund, P.G.O. (1969), ‘Model for the Pomeranchuk term’, Phys. Rev. Lett. 22 CrossRef | Google Scholar, 565.
170. Freund, P.G.O. and Rivers, R.J. (1969), ‘Duality, unitarity and the Pomeranchuk singularity’, Phys. Lett. 29B CrossRef | Google Scholar, 510.
171. Freund, P.G.O. and Kaplansky, I. (1976), ‘Simple supersymmetries’, J. Math. Phys. 17 CrossRef | Google Scholar, 228.
172. Freund, P.G.O. and Nepomechie, R.I. (1982), ‘Unified geometry of antisymmetric tensor gauge fields and gravity’, Nucl. Phys. B199 CrossRef | Google Scholar, 482.
173. Freund, P.G.O. (1985), ‘Superstrings from 26 dimensions’, Phys. Lett. 151B CrossRef | Google Scholar, 387.
174. Fridling, B. and van de Ven, A. (1986) ‘Renormalization of generalized two dimensional nonlinear a models’, Nucl. Phys. B268 CrossRef | Google Scholar, 719.
175. Fridling, B.E. and Jevicki, A. (1986), ‘Nonlinear σ-models as S-matrix generating functional of strings’, Phys. Lett. 174B CrossRef | Google Scholar, 75.
176. Friedan, D. (1980), ‘Nonlinear models in 2 + ϵ dimensions,’ Ph.D. thesis, published in Ann. Phys. 163 (1985 CrossRef | Google Scholar) 318.
177. Friedan, D. (1980), ‘Nonlinear models in 2 + ϵ dimensions’, Phys. Rev. Lett. 45 CrossRef | Google Scholar, 1057.
178. Friedan, D. (1984), ‘Introduction to Polyakov's string theory’, in Recent Advances in Field Theory and Statistical Mechanics, eds. J.B., Zuber and R., Stora. Proc. of 1982 Google Scholar Les Houches Summer School (Elsevier), p. 839.
179. Friedan, D., Qiu, Z. and Shenker, S. (1984), ‘Conformal invariance, unitarity, and critical exponents in two dimensions’, Phys. Rev. Lett. 52 CrossRef | Google Scholar, 1575.
180. Friedan, D., Qiu, Z. and Shenker, S. (1985), ‘Superconformal invariance in two dimensions and the tricritical Ising model’, Phys. Lett. 151B CrossRef | Google Scholar, 37.
181. Friedan, D., Shenker, S. and Martinec, E. (1985), ‘Covariant quantization of superstrings’, Phys. Lett. 160B CrossRef | Google Scholar, 55.
182. Friedan, D. (1985), ‘On two-dimensional conformal invariance and the field theory of strings’, Phys. Lett. 162B CrossRef | Google Scholar, 102.
183. Friedan, D. (1986), ‘Notes on string theory and two dimensional conformal field theory’, in Workshop on Unified String Theories, 29 July -16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore Google Scholar), p. 162.
184. Friedan, D., Martinec, E. and Shenker, S. (1986), ‘Conformal invariance, supersymmetry and string theory’, Nucl. Phys. B271 CrossRef | Google Scholar, 93.
185. Fubini, S., Gordon, D. and Veneziano, G. (1969), ‘A general treatment of factorization in dual resonance models’, Phys. Lett. 29B CrossRef | Google Scholar, 679.
186. Fubini, S. and Veneziano, G. (1969), ‘Level structure of dual-resonance models’, Nuovo Cim. 64A CrossRef | Google Scholar, 811.
187. Fubini, S. and Veneziano, G. (1970), ‘Duality in operator formalism’, Nuovo Cim. 67A CrossRef | Google Scholar, 29.
188. Fubini, S. and Veneziano, G. (1971), ‘Algebraic treatment of subsidiary conditions in dual resonance models’, Ann. Phys. 63 CrossRef | Google Scholar, 12.
189. Fubini, S., Hanson, A.J. and Jackiw, R. (1973), ‘New approach to field theory’, Phys. Rev. D7, 1732 Google Scholar.
190. Fujikawa, K. (1982), ‘Path integral of relativistic strings’, Phys. Rev. D25 Google Scholar, 2584.
191. Fujikawa, K. (1983), ‘Path integral measure for gravitational interactions’, Nucl. Phys. B226 CrossRef | Google Scholar, 437.
192. Gates, S.J., Grisaru, M., Rocek, M. and Siegel, W. (1983), Super space or One Thousand and One Lessons in Supersymmetry Google Scholar, (Benjamin/Cummings).
193. Gervais, J.L. (1970), ‘Operator expression for the Koba and Nielsen multi-Veneziano formula and gauge identities’, Nucl. Phys. B21 CrossRef | Google Scholar, 192.
194. Gervais, J.L. and Sakita, B. (1971), ‘Generalizations of dual models’, Nucl Phys. B34 CrossRef | Google Scholar, 477.
195. Gervais, J.L. and Sakita, B. (1971), ‘Field theory interpretation of supergauges in dual models’, Nucl. Phys. B34 CrossRef | Google Scholar, 632.
196. Gervais, J.L. and Sakita, B. (1971), ‘Functional-integral approach to dual-resonance theory’, Phys. Rev. D4 Google Scholar, 2291.
197. Gervais, J.L. and Neveu, A. (1972), ‘Feynman rules for massive gauge fields with dual diagram topology’, Nucl. Phys. B46 CrossRef | Google Scholar, 381.
198. Gervais, J.L. and Sakita, B. (1973), ‘Ghost-free string picture of Veneziano model’, Phys. Rev. Lett. 30 CrossRef | Google Scholar, 716.
199. Gervais, J.L. and Neveu, A. (1986), ‘Dimension shifting operators and null states in 2D conformally invariant field theories’, Nucl. Phys. B264 CrossRef | Google Scholar, 557.
200. Gleiser, M. and Taylor, J.G. (1985), ‘Very hot superstrings’, Phys. Lett. 164B CrossRef | Google Scholar, 36.
201. Gliozzi, F. (1969), ‘Ward-like identities and twisting operator in dual resonance models’, Nuovo Cim. Lett. 2 CrossRef | Google Scholar, 846.
202. Gliozzi, F., Scherk, J. and Olive, D. (1976), ‘Supergravity and the spinor dual model’, Phys. Lett. 65B CrossRef | Google Scholar, 282.
203. Gliozzi, F., Scherk, J. and Olive, D. (1977), ‘Supersymmetry, supergravity theories and the dual spinor model’, Nucl. Phys. B122 CrossRef | Google Scholar, 253.
204. Goddard, P. and Thorn, C.B. (1972), ‘Compatibility of the dual Pomeron with unitarity and the absence of ghosts in the dual resonance model’, Phys. Lett. 40B CrossRef | Google Scholar, 235.
205. Goddard, P., Rebbi, C. and Thorn, C.B. (1972), ‘Lorentz covariance and the physical states in dual-resonance models’, Nuovo Cim. 12A CrossRef | Google Scholar, 425.
