Skip to main content Accessibility help
×
  • Cited by 70
Publisher:
Cambridge University Press
Online publication date:
September 2012
Print publication year:
2012
Online ISBN:
9781139248563

Book description

Twenty-five years ago, Michael Green, John Schwarz, and Edward Witten wrote two volumes on string theory. Published during a period of rapid progress in this subject, these volumes were highly influential for a generation of students and researchers. Despite the immense progress that has been made in the field since then, the systematic exposition of the foundations of superstring theory presented in these volumes is just as relevant today as when first published. A self-contained introduction to superstrings, Volume 1 begins with an elementary treatment of the bosonic string, before describing the incorporation of additional degrees of freedom: fermionic degrees of freedom leading to supersymmetry and internal quantum numbers leading to gauge interactions. A detailed discussion of the evaluation of tree-approximation scattering amplitudes is also given. Featuring a new preface setting the work in context in light of recent advances, this book is invaluable for graduate students and researchers in general relativity and elementary particle theory.

Reviews

‘Both volumes of Superstring Theory are likely to remain standard reference works for years to come.'

Paul K. Townsend Source: Nature

'… these books still belong on the essential reading list for anyone wanting to gain a deep understanding of the subject.'

Douglas J. Smith Source: Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
1. Ademollo, M., Rubinstein, H.R., Veneziano, G. and Virasoro, M.A. (1968), ‘Bootstrap of meson trajectories from superconvergence’, Phys. Rev. 176, 1904.
2. Ademollo, M., Veneziano, G. and Weinberg, S. (1969), ‘Quantization conditions for Regge intercepts and hadron masses’, Phys. Rev. Lett. 22, 83.
3. Ademollo, M., Del Giudice, E., Di Vecchia, P. and Fubini, S. (1974), 'Couplings of three excited particles in the dual-resonance model', Nuovo Cim. 19A, 181.
4. Ademollo, M., D'Adda, A., D'Auria, R., Napolitano, E., Sciuto, S., Di Vecchia, P., Gliozzi, F., Musto, R. and Nicodemi, F. (1974), ‘Theory of an interacting string and dual-resonance model’, Nuovo Cim. 21A, 77.
5. Ademollo, M., Brink, L., D'Adda, A., D'Auria, R., Napolitano, E., Sciuto, S., Del Giudice, E., Di Vecchia, P., Ferrara, S., Gliozzi, F., Musto, R., Pettorini, R. and Schwarz, J. (1976), ‘Dual string with U(l) colour symmetry’, Nucl. Phys. B111, 77.
6. Ademollo, M., Brink, L., D'Adda, A., D'Auria, R., Napolitano, E., Sciuto, S., Del Giudice, E., Di Vecchia, P., Ferrara, S., Gliozzi, F., Musto, R. and Pettorino, R. (1976), ‘Dual string models with nonAbelian colour and flavour symmetries’, Nucl. Phys. B114, 297.
7. Ademollo, M., Brink, L., D'Adda, A., D'Auria, R., Napolitano, E., Sciuto, S., Del Giudice, E., Di Vecchia, P., Ferrara, S., Gliozzi, F., Musto, R., and Pettorino, R. (1976), ‘Supersymmetric strings and color confinement’, Phys. Lett. 62B, 105.
8. Affleck, Ian. (1985), ‘Critical behavior of two-dimensional systems with continuous symmetries’, Phys. Rev. Lett. 55, 1355.
9. Aharonov, Y., Casher, A. and Susskind, L. (1971), ‘Dual-parton model for mesons and baryons’, Phys. Lett. 35B, 512.
10. Aharonov, Y., Casher, A. and Susskind, L. (1972), ‘Spin-½ partons in a dual model of hadrons’, Phys. Rev. D5, 988.
11. Alessandrini, V., Amati, D., Le Bellac, M. and Olive, D. (1970), ‘Duality and gauge properties of twisted propagators in multi-Veneziano theory’, Phys. Lett. 32B, 285.
12. Alessandrini, V., Amati, D., Le Bellac, M. and Olive, D. (1971), ‘The operator approach to dual multiparticle theory’, Phys. Reports Cl, 269.
13. Altschüler, D. and Nilles, H.P. (1985), ‘String models with lower critical dimension, compactification and nonabelian symmetries’, Phys. Lett. 154B, 135.
14. Alvarez, E. (1986), ‘Strings at finite temperature’, Nucl. Phys. B269, 596.
15. Alvarez, O. (1983), ‘Theory of strings with boundaries: Fluctuations, topology and quantum geometry’, Nucl. Phys. B216, 125.
16. Alvarez, O. (1986), ‘Differential geometry in string models’, in Workshop on Unified String Theories, 29 July – 16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore), p. 103.
17. Alvarez-Gaumé, L. and Freedman, D.Z. (1980), ‘Kahler geometry and the renormalization of supersymmetric σ models’, Phys. Rev. D22, 846.
18. Alvarez-Gaumé, L. and Freedman, D.Z. (1980), ‘Geometrical structure and ultraviolet finiteness in the supersymmetric σ-model’, Commun. Math. Phys. 80, 443.
19. Alvarez-Gaumé, L., Freedman, D.Z. and Mukhi, S. (1981), ‘The background field method and the ultraviolet structure of the supersymmetric nonlinear σ-model’, Ann. Phys. 134, 85.
20. Alvarez-Gaumé, L. and Witten, E. (1983) ‘Gravitational anomalies’, Nucl. Phys. B234, 269.
21. Amati, D., Le Bellac, M. and Olive, D. (1970), ‘The twisting operator in multi-Veneziano theory’, Nuovo Cim. 66A, 831.
22. Ambjør, J., Durhuus, B., Frohlich, J. and Orland, P. (1986), ‘The appearance of critical dimensions in regulated string theories’, Nucl. Phys. B270[FS16], 457.
23. Antoniadis, I., Bachas, C., Kounnas, C. and Windey, P. (1986), ‘Supersymmetry among free fermions and superstrings’, Phys. Lett. 171B, 51.
24. Aoyama, H., Dhar, A. and Namazie, M.A. (1986), ‘Covariant amplitudes in Polyakov string theory’, Nucl. Phys. B267, 605.
25. Appelquist, T., Chodos, A. and Freund, P., (1987), Modem Kaluza-Klein Theory and Applications (Benjamin/Cummings).
26. Ardalan, F. and Mansouri, F. (1986), ‘Interacting parastrings’, Phys. Rev. Lett. 56, 2456.
27. Atick, J.J., Dhar, A. and Ratra, B. (1986), ‘Superstring propagation in curved superspace in the presence of background super Yang–Mills fields’, Phys. Lett. 169B, 54.
28. Atick, J.J., Dhar, A. and Ratra, B. (1986), ‘Superspace formulation of ten dimensional supergravity coupled to N = 1 super-Yang-Mills theory’, Phys. Rev. D33, 2824.
29. Balázs, L.P. (1986), ‘Could there be a Planck-scale unitary bootstrap underlying the superstring?’, Phys. Rev. Lett. 56, 1759.
30. Banks, T., Horn, D. and Neuberger, H. (1976), ‘Bosonization of the SU(N) Thirring models’, Nucl. Phys. B108, 119.
31. Bardakçi, K. and Ruegg, H. (1968), ‘Reggeized resonance model for the production amplitude’, Phys. Lett. 28B, 342.
32. Bardakçi, K. and Ruegg, H. (1969), ‘Reggeized resonance model for arbitrary production processes’, Phys. Rev. 181, 1884.