206. Goddard, P., Goldstone, J., Rebbi, C. and Thorn, C.B. (1973), ‘Quantum dynamics of a massless relativistic string’, Nucl. Phys. B56 CrossRef | Google Scholar, 109.
207. Goddard, P., Kent, A. and Olive, D. (1985), ‘Virasoro algebras and coset space models’, Phys. Lett. 152B CrossRef | Google Scholar, 88.
208. Goddard, P., Olive, D. and Schwimmer, A. (1985), ‘The heterotic string and a fermionic construction of the Eg Kac-Moody algebra’, Phys. Lett. 157B CrossRef | Google Scholar, 393.
209. Goddard, P., Nahm, W. and Olive, D. (1985), ‘Symmetric spaces, Sugawara's energy momentum tensor in two dimensions and free fermions’, Phys. Lett. 160B CrossRef | Google Scholar, 111.
210. Goddard, P. and Olive, D. (1985), ‘Algebras, lattices and strings’ in Vertex Operators in Mathematics and Physics, Proceedings of a Conference, November 10–17, 1983, eds. J., Lepowsky, S., Mandelstam, I.M., Singer (Springer-Verlag, New York Google Scholar), p. 51.
211. Goddard, P. and Olive, D. (1985), ‘Kac-Moody algebras, conformal symmetry and critical exponents’, Nucl. Phys. B257 CrossRef | Google Scholar[FS14], 226.
212. Goddard, P. and Olive, D. (1986), ‘An introduction to Kac-Moody algebras and their physical applications’, in Workshop on Unified String Theories, 29 July – 16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore Google Scholar), p. 214.
213. Goddard, P., Kent, A. and Olive, D. (1986), ‘Unitary representations of the Virasoro and super-Virasoro algebras’, Commun. Math. Phys. 103 CrossRef | Google Scholar, 105.
214. Goebel, C.J. and Sakita, B. (1969), ‘Extension of the Veneziano form to N - particle amplitudes’, Phys. Rev. Lett. 22 CrossRef | Google Scholar, 257.
215. Gol'fand, Y.A. and Likhtman, E.P. (1971), ‘Extension of the algebra of Poincare group generators and violation of P invariance’, JETP Lett. 13 Google Scholar, 323.
216. Gomes, J.F. (1986), ‘The triviality of representations of the Virasoro algebra with vanishing central element and Lo positive’, Phys. Lett. 171B CrossRef | Google Scholar, 75.
217. Goto, T. (1971), ‘Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model’, Prog. Theor. Phys. 46 CrossRef | Google Scholar, 1560.
218. Green, M.B. and Veneziano, G. (1971), ‘Average properties of dual resonances’, Phys. Lett. 36B CrossRef | Google Scholar, 477.
219. Green, M.B. and Shapiro, J.A. (1976), ‘Off shell states in the dual model’, Phys. Lett. 64B CrossRef | Google Scholar, 454.
220. Green, M.B. (1976), ‘Reciprocal space-time and momentum-space singularities in the narrow resonance approximation’, Nucl. Phys. B116 CrossRef | Google Scholar, 449.
221. Green, M.B. (1976), ‘The structure of dual Green functions’, Phys. Lett. 65B CrossRef | Google Scholar, 432.
222. Green, M.B. (1977), ‘Point-like structure and off-shell dual strings’, Nucl. Phys. B124 CrossRef | Google Scholar, 461.
223. Green, M.B. (1977), ‘Dynamical point-like structure and dual strings’, Phys. Lett. 69B CrossRef | Google Scholar, 89.
224. Green, M.B. and Schwarz, J.H. (1981), ‘Supersymmetrical dual string theory’, Nucl. Phys. B181 CrossRef | Google Scholar, 502.
225. Green, M.B. and Schwarz, J.H. (1982), ‘Supersymmetric dual string theory (II). Vertices and trees’, Nucl. Phys. B198 CrossRef | Google Scholar, 252.
226. Green, M.B. and Schwarz, J.H. (1982), ‘Supersymmetrical string theories’, Phys. Lett. 109B CrossRef | Google Scholar, 444.
227. Green, M.B., Schwarz, J.H. and Brink, L. (1982), ‘N = 4 Yang-Mills and N = 8 supergravity as limits of string theories’, Nucl. Phys. B198 CrossRef | Google Scholar, 474.
228. Green, M.B. (1983), ‘Supersymmetrical dual string theories and their field theory limits – a review’, Surveys in High Energy Physics 3 CrossRef | Google Scholar, 127.
229. Green, M.B. and Schwarz, J.H. (1984), ‘Covariant description of superstrings’, Phys. Lett. 136B CrossRef | Google Scholar, 367.
230. Green, M.B. and Schwarz, J.H. (1984), ‘Properties of the covariant formulation of superstring theories’, Nucl. Phys. B243 CrossRef | Google Scholar, 285.
231. Green, M.B. and Schwarz, J.H. (1984), ‘Anomaly cancellations in supersymmetric D = 10 gauge theory and superstring theory’, Phys. Lett. 149B CrossRef | Google Scholar, 117.
232. Green, M.B. (1986), ‘Lectures on superstrings’, in Workshop on Unified String Theories, 29 July – 16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore Google Scholar), p. 294.
233. Green, M.B., and Gross, D.J. (1986), eds. Unified String Theories Google Scholar (World Scientific).
234. Grisaru, M.T., Howe, P., Mezincescu, L., Nilsson, B.E.W. and Townsend, P.K. (1985), ‘N = 2 superstrings in a supergravity background’, Phys. Lett. 162B CrossRef | Google Scholar, 116.
235. Gross, D.J., Neveu, A., Scherk, J. and Schwarz, J.H. (1970), ‘The primitive graphs of dual-resonance models’, Phys. Lett. 31B CrossRef | Google Scholar, 592.
236. Gross, D.J. and Schwarz, J.H. (1970), ‘Basic operators of the dualresonance model’, Nucl. Phys. B23 CrossRef | Google Scholar, 333.
237. Gross, D.J., Harvey, J.A., Martinec, E. and Rohm, R. (1985), ‘Heterotic string’, Phys. Rev. Lett. 54 CrossRef | Google Scholar | PubMed, 502.
238. Gross, D.J., Harvey, J.A., Martinec, E. and Rohm, R. (1985), ‘Heterotic string theory (I). The free heterotic string’, Nucl. Phys. B256 CrossRef | Google Scholar, 253.
239. Gross, D.J., Harvey, J.A., Martinec, E. and Rohm, R. (1986), ‘Heterotic string theory (II). The interacting heterotic string’, Nucl. Phys. B267 CrossRef | Google Scholar, 75.
240. Hagedorn, R. (1968), ‘Hadronic matter near the boiling point’, Nuovo Cim. 56A CrossRef | Google Scholar, 1027.
241. Halpern, M.B., Klein, S.A. and Shapiro, J.A. (1969), ‘Spin and internal symmetry in dual Feynman theory’, Phys. Rev. 188 CrossRef | Google Scholar, 2378.
242. Halpern, M.B. and Thorn, C.B. (1971), ‘Dual model of pions with no tachyon’, Phys. Lett. 35B CrossRef | Google Scholar, 441.
243. Halpern, M.B. (1971), ‘The two faces of a dual pion-quark model’, Phys. Rev. D4 Google Scholar, 2398.
244. Halpern, M.B. (1971), ‘New dual models of pions with no tachyon’, Phys. Rev. D4 Google Scholar, 3082.
245. Halpern, M.B. and Thorn, C.B. (1971), ‘Two faces of a dual pionquark model. II. Fermions and other things’, Phys. Rev. D4 Google Scholar, 3084.
246. Halpern, M.B. (1975), ‘Quantum ‘solitons” which are SU(N) fermions’, Phys. Rev. D12 Google Scholar, 1684.
247. Hara, O. (1971), ‘On origin and physical meaning of Ward-like iden tity in dual-resonance model’, Prog. Theor. Phys. 46 CrossRef | Google Scholar, 1549.
248. Harari, H. (1968), ‘Pomeranchuk trajectory and its relation to lowenergy scattering amplitudes’, Phys. Rev. Lett. 20 CrossRef | Google Scholar, 1395.
249. Harari, H. (1969), ‘Duality diagrams’, Phys. Rev. Lett. 22 CrossRef | Google Scholar, 562.
250. Henneaux, M. and Mezincescu, L. (1985), ‘A σ-model interpretation of Green-Schwarz covariant superstring action’, Phys. Lett. 152B CrossRef | Google Scholar, 340.
251. Henneaux, M. (1986), ‘Remarks on the cohomology of the BRS operator in string theory’, Phys. Lett. 177B CrossRef | Google Scholar, 35.
252. Hlousek, Z. and Yamagishi, K. (1986), ‘An approach to BRST formulation of Kac-Moody algebra’, Phys. Lett. 173B CrossRef | Google Scholar, 65.
253. Honerkamp, J. (1972), ‘Chiral multi-loops’, Nucl. Phys. B36 CrossRef | Google Scholar, 130.
254. Hori, T. and Kamimura, K. (1985), ‘Canonical formulation of superstring’, Prog. Theor. Phys. 73 CrossRef | Google Scholar, 476.
255. Hosotani, Y. (1985), ‘Hamilton-Jacobi formalism and wave equations for strings’, Phys. Rev. Lett. 55 CrossRef | Google Scholar | PubMed, 1719.
256. Howe, P.S. (1977), ‘Superspace and the spinning string’, Phys. Lett. 70B CrossRef | Google Scholar, 453.
257. Howe, P.S. (1979), ‘Super Weyl transformations in two dimensions’, J. Phys. A12 Google Scholar, 393.
258. Hsue, C.S., Sakita, B. and Virasoro, M.A. (1970), ‘Formulation of dual theory in terms of functional integrations’, Phys. Rev. D2 Google Scholar, 2857.
259. Hull, C.M. and Witten, E. (1985), ‘Supersymmetric sigma models and the heterotic string’, Phys. Lett. 160B CrossRef | Google Scholar, 398.
260. Hull, C.M. (1986), ‘Sigma model beta-functions and string compactifications’, Nucl. Phys. B267 CrossRef | Google Scholar, 266.
261. Hwang, S. (1983), ‘Covariant quantization of the string in dimensions D ≤ 26 using a Becchi-Rouet-Stora formulation’, Phys. Rev. D28 Google Scholar, 2614.
262. Hwang, S. and Marnelius, R. (1986), ‘Modified strings in terms of zweibein fields’, Nucl. Phys. B271 CrossRef | Google Scholar, 369.
263. Hwang, S. and Marnelius, R. (1986), ‘The bosonic string in nonconformal gauges’, Nucl. Phys. B272 CrossRef | Google Scholar, 389.
264. Igi, K. and Matsuda, S. (1967), ‘New sum rules and singularities in the complex J plane’, Phys. Rev. Lett. 18 CrossRef | Google Scholar, 625.
265. Igi, K. and Matsuda, S. (1967), ‘Some consequences from superconvergence for πN scattering’, Phys. Rev. 163 CrossRef | Google Scholar, 1621.
266. Iwasaki, Y. and Kikkawa, K. (1973), ‘Quantization of a string of spinning material – Hamiltonian and Lagrangian formulations’, Phys. Rev. D8 Google Scholar, 440.
267. Jacob, M. editor. (1974), ‘Dual theory’, Physics Reports Reprint Volume I, (North-Holland, Amsterdam Google Scholar).
268. Jain, S., Shankar, R. and Wadia, S. (1985), ‘Conformal invariance and string theory in compact space: bosons’, Phys. Rev. D32 Google Scholar, 2713.
269. Jain, S., Mandal, G. and Wadia, S.R. (1987), ‘Virasoro conditions, vertex operators, and string dynamics in curved space’, Phys. Rev. D35 Google Scholar, 778.
270. Jevicki, A. (1986), ‘Covariant string theory Feynman amplitudes’, Phys. Lett. 169B CrossRef | Google Scholar, 359.
271. Jimenez, F., Ramirez Mittelbrunn, J. and Sierra, G. (1986), ‘Causality on the world-sheet of the string’, Phys. Lett. 167B CrossRef | Google Scholar, 178.
272. Jordan, P. (1947), ‘Erweiterung der projektiven Relativitatstheorie’, Ann. der Phys. 1 CrossRef | Google Scholar, 219.
273. Julia, B. (1985), 7Supergeometry and Kac-Moody algebras', in Vertex Operators in Mathematics and Physics, Proceedings of a Conference, November 10 – 17, 1983, eds. J., Lepowsky, S., Mandelstam, I.M., Singer (Springer-Verlag, New York Google Scholar), p. 393.
274. Kac, V.G. (1967), ‘Simple graded Lie algebras of finite growth’, Funkt. Anali. i ego Prilozhen. 1, 82. Google Scholar (English translation: Fuctional Anal. Appl. 1, 328.)
275. Kac, V.G. (1975), ‘Classification of simple Lie superalgebras’, Funct. Analys. Appl. 9 Google Scholar, 263.
276. Kac, V.G. (1983) Infinite Dimensional Lie Algebras (Birkhauser, Boston CrossRef | Google Scholar).
277. Kac, V.G. and Todorov, I.T. (1985), ‘Superconformal current algebras and their unitary representations’, Commun. Math. Phys. 102 CrossRef | Google Scholar, 337; Erratum, Commun. Math. Phys. 104, 175.
278. Kallosh, R. (1986), ‘World-sheet symmetries of the heterotic string in (10 + 496) + 16-dimensional superspace’, Phys. Lett. 176B CrossRef | Google Scholar, 50.
279. Kaluza, Th. (1921), ‘On the problem of unity in physics’, Sitz. Preuss. Akad. Wiss. Kl Google Scholar, 966.
280. Kantor, I.L. (1968), ‘Infinite dimensional simple graded Lie algebras’, Doklady AN SSR 179 Google Scholar, 534 (English translation: Sov. Math. Dokl. 9 (1968), 409.)