33. Bardakçi, K. and Mandelstam, S. (1969), ‘Analytic solution of the linear-trajectory bootstrap’, Phys. Rev.184, 1640.
34. Bardakiç, K. and Halpern, M.B. (1971), ‘New dual quark models’, Phys. Rev. D3, 2493.
35. Batalin, I.A. and Vilkovisky, G.A. (1977), ‘Relativistic S-matrix of dynamical systems with boson and fermion constraints’, Phys. Lett. 69B, 309.
36. Becchi, C., Rouet, A. and Stora, R. (1974), ‘The abelian Higgs Kibble model, unitarity of the S-operator’, Phys. Lett. 52B, 344.
37. Becchi, C., Rouet, A. and Stora, R. (1976), ‘Renormalization of gauge theories’, Ann. Phys. 98, 287.
38. Belavin, A.A., Polyakov, A.M. and Zamolodchikov, A.B. (1984), ‘Infinite conformal symmetry in two-dimensional quantum field theory“, Nucl. Phys. B241, 333.
39. Bengtsson, I. and Cederwall, M. (1984), ‘Covariant superstrings do not admit covariant gauge fixing’, Göteborg preprint 84-21-Rev.
40. Bergshoeff, E., Nishino, H. and Sezgin, E. (1986), ‘Heterotic σ-models and conformal supergravity in two dimensions’, Phys. Lett. 166B, 141.
41. Bergshoeff, E., Sezgin, E. and Townsend, P.K. (1986), ‘Superstring actions in D = 3,4,6,10 curved superspace’, Phys. Lett. 169B, 191.
42. Bergshoeff, E., Randjbar-Daemi, S., Salam, A., Sarmadi, H. and Sezgin, E. (1986), ‘Locally supersymmetric σ-model with Wess-Zumino term in two dimensions and critical dimensions for strings’, Nucl. Phys. B269, 77.
43. Bershadsky, M.A., Knizhnik, V.G. and Teitelman, M.G. (1985), ‘Superconformal symmetry in two dimensions’, Phys. Lett. 151B, 31.
44. Bershadsky, M. (1986), ‘Superconformal algebras in two dimensions with arbitrary N’, Phys. Lett. 174B, 285.
45. Bjorken, J.D., Kogut, J.B. and Soper, D.E. (1971), ‘Quantum electrodynamics at infinite momentum: Scattering from an external field’, Phys. Rev. D3, 1382.
46. Boucher, W., Friedan, D. and Kent, A. (1986), ‘Determinant formulae and unitarity for the N = 2 superconformal algebras in two dimensions or exact results on string compactification’, Phys. Lett. 172B, 316.
47. Boulware, D.G. and Newman, E.T. (1986), ‘The geometry of open bosonic strings’, Phys. Lett. 174B, 378.
48. Bouwknegt, P. and Van Nieuwenhuizen, P. (1986), ‘Critical dimensions of the N=l and N=2 spinning string derived from Fujikawa's approach’, Class. Quant. Grav. 3, 207.
49. Bowick, M.J. and Wijewardhana, L.C.R. (1985), ‘Superstrings at high temperature’, Phys. Rev. Lett. 54, 2485.
50. Bowick, M. and Giirsey, F. (1986), ‘The algebraic structure of BRST quantization’, Phys. Lett. 175B, 182.
51. Braaten, E., Curtright, T.L. and Zachos, C.K. (1985), ‘Torsion and geometrostasis in nonlinear σ models’, Nucl. Phys. B260, 630.
52. Brink, L. and Olive, D. (1973), ‘The physical state projection operator in dual resonance models for the critical dimension of space-time’, Nucl. Phys. B56, 253.
53. Brink, L. and Nielsen, H.B. (1973), ‘A simple physical interpretation of the critical dimension of space-time in dual models’, Phys. Lett. 45B, 332.
54. Brink, L., Olive, D., Rebbi, C. and Scherk, J. (1973), ‘The missing gauge conditions for the dual fermion emission vertex and their consequences’, Phys. Lett. 45B, 379.
55. Brink, L. and Winnberg, J.O. (1976), ‘The superoperator formalism of the Neveu-Schwarz-Ramond model’, Nucl. Phys. B103, 445.
56. Brink, L., Di Vecchia, P. and Howe, P. (1976), ‘A locally supersymmetric and reparametrization invariant action for the spinning string’, Phys. Lett. 65B, 471.
57. Brink, L., Schwarz, J.H. and Scherk, J. (1977), ‘Supersymmetric Yang-Mills theories’, Nucl. Phys. B121, 77.
58. Brink, L. and Schwarz, J.H. (1977), ‘Local complex supersymmetry in two dimensions’, Nucl. Phys. B121, 285.
59. Brink, L. and Schwarz, J.H. (1981), ‘Quantum superspace’, Phys. Lett. 100B, 310.
60. Brink, L. and Green, M.B. (1981), ‘Point-like particles and off-shell supersymmetry algebras’, Phys. Lett. 106B, 393.
61. Brink, L., Lindgren, O. and Nilsson, B.E.W. (1983), ‘N = 4 Yang-Mills theory on the light cone’, Nucl. Phys. B212, 401.
62. Brink, L. (1985), ‘Superstrings’, Lectures delivered at the 1985 Les Houches summer school; Göteborg preprint 85–68.
63. Brooks, R., Muhammad, F. and Gates, S.J. (1986), ‘Unidexterous D = 2 supersymmetry in superspace’, Nucl. Phys. B268, 599.
64. Brower, R.C. and Thorn, C.B. (1971), ‘Eliminating spurious states from the dual resonance model’, Nucl. Phys. B31, 163.
65. Brower, R.C. and Goddard, P. (1972), ‘Collinear algebra for the dual model’, Nucl. Phys. B40, 437.
66. Brower, R.C. (1972), ‘Spectrum-generating algebra and no-ghost theorem for the dual model’, Phys. Rev. D6, 1655.
67. Brower, R.C. and Friedman, K.A. (1973), ‘Spectrum-generating algebra and no-ghost theorem for the Neveu-Schwarz model’, Phys. Rev. D7, 535.
68. Bruce, D., Corrigan, E. and Olive, D. (1975), ‘Group theoretical calculation of traces and determinants occurring in dual theories’, Nucl. Phys. B95, 427.
69. Callan, C.G., Friedan, D., Martinec, E.J. and Perry, M.J. (1985), ‘Strings in background fields’, Nucl. Phys. B262, 593.
70. Callan, C.G. and Gan, Z. (1986), ‘Vertex operators in background fields’, Nucl. Phys. B272, 647.
71. Campagna, P., Fubini, S., Napolitano, E. and Sciuto, S. (1971), ‘Amplitude for N nonspurious excited particles in dual resonance models’, Nuovo Cim. 2A, 911.
72. Candelas, P., Horowitz, G., Strominger, A. and Witten, E. (1985), ‘Vacuum configurations for superstrings’, Nucl. Phys. B258, 46.
73. Caneschi, L., Schwimmer, A. and Veneziano, G. (1969), ‘Twisted propagator in the operatorial duality formalism’, Phys. Lett. 30B, 351.
74. Caneschi, L. and Schwimmer, A. (1970), ‘Ward identities and vertices in the operatorial duality formalism’, Nuovo Cim. Lett. 3, 213.
75. Carbone, G. and Sciuto, S. (1970), ‘On amplitudes involving excited particles in dual-resonance models’, Nuovo Cim. Lett. 3, 246.
76. Cardy, J.L. (1986), ‘Operator content of two-dimensional conformally invariant theories’, Nucl. Phys. B270[FS16], 186.
77. Casalbuoni, R. (1976), ‘Relatively (sic.) and supersymmetries’, Phys. Lett. 62B, 49.
78. Casalbuoni, R. (1976), ‘The classical mechanics for Bose-Fermi systems’, Nuovo Cim. 33A, 389.
79. Casher, A., Englert, F., Nicolai, H. and Taormina, A. (1985), ‘Consistent superstrings as solutions of the D = 26 bosonic string theory’, Phys. Lett. 162B, 121.
80. Chan, H.M. (1969), ‘A generalized Veneziano model for the N - point function’, Phys. Lett. 28B, 425.
81. Chan, H.M. and Tsou, S.T. (1969), ‘Explicit construction of the N - point function in the generalized Veneziano model’, Phys. Lett. 28B, 485.
82. Chang, L.N. and Mansouri, F. (1972), ‘Dynamics underlying duality and gauge invariance in the dual-resonance models’, Phys. Rev. D5, 2535.
83. Chang, L.N., Macrae, K.I. and Mansouri, F. (1976), ‘Geometrical approach to local gauge and supergauge invariance: Local gauge theories and supersymmetric strings’, Phys. Rev. D13 235.
84. Chapline, G. (1985), ‘Unification of gravity and elementary particle interactions in 26 dimensions?’, Phys. Lett. 158B, 393.
85. Chiu, C.B., Matsuda, S. and Rebbi, C. (1969), ‘Factorization properties of the dual resonance model: A general treatment of linear dependences’, Phys. Rev. Lett. 23, 1526.
86. Chiu, C.B., Matsuda, S. and Rebbi, C. (1970), ‘A general approach to the symmetry and the factorization properties of the N-point dual amplitudes’, Nuovo Cim. 67A, 437.
87. Chodos, A. and Thorn, C.B. (1974), ‘Making the massless string massive’, Nucl. Phys. B72, 509.
88. Christensen, S.M. and Duff, M.J. (1978), ‘Quantum gravity in 2 + ϵ dimensions’, Phys. Lett. 79B, 213.
89. Clavelli, L. and Ramond, P. (1970), ‘SU(1,1) analysis of dual resonance models’, Phys. Rev. D2, 973.
90. Clavelli, L. and Ramond, P. (1971), ‘Group-theoretical construction of dual amplitudes’, Phys. Rev. D3, 988.
91. Cohen, A., Moore, G., Nelson, P. and Polchinski, J. (1986), ‘An offshell propagator for string theory’, Nucl. Phys. B267, 143.
92. Cohen, E., Gomez, C. and Mansfield, P. (1986), ‘BRS invariance of the interacting Polyakov string’, Phys. Lett. 174B, 159.
93. Coleman, S., Gross, D. and Jackiw, R. (1969), ‘Fermion avatars of the Sugawara model’, Phys. Rev.180, 1359.
94. Coleman, S. (1975), ‘Quantum sine-Gordon equation as the massive Thirring model’, Phys. Rev. Dll, 2088.
95. Collins, P.A. and Tucker, R.W. (1977), ‘An action principle for the Neveu-Schwarz-Ramond string and other systems using supernumerary variables’, Nucl. Phys. B121, 307.
96. Corrigan, E.F. and Olive, D. (1972), ‘Fermion-meson vertices in dual theories’, Nuovo Cim. 11 A, 749
97. Corrigan, E.F. and Goddard, P. (1973), ‘Gauge conditions in the dual fermion model’, Nuovo Cim. 18A, 339.
98. Corrigan, E.F. and Goddard, P. (1973), ‘The off-mass shell physical state projection operator for the dual resonance model’, Phys. Lett. B44, 502.
99. Corrigan, E.F., Goddard, P., Smith, R.A. and Olive, D.I. (1973), ‘Evaluation of the scattering amplitude for four dual fermions’, Nucl. Phys. B67, 477.
100. Corrigan, E.F. and Goddard, P. (1974), ‘The absence of ghosts in the dual fermion model’, Nucl. Phys. B68, 189.
101. Corrigan, E.F. (1974), ‘The scattering amplitude for four dual fermions’, Nucl. Phys. B69, 325.
102. Corrigan, E.F. and Fairlie, D.B. (1975), ‘Off-shell states in dual resonance theory’, Nucl. Phys. B91, 527.
103. Corrigan, E.F. (1986), ‘Twisted vertex operators and representations of the Virasoro algebra’, Phys. Lett. 169B, 259.
104. Corwin, L., Ne'eman, Y. and Sternberg, S. (1975), ‘Graded Lie algebras in mathematics and physics (Bose-Fermi symmetry)’, Rev. Mod. Phys. 47, 573.
105. Craigie, N.S., Nahm, W. and Narain, K.S. (1985), ‘Realization of the Kac–Moody algebras of 2D QFTs through soliton operators’, Phys. Lett. 152B, 203.
106. Cremmer, E. and Scherk, J. (1974), ‘Spontaneous dynamical breaking of gauge symmetry in dual models’, Nucl. Phys. B72, 117.
107. Cremmer, E. and Scherk, J. (1976), ‘Dual models in four dimensions with internal symmetries’, Nucl. Phys. B103, 399.
108. Cremmer, E. and Scherk, J. (1976), ‘Spontaneous compactification of space in an Einstein–Yang–Mills–Higgs model’, Nucl. Phys. B108, 409.
109. Cremmer, E. and Scherk, J. (1977), ‘Spontaneous compactification of extra space dimensions’, Nucl. Phys. B118, 61.
110. Crnković, Č. (1986), ‘Many pictures of the superparticle’, Phys. Lett. 173B, 429.
111. Curtright, T.L. and Zachos, C.K. (1984), ‘Geometry, topology and supersymmetry in nonlinear sigma models’, Phys. Rev. Lett. 53, 1799.
112. Curtright, T.L., Mezincescu, L. and Zachos, C.K. (1985), ‘Geometrostasis and torsion in covariant superstrings’, Phys. Lett. 161B, 79.
113. Curtright, T.L., Thorn, C.B. and Goldstone, J. (1986), ‘Spin content of the bosonic string’, Phys. Lett. 175B, 47.
114. Das, S.R. and Sathiapalan, B. (1986), ‘String propagation in a tachyon background’, Phys. Rev. Lett. 56, 2664.
115. De Alwis, S.P. (1986), ‘The dilaton vertex in the path integral formulation of strings’, Phys. Lett. 168B, 59.
116. Del Giudice, E. and Di Vecchia, P. (1971), ‘Factorization and operator formalism in the generalized Virasoro model’, Nuovo Cim. 5A, 90.
117. Del Giudice, E., Di Vecchia, P. and Fubini, S. (1972), ‘General properties of the dual resonance model’, Ann. Phys. 70, 378.
118. Delia Selva, A. and Saito, S. (1970), ‘A simple expression for the Sciuto three-reggeon vertex generating duality’, Nuovo Cim. Lett. 4, 689.
119. Deser, S. and Zumino, B. (1976), ‘Consistent supergravity’, Phys. Lett. 62B, 335.
120. Deser, S. and Zumino, B. (1976), ‘A complete action for the spinning string’, Phys. Lett. 65B, 369.
121. DeWitt, B., (1964), ‘Dynamical theory of groups and fields’, in Relativity, Groups, and Topology, ed. B., DeWitt and C., DeWitt (New York, Gordon and Breach), p. 587.
122. Di Vecchia, P., Knizhnik, V.G., Petersen, J.L. and Rossi, P. (1985), ‘A supersymmetric Wess-Zumino Lagrangian in two dimensions’, Nucl. Phys. B253, 701.
123. Di Vecchia, P., Petersen, J.L. and Zheng, H.B. (1985), ‘N = 2 extended superconformal theories in two dimensions’, Phys. Lett. 162B, 327.
124. Di Vecchia, P., Petersen, J.L. and Yu, M. (1986), ‘On the unitary representations of N = 2 superconformal theory’, Phys. Lett. 172B, 211.
125. Di Vecchia, P., Petersen, J.L., Yu, M. and Zheng, H.B. (1986), ‘Explicit construction of unitary representations of the N = 2 superconformal algebra’, Phys. Lett. 174B, 280.