281. Karlhede, A. and Lindström, U. (1986), ‘The classical bosonic string in the zero tension limit’, Glass. Quant. Grav. 3 CrossRef | Google Scholar, L73.
282. Kato, M. and Ogawa, K. (1983), ‘Covariant quantization of string based on BRS invariance’, Nucl. Phys. B212 CrossRef | Google Scholar, 443.
283. Kato, M. and Matsuda, S. (1986), ‘Construction of singular vertex operators as degenerate primary conformal fields’, Phys. Lett. 172B CrossRef | Google Scholar, 216.
284. Kawai, H., Lewellen, D.C. and Tye, S.-H.H. (1986), ‘A relation between tree amplitudes of closed and open strings’, Nucl. Phys. B269 CrossRef | Google Scholar, 1.
285. Kawai, T. (1986), ‘Remarks on a class of BRST operators’, Phys. Lett. 168B CrossRef | Google Scholar, 355.
286. Klein, O. (1926), ‘Quantentheorie und fünfdimensionale Relativitätstheorie’, Z. Phys. 37 CrossRef | Google Scholar, 895.
287. Klein, O. (1955), ‘Generalizations of Einstein's theory of gravitation considered from the point of view of quantum field theory’, Helv. Phys. Ada Suppl. IV Google Scholar(1956) 58.
288. Knizhnik, V.G. and Zamolodchikov, A.B. (1984), ‘Current algebra and Wess–Zumino model in two dimensions’, Nucl. Phys. B247 CrossRef | Google Scholar, 83.
289. Knizhnik, V.G. (1985), ‘Covariant fermionic vertex in superstrings’, Phys. Lett. 160B CrossRef | Google Scholar, 403.
290. Koba, Z. and Nielsen, H.B. (1969), ‘Reaction amplitude for n-mesons, a generalization of the Veneziano–Bardakçi–Ruegg–Virasoro model’, Nucl. Phys. B10 CrossRef | Google Scholar, 633.
291. Koba, Z. and Nielsen, H.B. (1969), ‘Manifestly crossing-invariant parametrization of n–meson amplitude’, Nucl. Phys. B12 CrossRef | Google Scholar, 517.
292. Kogut, J.B. and Soper, D.E. (1970), ‘Quantum electrodynamics in the infinite-momentum frame’, Phys. Rev. Dl Google Scholar, 2901.
293. Kosterlitz, J.M. and Wray, D.A. (1970), ‘The general N- point vertex in a dual model’, Nuovo Cim. Lett. 3 CrossRef | Google Scholar, 491.
294. Kraemmer, A.B. and Nielsen, H.B. (1975), ‘Quantum description of a twistable string and the Neveu–Schwarz–Ramond model‘, Nucl. Phys. B98 CrossRef | Google Scholar, 29.
295. Kugo, T. and Ojima, I. (1978), ‘Manifestly covariant canonical formulation of Yang–Mills theories physical state subsidiary conditions and physical S-matrix unitarity’, Phys. Lett. 73B CrossRef | Google Scholar, 459.
296. Kugo, T. and Ojima, I. (1979), ‘Local covariant operator formalism of non-Abelian gauge theories and quark confinement problem’, Suppl. Prog. Theor. Phys. 66 CrossRef | Google Scholar, 1.
297. Lepowsky, J. and Wilson, R.L. (1978), ‘Construction of the affine Lie algebra’, Commun. Math. Phys. 62 CrossRef | Google Scholar, 43.
298. Lepowsky, J. and Wilson, R.L. (1984), ‘The structure of standard modules, I: universal algebras and the Rogers–Ramanujan identities’, Inv. Math. 77 CrossRef | Google Scholar, 199.
299. Lichnerowicz, A. (1955), Theories Relativistes de La Gravitation et de L' Electromagnetisme (Masson, Paris Google Scholar).
300. Logunov, A.A., Soloviev, L.D. and Tavkhelidze, A.N. (1967), ‘Dispersion sum rules and high energy scattering’, Phys. Lett. 24 CrossRef | Google Scholar, 181.
301. Lovelace, C. (1968), ‘A novel application of Regge trajectories’, Phys. Lett. 28B CrossRef | Google Scholar, 264.
302. Lovelace, C. (1970), ‘Simple N - Reggeon vertex’, Phys. Lett. 32B CrossRef | Google Scholar, 490.
303. Lovelace, C. (1971), ‘Pomeron form factors and dual Regge cuts’, Phys. Lett. 34B CrossRef | Google Scholar, 500.
304. Lovelace, C. (1979), ‘Systematic search for ghost-free string models’, Nucl. Phys. B148 CrossRef | Google Scholar, 253.
305. Lovelace, C. (1984), ‘Strings in curved space’, Phys. Lett. 135B CrossRef | Google Scholar, 75.
306. Lüscher, M., Symanzik, K. and Weisz, P. (1980), ‘Anomalies of the free loop wave equation in the WKB approximation’, Nucl. Phys. B173 CrossRef | Google Scholar, 365.
307. Luther, A. and Peschel, I. (1975), ‘Calculation of critical exponents in two dimension from quantum field theory in one dimension’, Phys. Rev. B12 CrossRef | Google Scholar, 3908.
308. Maharana, J. and Veneziano, G. (1986), ‘Gauge Ward identities of the compactified bosonic string’, Phys. Lett. 169B CrossRef | Google Scholar, 177.
309. Mandelstam, S. (1968), ‘Dynamics based on rising Regge trajectories’, Phys. Rev. 166 CrossRef | Google Scholar, 1539.
310. Mandelstam, S. (1970), ‘Dynamical applications of the Veneziano formula’, in Lectures on elementary particles and quantum field theory, eds. S., Deser, M., Grisaru and H., Pendleton (MIT Press, Cambridge Google Scholar), p. 165.
311. Mandelstam, S. (1973), ‘Interacting-string picture of dual-resonance models’, Nucl. Phys. B64 CrossRef | Google Scholar, 205.
312. Mandelstam, S. (1973), ‘Manifestly dual formulation of the Ramond model’, Phys. Lett. 46B CrossRef | Google Scholar, 447.
313. Mandelstam, S. (1974), ‘Interacting-string picture of the Neveu– Schwarz–Ramond model’, Nucl. Phys. B69 CrossRef | Google Scholar, 77.
314. Mandelstam, S. (1974), ‘Dual-resonance models’, Phys. Reports C13 CrossRef | Google Scholar, 259.
315. Mandelstam, S. (1975), ‘Soliton operators for the quantized sine-Gordon equation’, Phys. Rev. Dll Google Scholar, 3026.
316. Mandelstam, S. (1983), ‘Light-cone superspace and the ultraviolet finiteness of the N=4 model’, Nucl. Phys. B213 CrossRef | Google Scholar, 149.
317. Mansouri, F. and Nambu, Y. (1972), ‘Gauge conditions in dual resonance models’, Phys. Lett. 39B CrossRef | Google Scholar, 375.
318. Marcus, N. and Sagnotti, A. (1982), ‘Tree-level constraints on gauge groups for type I superstrings’, Phys. Lett. 119B CrossRef | Google Scholar, 97.