126. Dolan, L. and Slansky, R. (1985), ‘Physical spectrum of compactified strings’, Phys. Rev. Lett. 54, 2075.
127. Dolen, R., Horn, D. and Schmid, C. (1967), ‘Prediction of Regge parameters of ρ poles from low-energy πN data’, Phys. Rev. Lett. 19, 402.
128. Dolen, R., Horn, D. and Schmid, C. (1968), ‘Finite-energy sum rules and their application to πN charge exchange’, Phys. Rev. 166, 1768.
129. Dotsenko, Vl.S. and Fateev, V.A. (1985), ‘Operator algebra of two-dimensional conformal theories with central charge C ≤ 1’, Phys. Lett. 154B, 291.
130. Duncan, A. and Moshe, M. (1986), ‘First-quantized superparticle action for the vector superfield’, Nucl. Phys. B268, 706.
131. Duncan, A. and Meyer-Ortmanns, H. (1986), ‘Lattice formulation of the superstring’, Phys. Rev. D33, 3155.
132. Durhuus, B., Nielsen, H.B., Olesen, P. and Petersen, J.L. (1982), ‘Dual models as saddle point approximations to Polyakov's quantized string’, Nucl. Phys. B196, 498.
133. Durhuus, B., Olesen, P. and Petersen, J.L. (1982), ‘Polyakov's quantized string with boundary terms’, Nucl. Phys. 198, 157.
134. Durhuus, B., Olesen, P. and Petersen, J.L. (1982), ‘Polyakov's quantized string with boundary terms (II)’, Nucl. Phys. 201, 176.
135. Eastaugh, A., Mezincescu, L., Sezgin, E. and Van Nieuwenhuizen, P. (1986), ‘Critical dimensions of spinning strings on group manifolds from Fujikawa's method’, Phys. Rev. Lett. 57, 29.
136. Ecker, G. and Honerkamp, J. (1971), ‘Application of invariant renormalization to the non-linear chiral invariant pion lagrangian in the one-loop approximation’, Nucl. Phys. B35, 481.
137. Eichenherr, H. (1985), 'Minimal operator algebras in superconformal quantum field theory', Phys. Lett. 151B, 26.
138. Einstein, A. and Mayer, W. (1931), ‘Einheitliche Theorie von Bravitation und Elektrizitat’, Setz. Preuss. Akad. Wiss., 541.
139. Einstein, A. and Bergmann, P. (1938), ‘On a generalization of Kaluza's theory of electricity’, Ann. Math. 39, 683.
140. Einstein, A., Bargmann, V. and Bergmann, P. (1941), in Theodore von Kármán Anniversary Volume (Pasadena) p. 212.
141. Englert, F. and Neveu, A. (1985), ‘Non-Abelian compactification of the interacting bosonic string’, Phys. Lett. 163B, 349.
142. Evans, M. and Ovrut, B.A. (1986), ‘The world sheet supergravity of the heterotic string’, Phys. Lett. 171B, 177.
143. Evans, M. and Ovrut, B.A. (1986), ‘A two-dimensional superfield formulation of the heterotic string’, Phys. Lett. 175B, 145.
144. Faddeev, L.D. and Popov, V.N. (1967), ‘Feynman diagrams for the Yang-Mills field’, Phys. Lett. 25B, 29.
145. Fairlie, D.B. and Nielsen, H.B. (1970), ‘An analogue model for KSV theory’, Nucl. Phys. B20, 637.
146. Fairlie, D.B. and Martin, D. (1973), ‘New light on the Neveu-Schwarz model’, Nuovo Cim. 18A, 373.
147. Feigin, B.L. and Fuks, D.B. (1982), ‘Invariant skew-symmetric differential operators on the line and Verma modules over the Virasoro algebra’, Fund. Analys. Appl. 16, 114.
148. Feingold, A. and Lepowsky, J. (1978) ‘The Weyl-Kac character formula and power series identities’, Adv. Math. 29, 271.
149. Feynman, R.P. (1963), ‘Quantum theory of gravitation’, Acta Physica Polonica 24, 697.
150. Fradkin, E.S. and Vilkovisky, G.A. (1975), ‘Quantization of relativistic systems with constraints’, Phys. Lett. 55B, 224.
151. Fradkin, E.S. and Fradkina, T.E. (1978), ‘Quantization of relativistic systems with boson and fermion first- and second-class constraints’, Phys. Lett. 72B, 343.
152. Fradkin, E.S. and Tseytlin, A.A. (1981), ‘Quantization of two-dimensional supergravity and critical dimensions for string models’, Phys. Lett. 106B, 63.
153. Fradkin, E.S. and Tseytlin, A.A. (1982), ‘Quantized string models’, Ann. Phys. 143, 413.
154. Fradkin, E.S. and Tseytlin, A.A. (1985), ‘Fields as excitations of quantized coordinates’, JETP Lett. 41, 206.
155. Fradkin, E.S. and Tseytlin, A.A. (1985), ‘Quantum string theory effective action’, Nucl. Phys. B261, 1.
156. Fradkin, E.S. and Tseytlin, A.A. (1985), ‘Effective field theory from quantized strings’, Phys. Lett. 158B, 316.
157. Fradkin, E.S. and Tseytlin, A.A. (1985), ‘Effective action approach to superstring theory’, Phys. Lett. 160B, 69.
158. Fradkin, E.S. and Tseytlin, A.A. (1985), ‘Anomaly-free two-dimensional chiral supergravity-matter models and consistent string theories’, Phys. Lett. 162B, 295.
159. Fradkin, E.S. and Tseytlin, A.A. (1985), ‘Non-linear electrodynamics from quantized strings’, Phys. Lett. 163B, 123.
160. Frampton, P. (1974), Dual Resonance Models, (Benjamin).
161. Frautschi, S. (1971), ‘Statistical bootstrap model of hadrons’, Phys. Rev. D3, 2821.
162. Freedman, D.Z., Van Nieuwenhuizen, P. and Ferrara, S. (1976), ‘Progress toward a theory of supergravity’, Phys. Rev. D13, 3214.
163. Freedman, D.Z. and Townsend, P.K. (1981), ‘Antisymmetric tensor gauge theories and non-linear σ-models’, Nucl. Phys. B177, 282.
164. Freeman, M.D. and Olive, D.I. (1986), ‘BRS cohomology in string theory and the no-ghost theorem’, Phys. Lett. 175B, 151.
165. Frenkel, I.B. and Kac, V.G. (1980), ‘Basic representations of affine Lie algebras and dual resonance models’, Inv. Math. 62, 23.
166. Frenkel, I.B. (1981), ‘Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory’, J. Fund. Anal. 44, 259.
167. Frenkel, I.B., Garland, H. and Zuckerman, G. (1986), ‘Semi-infinite cohomology and string theory’, (Yale University preprint).
168. Freund, P.G.O. (1968), ‘Finite-energy sum rules and bootstraps’, Phys. Rev. Lett. 20, 235.
169. Freund, P.G.O. (1969), ‘Model for the Pomeranchuk term’, Phys. Rev. Lett. 22, 565.
170. Freund, P.G.O. and Rivers, R.J. (1969), ‘Duality, unitarity and the Pomeranchuk singularity’, Phys. Lett. 29B, 510.
171. Freund, P.G.O. and Kaplansky, I. (1976), ‘Simple supersymmetries’, J. Math. Phys. 17, 228.
172. Freund, P.G.O. and Nepomechie, R.I. (1982), ‘Unified geometry of antisymmetric tensor gauge fields and gravity’, Nucl. Phys. B199, 482.
173. Freund, P.G.O. (1985), ‘Superstrings from 26 dimensions’, Phys. Lett. 151B, 387.
174. Fridling, B. and van de Ven, A. (1986) ‘Renormalization of generalized two dimensional nonlinear a models’, Nucl. Phys. B268, 719.
175. Fridling, B.E. and Jevicki, A. (1986), ‘Nonlinear σ-models as S-matrix generating functional of strings’, Phys. Lett. 174B, 75.
176. Friedan, D. (1980), ‘Nonlinear models in 2 + ϵ dimensions,’ Ph.D. thesis, published in Ann. Phys. 163 (1985) 318.
177. Friedan, D. (1980), ‘Nonlinear models in 2 + ϵ dimensions’, Phys. Rev. Lett. 45, 1057.
178. Friedan, D. (1984), ‘Introduction to Polyakov's string theory’, in Recent Advances in Field Theory and Statistical Mechanics, eds. J.B., Zuber and R., Stora. Proc. of 1982 Les Houches Summer School (Elsevier), p. 839.
179. Friedan, D., Qiu, Z. and Shenker, S. (1984), ‘Conformal invariance, unitarity, and critical exponents in two dimensions’, Phys. Rev. Lett. 52, 1575.
180. Friedan, D., Qiu, Z. and Shenker, S. (1985), ‘Superconformal invariance in two dimensions and the tricritical Ising model’, Phys. Lett. 151B, 37.
181. Friedan, D., Shenker, S. and Martinec, E. (1985), ‘Covariant quantization of superstrings’, Phys. Lett. 160B, 55.
182. Friedan, D. (1985), ‘On two-dimensional conformal invariance and the field theory of strings’, Phys. Lett. 162B, 102.
183. Friedan, D. (1986), ‘Notes on string theory and two dimensional conformal field theory’, in Workshop on Unified String Theories, 29 July -16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore), p. 162.
184. Friedan, D., Martinec, E. and Shenker, S. (1986), ‘Conformal invariance, supersymmetry and string theory’, Nucl. Phys. B271, 93.
185. Fubini, S., Gordon, D. and Veneziano, G. (1969), ‘A general treatment of factorization in dual resonance models’, Phys. Lett. 29B, 679.
186. Fubini, S. and Veneziano, G. (1969), ‘Level structure of dual-resonance models’, Nuovo Cim. 64A, 811.
187. Fubini, S. and Veneziano, G. (1970), ‘Duality in operator formalism’, Nuovo Cim. 67A, 29.
188. Fubini, S. and Veneziano, G. (1971), ‘Algebraic treatment of subsidiary conditions in dual resonance models’, Ann. Phys. 63, 12.
189. Fubini, S., Hanson, A.J. and Jackiw, R. (1973), ‘New approach to field theory’, Phys. Rev. D7, 1732.
190. Fujikawa, K. (1982), ‘Path integral of relativistic strings’, Phys. Rev. D25, 2584.
191. Fujikawa, K. (1983), ‘Path integral measure for gravitational interactions’, Nucl. Phys. B226, 437.
192. Gates, S.J., Grisaru, M., Rocek, M. and Siegel, W. (1983), Super space or One Thousand and One Lessons in Supersymmetry, (Benjamin/Cummings).
193. Gervais, J.L. (1970), ‘Operator expression for the Koba and Nielsen multi-Veneziano formula and gauge identities’, Nucl. Phys. B21, 192.
194. Gervais, J.L. and Sakita, B. (1971), ‘Generalizations of dual models’, Nucl Phys. B34, 477.
195. Gervais, J.L. and Sakita, B. (1971), ‘Field theory interpretation of supergauges in dual models’, Nucl. Phys. B34, 632.
196. Gervais, J.L. and Sakita, B. (1971), ‘Functional-integral approach to dual-resonance theory’, Phys. Rev. D4, 2291.
197. Gervais, J.L. and Neveu, A. (1972), ‘Feynman rules for massive gauge fields with dual diagram topology’, Nucl. Phys. B46, 381.
198. Gervais, J.L. and Sakita, B. (1973), ‘Ghost-free string picture of Veneziano model’, Phys. Rev. Lett. 30, 716.
199. Gervais, J.L. and Neveu, A. (1986), ‘Dimension shifting operators and null states in 2D conformally invariant field theories’, Nucl. Phys. B264, 557.
200. Gleiser, M. and Taylor, J.G. (1985), ‘Very hot superstrings’, Phys. Lett. 164B, 36.
201. Gliozzi, F. (1969), ‘Ward-like identities and twisting operator in dual resonance models’, Nuovo Cim. Lett. 2, 846.
202. Gliozzi, F., Scherk, J. and Olive, D. (1976), ‘Supergravity and the spinor dual model’, Phys. Lett. 65B, 282.
203. Gliozzi, F., Scherk, J. and Olive, D. (1977), ‘Supersymmetry, supergravity theories and the dual spinor model’, Nucl. Phys. B122, 253.
204. Goddard, P. and Thorn, C.B. (1972), ‘Compatibility of the dual Pomeron with unitarity and the absence of ghosts in the dual resonance model’, Phys. Lett. 40B, 235.
205. Goddard, P., Rebbi, C. and Thorn, C.B. (1972), ‘Lorentz covariance and the physical states in dual-resonance models’, Nuovo Cim. 12A, 425.
206. Goddard, P., Goldstone, J., Rebbi, C. and Thorn, C.B. (1973), ‘Quantum dynamics of a massless relativistic string’, Nucl. Phys. B56, 109.
207. Goddard, P., Kent, A. and Olive, D. (1985), ‘Virasoro algebras and coset space models’, Phys. Lett. 152B, 88.
208. Goddard, P., Olive, D. and Schwimmer, A. (1985), ‘The heterotic string and a fermionic construction of the Eg Kac-Moody algebra’, Phys. Lett. 157B, 393.
209. Goddard, P., Nahm, W. and Olive, D. (1985), ‘Symmetric spaces, Sugawara's energy momentum tensor in two dimensions and free fermions’, Phys. Lett. 160B, 111.
210. Goddard, P. and Olive, D. (1985), ‘Algebras, lattices and strings’ in Vertex Operators in Mathematics and Physics, Proceedings of a Conference, November 10–17, 1983, eds. J., Lepowsky, S., Mandelstam, I.M., Singer (Springer-Verlag, New York), p. 51.
211. Goddard, P. and Olive, D. (1985), ‘Kac-Moody algebras, conformal symmetry and critical exponents’, Nucl. Phys. B257[FS14], 226.
212. Goddard, P. and Olive, D. (1986), ‘An introduction to Kac-Moody algebras and their physical applications’, in Workshop on Unified String Theories, 29 July – 16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore), p. 214.
213. Goddard, P., Kent, A. and Olive, D. (1986), ‘Unitary representations of the Virasoro and super-Virasoro algebras’, Commun. Math. Phys. 103, 105.
214. Goebel, C.J. and Sakita, B. (1969), ‘Extension of the Veneziano form to N - particle amplitudes’, Phys. Rev. Lett. 22, 257.
215. Gol'fand, Y.A. and Likhtman, E.P. (1971), ‘Extension of the algebra of Poincare group generators and violation of P invariance’, JETP Lett. 13, 323.
216. Gomes, J.F. (1986), ‘The triviality of representations of the Virasoro algebra with vanishing central element and Lo positive’, Phys. Lett. 171B, 75.
217. Goto, T. (1971), ‘Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model’, Prog. Theor. Phys. 46, 1560.
218. Green, M.B. and Veneziano, G. (1971), ‘Average properties of dual resonances’, Phys. Lett. 36B, 477.
219. Green, M.B. and Shapiro, J.A. (1976), ‘Off shell states in the dual model’, Phys. Lett. 64B, 454.
220. Green, M.B. (1976), ‘Reciprocal space-time and momentum-space singularities in the narrow resonance approximation’, Nucl. Phys. B116, 449.