319. Marnelius, R. (1983), ‘Canonical quantization of Polyakov's string in arbitrary dimensions’, Nucl. Phys. B211 CrossRef | Google Scholar, 14.
320. Marnelius, R. (1983), ‘Polyakov's spinning string from a canonical point of view’, Nucl. Phys. B221 CrossRef | Google Scholar, 409.
321. Marnelius, R. (1986), ‘The bosonic string in D > 26 with and without Liouville fields’, Phys. Lett. 172B CrossRef | Google Scholar, 337.
322. Martellini, M. (1986), ‘Some remarks on the Liouville approach to two-dimensional quantum gravity’, Ann. Phys. 167 CrossRef | Google Scholar, 437.
323. Martinec, E. (1983), ‘Superspace geometry of fermionic strings’, Phys. Rev. D28 Google Scholar, 2604.
324. Meetz, K. (1969), ‘Realization of chiral symmetry in a curved isospin space’, J. Math. Phys. 10 CrossRef | Google Scholar, 589.
325. Minami, M. (1972), ‘Plateau's problem and the Virasoro conditions in the theory of duality’, Prog. Theor. Phys. 48 CrossRef | Google Scholar, 1308.
326. Montonen, C. (1974), ‘Multiloop amplitudes in additive dual resonance models’, Nuovo Cim. 19A CrossRef | Google Scholar, 69.
327. Moody, R.V. (1967), ‘Lie algebras associated with generalized Cartan matrices’, Bull. Am. Math. Soc. 73 CrossRef | Google Scholar, 217.
328. Moody, R.V. (1968), ‘A new class of Lie algebras’, J. Algebra 10 CrossRef | Google Scholar, 211.
329. Moore, G. and Nelson, P. (1984), ‘Anomalies in nonlinear sigma models’, Phys. Rev. Lett. 53 CrossRef | Google Scholar, 1510.
330. Moore, G. and Nelson, P. (1986), ‘Measure for moduli’, Nucl. Phys. B266 CrossRef | Google Scholar, 58.
331. Moore, G., Nelson, P. and Polchinski, J. (1986), ‘Strings and supermoduli’, Phys. Lett. 169B CrossRef | Google Scholar, 47.
332. Morozov, A.Ya., Perelomov, A.M. and Shifman, M.A., (1984), ‘Exact Gell-Mann–Low function of supersymmetric Kähler sigma models’, Nucl. Phys. B248 CrossRef | Google Scholar, 279.
333. Myung, Y.S. and Cho, B.H. (1986), ‘Entropy production in a hot heterotic string’, Mod. Phys. Lett. Al CrossRef | Google Scholar, 37.
334. Myung, Y.S., Cho, B.H., Kim, Y. and Park, Y-J. (1986), ‘Entropy production of superstrings in the very early universe’, Phys. Rev. D33 Google Scholar, 2944.
335. Nahm, W., Rittenberg, V. and Scheunert, M. (1976), ‘The classification of graded Lie algebras’, Phys. Lett. 61B CrossRef | Google Scholar, 383.
336. Nahm, W. (1976), ‘Mass spectra of dual strings’, Nucl. Phys. B114 CrossRef | Google Scholar, 174.
337. Nahm, W. (1977), ‘Spin in the spectrum of states of dual models’, Nucl. Phys. B120 CrossRef | Google Scholar, 125.
338. Nahm, W. (1978), ‘Supersymmetries and their representations’, Nucl. Phys. B135 CrossRef | Google Scholar, 149.
339. Nakanishi, N. (1971), ‘Crossing-symmetric decomposition of the five-point and six-point Veneziano formulas into tree-graph integrals’, Prog. Theor. Phys. 45 CrossRef | Google Scholar, 436.
340. Nam, S. (1986), ‘The Kac formula for the N = 1 and the N = 2 super-conformal algebras’, Phys. Lett. 172B CrossRef | Google Scholar, 323.
341. Nambu, Y. (1970), ‘Quark model and the factorization of the Veneziano amplitude’, in Symmetries and quark models, ed. R., Chand Google Scholar (Gordon and Breach), p. 269.
342. Nambu, Y. (1970), ‘Duality and hydrodynamics Google Scholar’, Lectures at the Copenhagen symposium.
343. Narain, K.S. (1986), ‘New heterotic string theories in uncompactified dimensions > 10’, Phys. Lett. 169B CrossRef | Google Scholar, 41.
344. Ne'eman, Y. (1986), ‘Strings reinterpreted as topological elements of space-time’, Phys. Lett. 173B CrossRef | Google Scholar, 126.
345. Ne'eman, Y. and Šijaçki, D. (1986), ‘Spinors for superstrings in a generic curved space’, Phys. Lett. 174B CrossRef | Google Scholar, 165.
346. Ne'eman, Y. and Šijaçki, D. (1986), ‘Superstrings in a generic super-symmetric curved space’, Phys. Lett. 174B CrossRef | Google Scholar, 171.
347. Nemeschansky, D. and Yankielowicz, S. (1985), ‘Critical dimension of string theories in curved space’, Phys. Rev. Lett. 54 CrossRef | Google Scholar | PubMed, 620.
348. Nepomechie, R.I. (1982), ‘Duality and the Polyakov N-point Green's function’, Phys. Rev. D25 Google Scholar, 2706.
349. Nepomechie, R.I. (1986), ‘Non-Abelian symmetries from higher dimensions in string theories’, Phys. Rev. D33 Google Scholar, 3670.
350. Nepomechie, R.I. (1986), ‘String models with twisted currents’, Phys. Rev. D34 Google Scholar, 1129.
351. Neveu, A. and Schwarz, J.H. (1971), ‘Factorizable dual model of pions’, Nucl. Phys. B31 CrossRef | Google Scholar, 86.
352. Neveu, A., Schwarz, J.H. and Thorn, C.B. (1971), ‘Reformulation of the dual pion model’, Phys. Lett. 35B CrossRef | Google Scholar, 529.
353. Neveu, A. and Schwarz, J.H. (1971), ‘Quark model of dual pions’, Phys. Rev. D4 Google Scholar, 1109.
354. Neveu, A. and Thorn, C.B. (1971), ‘Chirality in dual- resonance models’, Phys. Rev. Lett. 27 CrossRef | Google Scholar, 1758.
355. Neveu, A. and Scherk, J. (1972), ‘Connection between Yang-Mills fields and dual models’, Nucl. Phys. B36 CrossRef | Google Scholar, 155.
356. Nielsen, H.B. (1969), ‘An almost physical interpretation of the dual N point function Google Scholar’, Nordita report, (unpublished).
357. Nielsen, H.B. (1970), ‘An almost physical interpretation of the integrand of the n-point Veneziano model’, submitted to the 15th International Conference on High Energy Physics, (Kiev Google Scholar).
358. Nielsen, H.B. and Olesen, P. (1970), ‘A parton view on dual amplitudes’, Phys. Lett. 32B CrossRef | Google Scholar, 203.
359. Nielsen, H.B. and Olesen, P. (1973), ‘Local field theory of the dual string’, Nucl. Phys. B57 CrossRef | Google Scholar, 367.
360. Olesen, P. (1986), ‘On the exponentially increasing level density in string models and the tachyon singularity’, Nucl. Phys. B267 CrossRef | Google Scholar, 539.
361. Olesen, P. (1986), ‘On a possible stabilization of the tachyonic strings’, Phys. Lett. 168B CrossRef | Google Scholar, 220.
362. Olive, D. and Scherk, J. (1973), ‘No-ghost theorem for the Pomeron sector of the dual model’, Phys. Lett. 44B CrossRef | Google Scholar, 296.
363. Olive, D. and Scherk, J. (1973), ‘Towards satisfactory scattering amplitudes for dual fermions’, Nucl. Phys. B64 CrossRef | Google Scholar, 334.
364. Olive, D. (1974), ‘Dual Models’, in Proceedings of the XVII International Conference on High Energy Physics (Science Research Council, Rutherford Laboratory, Chilton, Didcot, U.K. Google Scholar), p. 1–269.
365. Paton, J.E. and Chan, H.M. (1969), ‘Generalized Veneziano model with isospin’, Nucl. Phys. B10 CrossRef | Google Scholar, 516.
366. Patrascioiu, A. (1974), ‘Quantum dynamics of a massless relativistic string (II)’, Nucl. Phys. B81 CrossRef | Google Scholar, 525.
367. Pauli, W. (1933), ‘Über die Formulierung der Naturgesetze mit funf homogenen Koordinaten’, Ann. der Phys. 18 CrossRef | Google Scholar, 305, 337.
368. Pernici, M. and Van Nieuwenhuizen, P. (1986), ‘A covariant action for the SU(2) spinning string as a hyperkähler or quaternionic nonlinear sigma model’, Phys. Lett. 169B CrossRef | Google Scholar, 381.
369. Polyakov, A.M. (1981), ‘Quantum geometry of bosonic strings’, Phys. Lett. 103B CrossRef | Google Scholar, 207.
370. Polyakov, A.M. (1981), ‘Quantum geometry of fermionic strings’, Phys. Lett. 103B CrossRef | Google Scholar, 211.
371. Ramond, P. (1971), ‘An interpretation of dual theories’, Nuovo Cim. 4A CrossRef | Google Scholar, 544.
372. Ramond, P. (1971), ‘Dual theory for free fermions’, Phys. Rev. D3 Google Scholar, 2415.
373. Ramond, P. and Schwarz, J.H. (1976), ‘Classification of dual model gauge algebras’, Phys. Lett. 64B CrossRef | Google Scholar, 75.
374. Rayski, J. (1965), ‘Unified field theory and modern physics’, Acta Physica Polonica 27 Google Scholar, 89.
375. Rebbi, C. (1974), ‘Dual models and relativistic quantum strings’, Phys. Reports C12 CrossRef | Google Scholar, 1.
376. Rebbi, C. (1975), ‘On the commutation properties of normal-mode op erators and vertices in the theory of the relativistic quantum string’, Nuovo Cim. 26A CrossRef | Google Scholar, 105.
377. Redlich, A.N. and Schnitzer, H.J. (1986), ‘The Polyakov string in O(N) or SU(N) group space’, Phys. Lett. 167B CrossRef | Google Scholar, 315.
378. Redlich, A.N. (1986), ‘When is the central charge of the Virasoro algebra in string theories in curved space-time not a numerical constant?’, Phys. Rev. D33 Google Scholar, 1094.
379. Rosenzweig, C. (1971), ‘Excited vertices in the model of Neveu and Schwarz’, Nuovo Cim. Lett. 2 CrossRef | Google Scholar, 924.
380. Rosner, J.L. (1969), ‘Graphical form of duality’, Phys. Rev. Lett. 22 CrossRef | Google Scholar, 689.
381. Roy, S.M. amd Singh, V. (1986), ‘Quantization of Nambu–Goto strings with new boundary conditions’, Phys. Rev. D33 Google Scholar, 3792.
382. Sakita, B. and Virasoro, M.A. (1970), ‘Dynamical model of dual amplitudes’, Phys. Rev. Lett. 24 CrossRef | Google Scholar, 1146.
383. Salam, A. and Strathdee, J. (1974), ‘Super-gauge transformations’, Nucl. Phys. B76 CrossRef | Google Scholar, 477.
384. Salam, A. and Strathdee, J. (1982), ‘On Kaluza–Klein theory’, Ann. Phys. 141 CrossRef | Google Scholar, 316.
385. Salomonson, P. and Skagerstam, B.S. (1986), ‘On superdense superstring gases: A heretic string model approach’, Nucl. Phys. B268 CrossRef | Google Scholar, 349.
386. Sasaki, R. and Yamanaka, I. (1985), ‘Vertex operators for a bosonic string’, Phys. Lett. 165B CrossRef | Google Scholar, 283.
387. Sasaki, R. and Yamanaka, I. (1986), ‘Primary fields in a unitary representation of Virasoro algebras’, Prog. Theor. Phys. 75 CrossRef | Google Scholar, 706.
388. Scherk, J. (1971), ‘Zero-slope limit of the dual resonance model’, Nucl. Phys. B31 CrossRef | Google Scholar, 222.
389. Scherk, J. and Schwarz, J.H. (1974), ‘Dual models for non-hadrons’, Nucl. Phys. B81 CrossRef | Google Scholar, 118.
390. Scherk, J. and Schwarz, J.H. (1974), ‘Dual models and the geometry of space-time’, Phys. Lett. 52B CrossRef | Google Scholar, 347.
391. Scherk, J. and Schwarz, J.H. (1975), ‘Dual model approach to a renormalizable theory of gravitation Google Scholar’, honorable mention in the 1975 essay competition of the Gravity Research Foundation.
392. Scherk, J. (1975), ‘An introduction to the theory of dual models and strings’, Rev. Mod. Phys. 47 CrossRef | Google Scholar, 123.
393. Scherk, J. and Schwarz, J.H. (1975), ‘Dual field theory of quarks and gluons’, Phys. Lett. 57B CrossRef | Google Scholar, 463.
394. Scheunert, M.Nahm, W. and Rittenberg, V. (1976), ‘Classification of all simple graded Lie algebras whose Lie algebra is reductive. I.’, J. Math. Phys. 17 CrossRef | Google Scholar, 1626.
395. Schild, A. (1977), ‘Classical null strings’, Phys. Rev. D16 Google Scholar, 1722.
396. Schwarz, J.H. (1971), ‘Dual quark-gluon model of hadrons’, Phys. Lett. 37B CrossRef | Google Scholar, 315.
397. Schwarz, J.H. (1972), ‘Dual-pion model satisfying current-algebra constraints’, Phys. Rev. D5 Google Scholar, 886.
398. Schwarz, J.H. (1972), ‘Physical states and Pomeron poles in the dual pion model’, Nucl. Phys. B46 CrossRef | Google Scholar, 61.
399. Schwarz, J.H. and Wu, C.C. (1973), ‘Evaluation of dual fermion amplitudes’, Phys. Lett. 47B CrossRef | Google Scholar, 453.