221. Green, M.B. (1976), ‘The structure of dual Green functions’, Phys. Lett. 65B, 432.
222. Green, M.B. (1977), ‘Point-like structure and off-shell dual strings’, Nucl. Phys. B124, 461.
223. Green, M.B. (1977), ‘Dynamical point-like structure and dual strings’, Phys. Lett. 69B, 89.
224. Green, M.B. and Schwarz, J.H. (1981), ‘Supersymmetrical dual string theory’, Nucl. Phys. B181, 502.
225. Green, M.B. and Schwarz, J.H. (1982), ‘Supersymmetric dual string theory (II). Vertices and trees’, Nucl. Phys. B198, 252.
226. Green, M.B. and Schwarz, J.H. (1982), ‘Supersymmetrical string theories’, Phys. Lett. 109B, 444.
227. Green, M.B., Schwarz, J.H. and Brink, L. (1982), ‘N = 4 Yang-Mills and N = 8 supergravity as limits of string theories’, Nucl. Phys. B198, 474.
228. Green, M.B. (1983), ‘Supersymmetrical dual string theories and their field theory limits – a review’, Surveys in High Energy Physics 3, 127.
229. Green, M.B. and Schwarz, J.H. (1984), ‘Covariant description of superstrings’, Phys. Lett. 136B, 367.
230. Green, M.B. and Schwarz, J.H. (1984), ‘Properties of the covariant formulation of superstring theories’, Nucl. Phys. B243, 285.
231. Green, M.B. and Schwarz, J.H. (1984), ‘Anomaly cancellations in supersymmetric D = 10 gauge theory and superstring theory’, Phys. Lett. 149B, 117.
232. Green, M.B. (1986), ‘Lectures on superstrings’, in Workshop on Unified String Theories, 29 July – 16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore), p. 294.
233. Green, M.B., and Gross, D.J. (1986), eds. Unified String Theories (World Scientific).
234. Grisaru, M.T., Howe, P., Mezincescu, L., Nilsson, B.E.W. and Townsend, P.K. (1985), ‘N = 2 superstrings in a supergravity background’, Phys. Lett. 162B, 116.
235. Gross, D.J., Neveu, A., Scherk, J. and Schwarz, J.H. (1970), ‘The primitive graphs of dual-resonance models’, Phys. Lett. 31B, 592.
236. Gross, D.J. and Schwarz, J.H. (1970), ‘Basic operators of the dualresonance model’, Nucl. Phys. B23, 333.
237. Gross, D.J., Harvey, J.A., Martinec, E. and Rohm, R. (1985), ‘Heterotic string’, Phys. Rev. Lett. 54, 502.
238. Gross, D.J., Harvey, J.A., Martinec, E. and Rohm, R. (1985), ‘Heterotic string theory (I). The free heterotic string’, Nucl. Phys. B256, 253.
239. Gross, D.J., Harvey, J.A., Martinec, E. and Rohm, R. (1986), ‘Heterotic string theory (II). The interacting heterotic string’, Nucl. Phys. B267, 75.
240. Hagedorn, R. (1968), ‘Hadronic matter near the boiling point’, Nuovo Cim. 56A, 1027.
241. Halpern, M.B., Klein, S.A. and Shapiro, J.A. (1969), ‘Spin and internal symmetry in dual Feynman theory’, Phys. Rev. 188, 2378.
242. Halpern, M.B. and Thorn, C.B. (1971), ‘Dual model of pions with no tachyon’, Phys. Lett. 35B, 441.
243. Halpern, M.B. (1971), ‘The two faces of a dual pion-quark model’, Phys. Rev. D4, 2398.
244. Halpern, M.B. (1971), ‘New dual models of pions with no tachyon’, Phys. Rev. D4, 3082.
245. Halpern, M.B. and Thorn, C.B. (1971), ‘Two faces of a dual pionquark model. II. Fermions and other things’, Phys. Rev. D4, 3084.
246. Halpern, M.B. (1975), ‘Quantum ‘solitons” which are SU(N) fermions’, Phys. Rev. D12, 1684.
247. Hara, O. (1971), ‘On origin and physical meaning of Ward-like iden tity in dual-resonance model’, Prog. Theor. Phys. 46, 1549.
248. Harari, H. (1968), ‘Pomeranchuk trajectory and its relation to lowenergy scattering amplitudes’, Phys. Rev. Lett. 20, 1395.
249. Harari, H. (1969), ‘Duality diagrams’, Phys. Rev. Lett. 22, 562.
250. Henneaux, M. and Mezincescu, L. (1985), ‘A σ-model interpretation of Green-Schwarz covariant superstring action’, Phys. Lett. 152B, 340.
251. Henneaux, M. (1986), ‘Remarks on the cohomology of the BRS operator in string theory’, Phys. Lett. 177B, 35.
252. Hlousek, Z. and Yamagishi, K. (1986), ‘An approach to BRST formulation of Kac-Moody algebra’, Phys. Lett. 173B, 65.
253. Honerkamp, J. (1972), ‘Chiral multi-loops’, Nucl. Phys. B36, 130.
254. Hori, T. and Kamimura, K. (1985), ‘Canonical formulation of superstring’, Prog. Theor. Phys. 73, 476.
255. Hosotani, Y. (1985), ‘Hamilton-Jacobi formalism and wave equations for strings’, Phys. Rev. Lett. 55, 1719.
256. Howe, P.S. (1977), ‘Superspace and the spinning string’, Phys. Lett. 70B, 453.
257. Howe, P.S. (1979), ‘Super Weyl transformations in two dimensions’, J. Phys. A12, 393.
258. Hsue, C.S., Sakita, B. and Virasoro, M.A. (1970), ‘Formulation of dual theory in terms of functional integrations’, Phys. Rev. D2, 2857.
259. Hull, C.M. and Witten, E. (1985), ‘Supersymmetric sigma models and the heterotic string’, Phys. Lett. 160B, 398.
260. Hull, C.M. (1986), ‘Sigma model beta-functions and string compactifications’, Nucl. Phys. B267, 266.
261. Hwang, S. (1983), ‘Covariant quantization of the string in dimensions D ≤ 26 using a Becchi-Rouet-Stora formulation’, Phys. Rev. D28, 2614.
262. Hwang, S. and Marnelius, R. (1986), ‘Modified strings in terms of zweibein fields’, Nucl. Phys. B271, 369.
263. Hwang, S. and Marnelius, R. (1986), ‘The bosonic string in nonconformal gauges’, Nucl. Phys. B272, 389.
264. Igi, K. and Matsuda, S. (1967), ‘New sum rules and singularities in the complex J plane’, Phys. Rev. Lett. 18, 625.
265. Igi, K. and Matsuda, S. (1967), ‘Some consequences from superconvergence for πN scattering’, Phys. Rev. 163, 1621.
266. Iwasaki, Y. and Kikkawa, K. (1973), ‘Quantization of a string of spinning material – Hamiltonian and Lagrangian formulations’, Phys. Rev. D8, 440.
267. Jacob, M. editor. (1974), ‘Dual theory’, Physics Reports Reprint Volume I, (North-Holland, Amsterdam).
268. Jain, S., Shankar, R. and Wadia, S. (1985), ‘Conformal invariance and string theory in compact space: bosons’, Phys. Rev. D32, 2713.
269. Jain, S., Mandal, G. and Wadia, S.R. (1987), ‘Virasoro conditions, vertex operators, and string dynamics in curved space’, Phys. Rev. D35, 778.
270. Jevicki, A. (1986), ‘Covariant string theory Feynman amplitudes’, Phys. Lett. 169B, 359.
271. Jimenez, F., Ramirez Mittelbrunn, J. and Sierra, G. (1986), ‘Causality on the world-sheet of the string’, Phys. Lett. 167B, 178.