400. Schwarz, J.H. (1973), ‘Dual resonance theory’, Phys. Reports C8 CrossRef | Google Scholar, 269.
401. Schwarz, J.H. (1973), ‘Off-mass-shell dual amplitudes without ghosts’, Nucl. Phys. B65 CrossRef | Google Scholar, 131.
402. Schwarz, J.H. (1974), ‘Dual quark-gluon theory with dynamical color’, Nucl. Phys. B68 CrossRef | Google Scholar, 221.
403. Schwarz, J.H. and Wu, C.C. (1974), ‘Off-mass-shell dual amplitudes (II)’, Nucl. Phys. B72 CrossRef | Google Scholar, 397.
404. Schwarz, J.H. and Wu, C.C. (1974), ‘Functions occurring in dual fermion amplitudes’, Nucl. Phys. B73 CrossRef | Google Scholar, 77.
405. Schwarz, J.H. (1974), ‘Off-mass-shell dual amplitudes (III)’, Nucl. Phys. B76 CrossRef | Google Scholar, 93.
406. Schwarz, J.H. (1978), ‘Spinning string theory from a modern perspective’, in Proc. Orbis Scientiae 1978, New Frontiers in High-Energy Physics, eds. A., Perlmutter and L.F., Scott Google Scholar (Plenum Press), p. 431.
407. Schwarz, J.H. (1982), ‘Superstring theory’, Phys. Reports 89 CrossRef | Google Scholar, 223.
408. Schwarz, J.H. (1982), ‘Gauge groups for type I superstrings’, in Proc. of the Johns Hopkins Workshop on Current Problems in Particle Theory 6, Florence Google Scholar, 1982, p. 233.
409. Schwarz, J.H., ed. (1985), Superstrings: The First Fifteen Years of Superstring Theory, in 2 volumes (World Scientific, Singapore CrossRef | Google Scholar).
410. Schwarz, J.H. (1985), ‘Introduction to superstrings’, in Superstrings and Supergravity, A.T., Davis and D.G., Sutherland, eds. (Edinburgh Google Scholar), p. 301.
411. Schwarz, J.H. (1986), ‘Faddeev–Popov ghosts and BRS symmetry in string theories’, Suppl. Prog. Theor. Phys. 86 CrossRef | Google Scholar, 70.
412. Sciuto, S. (1969), ‘The general vertex function in dual resonance models’, Nuovo Cim. Lett. 2 CrossRef | Google Scholar, 411.
413. Segal, G. (1981), ‘Unitary representations of some infinite dimensional groups’, Commun. Math. Phys. 80 CrossRef | Google Scholar, 301.
414. Sen, A. (1985), ‘Heterotic string in an arbitrary background field’, Phys. Rev. D32 Google Scholar, 2102.
415. Sen, A. (1985), ‘Equations of motion for the heterotic string theory from the conformal invariance of the sigma model’, Phys. Rev. Lett. 55 CrossRef | Google Scholar | PubMed, 1846.
416. Sen, A. (1986), ‘Local gauge and Lorentz invariance of heterotic string theory’, Phys. Lett. 166B CrossRef | Google Scholar, 300.
417. Shapiro, J.A. (1969), ‘Narrow-resonance model with Regge behavior for ππ scattering’, Phys. Rev. 179 CrossRef | Google Scholar, 1345.
418. Shapiro, J.A. (1970), ‘Electrostatic analogue for the Virasoro model’, Phys. Lett. 33B CrossRef | Google Scholar, 361.
419. Shapiro, J.A. (1972), ‘Loop graph in the dual-tube model’, Phys. Rev. D5 Google Scholar, 1945.
420. Siegel, W. (1983), ‘Hidden local supersymmetry in the supersymmetric particle action’, Phys. Lett. 128B CrossRef | Google Scholar, 397.
421. Siegel, W. (1984), ‘Covariantly second-quantized string II’, Phys. Lett. 149B, 157; (1985), ‘Covariantly second-quantized string II’, Phys. Lett. 151B Google Scholar, 391.
422. Siegel, W. (1984), ‘Covariantly second-quantized string III’, Phys. Lett. 149B CrossRef | Google Scholar, 162;
(1985), ‘Covariantly second-quantized string III’, Phys. Lett. 151B Google Scholar, 396.
423. Siegel, W. (1985), ‘Spacetime-supersymmetric quantum mechanics’, Class. Quant. Grav. 2 CrossRef | Google Scholar, L95.
424. Siegel, W. (1985), ‘Classical superstring mechanics’, Nucl. Phys. B263 Google Scholar, 93.
425. Sierra, G. (1986), ‘New local bosonic symmetries of the particle, superparticle and string actions’, Class. Quant. Grav. 3 CrossRef | Google Scholar, L67.
426. Skyrme, T.H.R. (1961), ‘Particle states of a quantized meson field’, Proc. Roy. Soc. A262 CrossRef | Google Scholar, 237.
427. Slansky, R. (1981), ‘Group theory for unified model building’, Phys. Reports 79 CrossRef | Google Scholar, 1.
428. Streater, R.F. and Wilde, I.F. (1970), ‘Fermion states of a boson field’, Nucl. Phys. B24 CrossRef | Google Scholar, 561.
429. Sugawara, H. (1968), ‘A field theory of currents’, Phys. Rev. 170 CrossRef | Google Scholar, 1659.
430. Sugawara, H. (1986), ‘String in curved space: Use of spinor representation of a noncompact group’, Phys. Rev. Lett. 56 CrossRef | Google Scholar | PubMed, 103.
431. Sundborg, B. (1985), ‘Thermodynamics of superstrings at high energy densities’, Nucl. Phys. B254 CrossRef | Google Scholar, 583.
432. Susskind, L. (1970), ‘Dual-symmetric theory of hadrons. – I’, Nuovo Cim. 69A CrossRef | Google Scholar, 457.
433. Susskind, L. (1970), ‘Structure of hadrons implied by duality’, Phys. Rev. Dl Google Scholar, 1182.
434. Teitelboim, C. (1986), ‘Gauge invariance for extended objects’, Phys. Lett. 167B CrossRef | Google Scholar, 63.
435. 't Hooft, G. (1974), ‘A planar diagram theory for strong interactions’, Nucl. Phys. B72 Google Scholar, 461.
436. Thorn, C.B. (1970), ‘Linear dependences in the operator formalism of Fubini, Veneziano, and Gordon’, Phys. Rev. Dl Google Scholar, 1693.
437. Thorn, C.B. (1971), ‘Embryonic dual model for pions and fermions’, Phys. Rev. D4 Google Scholar, 1112.
438. Thorn, C.B. (1980), ‘Dual models and strings: The critical dimension’, Phys. Reports 67 CrossRef | Google Scholar, 163.
439. Thorn, C.B. (1984), ‘Computing the Kac determinant using dual model techniques and more about the no-ghost theorem’, Nucl. Phys. B248 CrossRef | Google Scholar, 551.
440. Thorn, C.B. (1985), ‘A proof of the no-ghost theorem using the Kac determinant’, in Vertex Operators in Mathematics and Physics, Proceedings of a Conference, November 10 – 17, 1983, eds. J., Lepowsky, S., Mandelstam, I.M., Singer (Springer-Verlag, New York Google Scholar), p. 411.
441. Thorn, C.B. (1986), ‘Introduction to the theory of relativistic strings’, in Workshop on Unified String Theories, 29 July – 16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore Google Scholar), p. 5.
442. Todorov, I.T. (1985), ‘Current algebra approach to conformal invariant two-dimensional models’, Phys. Lett. 153B CrossRef | Google Scholar, 77.
443. Trautman, A. (1970), ‘Fibre bundles associated with space-time’, Rep. Math. Phys. 1 CrossRef | Google Scholar, 29.
444. Tseytlin, A.A. (1986), ‘Covariant string field theory and effective action’, Phys. Lett. 168B CrossRef | Google Scholar, 63.
445. Tseytlin, A.A. (1986), ‘Effective action for a vector field in the theory of open superstrings’, Pis'ma Zh. Eksp. Teor. Fiz. 43 Google Scholar, 209.
446. Tye, S.-H.H. (1985), ‘The limiting temperature of the universe and superstrings’, Phys. Lett. 158B CrossRef | Google Scholar, 388.
447. Tye, S.-H.H. (1985), ‘New actions for superstrings’, Phys. Rev. Lett. 55 CrossRef | Google Scholar | PubMed, 1347.
448. Tyutin, I.V. (1975), ‘Gauge invariance in field theory and in statistical physics in the operator formulation Google Scholar’, Lebedev preprint FIAN No. 39 (in Russian), unpublished.
449. Vafa, C. and Witten, E. (1985), ‘Bosonic string algebras’, Phys. Lett. 159B CrossRef | Google Scholar, 265.
450. Van Nieuwenhuizen, P. (1981), ‘Supergravity’, Phys. Reports 68 CrossRef | Google Scholar, 189.
451. Van Nieuwenhuizen, P. (1986), ‘The actions of the N = 1 and N = 2 spinning strings as conformal supergravities’, Int. J. Mod. Phys. Al CrossRef | Google Scholar, 155.
452. Veblen, O. (1933), Projektive Relativitdts Theorie (Springer, Berlin Google Scholar).
453. Veneziano, G. (1968), ‘Construction of a crossing-symmetric, Reggebehaved amplitude for linearly rising trajectories’, Nuovo Cim. 57A CrossRef | Google Scholar, 190.
454. Veneziano, G. (1974), ‘An introduction to dual models of strong interactions and their physical motivations’, Phys. Reports C9 CrossRef | Google Scholar, 199.
455. Veneziano, G. (1986), ‘Ward identities in dual string theories’, Phys. Lett. 167B CrossRef | Google Scholar, 388.
456. Virasoro, M.A. (1969), ‘Alternative constructions of crossing-symmetric amplitudes with Regge behavior’, Phys. Rev. 177 CrossRef | Google Scholar, 2309.
457. Virasoro, M.A. (1969), ‘Generalization of Veneziano's formula for the five-point function’, Phys. Rev. Lett. 22 CrossRef | Google Scholar, 37.
458. Virasoro, M.A. (1970), ‘Subsidiary conditions and ghosts in dual-resonance models’, Phys. Rev. Dl Google Scholar, 2933.
459. Volovich, I.V. and Katanaev, M.O. (1986), ‘Quantum strings with a dynamic geometry’, Pis'ma Zh. Eksp. Teor. Fiz. 43 Google Scholar, 212.
460. Waterson, G. (1986), ‘Bosonic construction of an N = 2 extended superconformal theory in two dimensions’, Phys. Lett. 171B CrossRef | Google Scholar, 77.
461. Weinberg, S. (1964), ‘Derivation of gauge invariance and the equivalence principle from Lorentz invariance of the S-matrix’, Phys. Lett. 9 CrossRef | Google Scholar, 357.
462. Weinberg, S. (1964), ‘Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass’, Phys. Rev. 135 CrossRef | Google Scholar, B1049.
463. Weinberg, S. (1965), ‘Photons and gravitons in perturbation theory: derivation of Maxwell's and Einstein's equations’, Phys. Rev. 138 CrossRef | Google Scholar, B988.
464. Weinberg, S. (1985), ‘Coupling constants and vertex functions in string theories’, Phys. Lett. 156B CrossRef | Google Scholar, 309.
465. Wess, J. and Zumino, B. (1974), ‘Supergauge transformations in four dimensions’, Nucl. Phys. B70 CrossRef | Google Scholar, 39.
466. Wess, J. and Bagger, J. (1983), Supersymmetry and Supergravity Google Scholar, (Princeton Univ. Press).
467. Witten, E. (1983), ‘Global aspects of current algebra’, Nucl. Phys. B223 CrossRef | Google Scholar, 422.
468. Witten, E. (1983), ‘D = 10 superstring theory’, in Fourth Workshop on Grand Unification, ed. P., Langacker CrossRef | Google Scholar et al. (Birkhauser), p. 395.
469. Witten, E. (1984), ‘Non-Abelian bosonization in two dimensions’, Commun. Math. Phys. 92 CrossRef | Google Scholar, 455.
470. Witten, E. (1986), ‘Twistor-like transform in ten dimensions’, Nucl. Phys. B266 CrossRef | Google Scholar, 245.
471. Witten, E. (1986), ‘Global anomalies in string theory’, in Symposium on Anomalies, Geometry, Topology, March 28–30, 1985, eds. W.A., Bardeen and A.R., White (World Scientific, Singapore Google Scholar), p. 61.
472. Yoneya, T. (1973), ‘Quantum gravity and the zero-slope limit of the generalized Virasoro model’, Nuovo Cim. Lett. 8 CrossRef | Google Scholar, 951.
473. Yoneya, T. (1974), ‘Connection of dual models to electrodynamics and gravidynamics’, Prog. Theor. Phys. 51 CrossRef | Google Scholar, 1907.
474. Yoneya, T. (1976), ‘Geometry, gravity and dual strings’, Prog. Theor. Phys. 56 CrossRef | Google Scholar, 1310.
475. Yoshimura, M. (1971), ‘Operational factorization and symmetry of the Shapiro–Virasoro model’, Phys. Lett. 34B CrossRef | Google Scholar, 79.
476. Yu, L.P. (1970), ‘Multifactorizations and the four-Reggeon vertex function in the dual resonance models’, Phys. Rev. D2 Google Scholar, 1010.
477. Yu, L.P. (1970), ‘General treatment of the multiple factorizations in the dual resonance models; the N-Reggeon amplitudes’, Phys. Rev. D2 Google Scholar, 2256.
478. Zumino, B. (1974), ‘Relativistic strings and supergauges’ in Renormalization and Invariance in Quantum Field Theory, ed. E., Caianiello CrossRef | Google Scholar (Plenum Press), p. 367.

Metrics

Altmetric attention score

Usage data cannot currently be displayed.