272. Jordan, P. (1947), ‘Erweiterung der projektiven Relativitatstheorie’, Ann. der Phys. 1, 219.
273. Julia, B. (1985), 7Supergeometry and Kac-Moody algebras', in Vertex Operators in Mathematics and Physics, Proceedings of a Conference, November 10 – 17, 1983, eds. J., Lepowsky, S., Mandelstam, I.M., Singer (Springer-Verlag, New York), p. 393.
274. Kac, V.G. (1967), ‘Simple graded Lie algebras of finite growth’, Funkt. Anali. i ego Prilozhen. 1, 82. (English translation: Fuctional Anal. Appl. 1, 328.)
275. Kac, V.G. (1975), ‘Classification of simple Lie superalgebras’, Funct. Analys. Appl. 9, 263.
276. Kac, V.G. (1983) Infinite Dimensional Lie Algebras (Birkhauser, Boston).
277. Kac, V.G. and Todorov, I.T. (1985), ‘Superconformal current algebras and their unitary representations’, Commun. Math. Phys. 102, 337; Erratum, Commun. Math. Phys. 104, 175.
278. Kallosh, R. (1986), ‘World-sheet symmetries of the heterotic string in (10 + 496) + 16-dimensional superspace’, Phys. Lett. 176B, 50.
279. Kaluza, Th. (1921), ‘On the problem of unity in physics’, Sitz. Preuss. Akad. Wiss. Kl, 966.
280. Kantor, I.L. (1968), ‘Infinite dimensional simple graded Lie algebras’, Doklady AN SSR 179, 534 (English translation: Sov. Math. Dokl. 9 (1968), 409.)
281. Karlhede, A. and Lindström, U. (1986), ‘The classical bosonic string in the zero tension limit’, Glass. Quant. Grav. 3, L73.
282. Kato, M. and Ogawa, K. (1983), ‘Covariant quantization of string based on BRS invariance’, Nucl. Phys. B212, 443.
283. Kato, M. and Matsuda, S. (1986), ‘Construction of singular vertex operators as degenerate primary conformal fields’, Phys. Lett. 172B, 216.
284. Kawai, H., Lewellen, D.C. and Tye, S.-H.H. (1986), ‘A relation between tree amplitudes of closed and open strings’, Nucl. Phys. B269, 1.
285. Kawai, T. (1986), ‘Remarks on a class of BRST operators’, Phys. Lett. 168B, 355.
286. Klein, O. (1926), ‘Quantentheorie und fünfdimensionale Relativitätstheorie’, Z. Phys. 37, 895.
287. Klein, O. (1955), ‘Generalizations of Einstein's theory of gravitation considered from the point of view of quantum field theory’, Helv. Phys. Ada Suppl. IV(1956) 58.
288. Knizhnik, V.G. and Zamolodchikov, A.B. (1984), ‘Current algebra and Wess–Zumino model in two dimensions’, Nucl. Phys. B247, 83.
289. Knizhnik, V.G. (1985), ‘Covariant fermionic vertex in superstrings’, Phys. Lett. 160B, 403.
290. Koba, Z. and Nielsen, H.B. (1969), ‘Reaction amplitude for n-mesons, a generalization of the Veneziano–Bardakçi–Ruegg–Virasoro model’, Nucl. Phys. B10, 633.
291. Koba, Z. and Nielsen, H.B. (1969), ‘Manifestly crossing-invariant parametrization of n–meson amplitude’, Nucl. Phys. B12, 517.
292. Kogut, J.B. and Soper, D.E. (1970), ‘Quantum electrodynamics in the infinite-momentum frame’, Phys. Rev. Dl, 2901.
293. Kosterlitz, J.M. and Wray, D.A. (1970), ‘The general N- point vertex in a dual model’, Nuovo Cim. Lett. 3, 491.
294. Kraemmer, A.B. and Nielsen, H.B. (1975), ‘Quantum description of a twistable string and the Neveu–Schwarz–Ramond model‘, Nucl. Phys. B98, 29.
295. Kugo, T. and Ojima, I. (1978), ‘Manifestly covariant canonical formulation of Yang–Mills theories physical state subsidiary conditions and physical S-matrix unitarity’, Phys. Lett. 73B, 459.
296. Kugo, T. and Ojima, I. (1979), ‘Local covariant operator formalism of non-Abelian gauge theories and quark confinement problem’, Suppl. Prog. Theor. Phys. 66, 1.
297. Lepowsky, J. and Wilson, R.L. (1978), ‘Construction of the affine Lie algebra’, Commun. Math. Phys. 62, 43.
298. Lepowsky, J. and Wilson, R.L. (1984), ‘The structure of standard modules, I: universal algebras and the Rogers–Ramanujan identities’, Inv. Math. 77, 199.
299. Lichnerowicz, A. (1955), Theories Relativistes de La Gravitation et de L' Electromagnetisme (Masson, Paris).
300. Logunov, A.A., Soloviev, L.D. and Tavkhelidze, A.N. (1967), ‘Dispersion sum rules and high energy scattering’, Phys. Lett. 24, 181.
301. Lovelace, C. (1968), ‘A novel application of Regge trajectories’, Phys. Lett. 28B, 264.
302. Lovelace, C. (1970), ‘Simple N - Reggeon vertex’, Phys. Lett. 32B, 490.
303. Lovelace, C. (1971), ‘Pomeron form factors and dual Regge cuts’, Phys. Lett. 34B, 500.
304. Lovelace, C. (1979), ‘Systematic search for ghost-free string models’, Nucl. Phys. B148, 253.
305. Lovelace, C. (1984), ‘Strings in curved space’, Phys. Lett. 135B, 75.
306. Lüscher, M., Symanzik, K. and Weisz, P. (1980), ‘Anomalies of the free loop wave equation in the WKB approximation’, Nucl. Phys. B173, 365.
307. Luther, A. and Peschel, I. (1975), ‘Calculation of critical exponents in two dimension from quantum field theory in one dimension’, Phys. Rev. B12, 3908.
308. Maharana, J. and Veneziano, G. (1986), ‘Gauge Ward identities of the compactified bosonic string’, Phys. Lett. 169B, 177.
309. Mandelstam, S. (1968), ‘Dynamics based on rising Regge trajectories’, Phys. Rev. 166, 1539.
310. Mandelstam, S. (1970), ‘Dynamical applications of the Veneziano formula’, in Lectures on elementary particles and quantum field theory, eds. S., Deser, M., Grisaru and H., Pendleton (MIT Press, Cambridge), p. 165.
311. Mandelstam, S. (1973), ‘Interacting-string picture of dual-resonance models’, Nucl. Phys. B64, 205.
312. Mandelstam, S. (1973), ‘Manifestly dual formulation of the Ramond model’, Phys. Lett. 46B, 447.
313. Mandelstam, S. (1974), ‘Interacting-string picture of the Neveu– Schwarz–Ramond model’, Nucl. Phys. B69, 77.
314. Mandelstam, S. (1974), ‘Dual-resonance models’, Phys. Reports C13, 259.
315. Mandelstam, S. (1975), ‘Soliton operators for the quantized sine-Gordon equation’, Phys. Rev. Dll, 3026.
316. Mandelstam, S. (1983), ‘Light-cone superspace and the ultraviolet finiteness of the N=4 model’, Nucl. Phys. B213, 149.
317. Mansouri, F. and Nambu, Y. (1972), ‘Gauge conditions in dual resonance models’, Phys. Lett. 39B, 375.
318. Marcus, N. and Sagnotti, A. (1982), ‘Tree-level constraints on gauge groups for type I superstrings’, Phys. Lett. 119B, 97.
319. Marnelius, R. (1983), ‘Canonical quantization of Polyakov's string in arbitrary dimensions’, Nucl. Phys. B211, 14.
320. Marnelius, R. (1983), ‘Polyakov's spinning string from a canonical point of view’, Nucl. Phys. B221, 409.
321. Marnelius, R. (1986), ‘The bosonic string in D > 26 with and without Liouville fields’, Phys. Lett. 172B, 337.
322. Martellini, M. (1986), ‘Some remarks on the Liouville approach to two-dimensional quantum gravity’, Ann. Phys. 167, 437.
323. Martinec, E. (1983), ‘Superspace geometry of fermionic strings’, Phys. Rev. D28, 2604.
324. Meetz, K. (1969), ‘Realization of chiral symmetry in a curved isospin space’, J. Math. Phys. 10, 589.
325. Minami, M. (1972), ‘Plateau's problem and the Virasoro conditions in the theory of duality’, Prog. Theor. Phys. 48, 1308.
326. Montonen, C. (1974), ‘Multiloop amplitudes in additive dual resonance models’, Nuovo Cim. 19A, 69.
327. Moody, R.V. (1967), ‘Lie algebras associated with generalized Cartan matrices’, Bull. Am. Math. Soc. 73, 217.
328. Moody, R.V. (1968), ‘A new class of Lie algebras’, J. Algebra 10, 211.
329. Moore, G. and Nelson, P. (1984), ‘Anomalies in nonlinear sigma models’, Phys. Rev. Lett. 53, 1510.
330. Moore, G. and Nelson, P. (1986), ‘Measure for moduli’, Nucl. Phys. B266, 58.
331. Moore, G., Nelson, P. and Polchinski, J. (1986), ‘Strings and supermoduli’, Phys. Lett. 169B, 47.
332. Morozov, A.Ya., Perelomov, A.M. and Shifman, M.A., (1984), ‘Exact Gell-Mann–Low function of supersymmetric Kähler sigma models’, Nucl. Phys. B248, 279.
333. Myung, Y.S. and Cho, B.H. (1986), ‘Entropy production in a hot heterotic string’, Mod. Phys. Lett. Al, 37.
334. Myung, Y.S., Cho, B.H., Kim, Y. and Park, Y-J. (1986), ‘Entropy production of superstrings in the very early universe’, Phys. Rev. D33, 2944.
335. Nahm, W., Rittenberg, V. and Scheunert, M. (1976), ‘The classification of graded Lie algebras’, Phys. Lett. 61B, 383.
336. Nahm, W. (1976), ‘Mass spectra of dual strings’, Nucl. Phys. B114, 174.
337. Nahm, W. (1977), ‘Spin in the spectrum of states of dual models’, Nucl. Phys. B120, 125.
338. Nahm, W. (1978), ‘Supersymmetries and their representations’, Nucl. Phys. B135, 149.
339. Nakanishi, N. (1971), ‘Crossing-symmetric decomposition of the five-point and six-point Veneziano formulas into tree-graph integrals’, Prog. Theor. Phys. 45, 436.
340. Nam, S. (1986), ‘The Kac formula for the N = 1 and the N = 2 super-conformal algebras’, Phys. Lett. 172B, 323.
341. Nambu, Y. (1970), ‘Quark model and the factorization of the Veneziano amplitude’, in Symmetries and quark models, ed. R., Chand (Gordon and Breach), p. 269.
342. Nambu, Y. (1970), ‘Duality and hydrodynamics’, Lectures at the Copenhagen symposium.
343. Narain, K.S. (1986), ‘New heterotic string theories in uncompactified dimensions > 10’, Phys. Lett. 169B, 41.
344. Ne'eman, Y. (1986), ‘Strings reinterpreted as topological elements of space-time’, Phys. Lett. 173B, 126.
345. Ne'eman, Y. and Šijaçki, D. (1986), ‘Spinors for superstrings in a generic curved space’, Phys. Lett. 174B, 165.
346. Ne'eman, Y. and Šijaçki, D. (1986), ‘Superstrings in a generic super-symmetric curved space’, Phys. Lett. 174B, 171.
347. Nemeschansky, D. and Yankielowicz, S. (1985), ‘Critical dimension of string theories in curved space’, Phys. Rev. Lett. 54, 620.
348. Nepomechie, R.I. (1982), ‘Duality and the Polyakov N-point Green's function’, Phys. Rev. D25, 2706.
349. Nepomechie, R.I. (1986), ‘Non-Abelian symmetries from higher dimensions in string theories’, Phys. Rev. D33, 3670.
350. Nepomechie, R.I. (1986), ‘String models with twisted currents’, Phys. Rev. D34, 1129.
351. Neveu, A. and Schwarz, J.H. (1971), ‘Factorizable dual model of pions’, Nucl. Phys. B31, 86.
352. Neveu, A., Schwarz, J.H. and Thorn, C.B. (1971), ‘Reformulation of the dual pion model’, Phys. Lett. 35B, 529.
353. Neveu, A. and Schwarz, J.H. (1971), ‘Quark model of dual pions’, Phys. Rev. D4, 1109.
354. Neveu, A. and Thorn, C.B. (1971), ‘Chirality in dual- resonance models’, Phys. Rev. Lett. 27, 1758.
355. Neveu, A. and Scherk, J. (1972), ‘Connection between Yang-Mills fields and dual models’, Nucl. Phys. B36, 155.
356. Nielsen, H.B. (1969), ‘An almost physical interpretation of the dual N point function’, Nordita report, (unpublished).
357. Nielsen, H.B. (1970), ‘An almost physical interpretation of the integrand of the n-point Veneziano model’, submitted to the 15th International Conference on High Energy Physics, (Kiev).
358. Nielsen, H.B. and Olesen, P. (1970), ‘A parton view on dual amplitudes’, Phys. Lett. 32B, 203.
359. Nielsen, H.B. and Olesen, P. (1973), ‘Local field theory of the dual string’, Nucl. Phys. B57, 367.
360. Olesen, P. (1986), ‘On the exponentially increasing level density in string models and the tachyon singularity’, Nucl. Phys. B267, 539.
361. Olesen, P. (1986), ‘On a possible stabilization of the tachyonic strings’, Phys. Lett. 168B, 220.
362. Olive, D. and Scherk, J. (1973), ‘No-ghost theorem for the Pomeron sector of the dual model’, Phys. Lett. 44B, 296.
363. Olive, D. and Scherk, J. (1973), ‘Towards satisfactory scattering amplitudes for dual fermions’, Nucl. Phys. B64, 334.
364. Olive, D. (1974), ‘Dual Models’, in Proceedings of the XVII International Conference on High Energy Physics (Science Research Council, Rutherford Laboratory, Chilton, Didcot, U.K.), p. 1–269.
365. Paton, J.E. and Chan, H.M. (1969), ‘Generalized Veneziano model with isospin’, Nucl. Phys. B10, 516.
366. Patrascioiu, A. (1974), ‘Quantum dynamics of a massless relativistic string (II)’, Nucl. Phys. B81, 525.
367. Pauli, W. (1933), ‘Über die Formulierung der Naturgesetze mit funf homogenen Koordinaten’, Ann. der Phys. 18, 305, 337.
368. Pernici, M. and Van Nieuwenhuizen, P. (1986), ‘A covariant action for the SU(2) spinning string as a hyperkähler or quaternionic nonlinear sigma model’, Phys. Lett. 169B, 381.
369. Polyakov, A.M. (1981), ‘Quantum geometry of bosonic strings’, Phys. Lett. 103B, 207.
370. Polyakov, A.M. (1981), ‘Quantum geometry of fermionic strings’, Phys. Lett. 103B, 211.
371. Ramond, P. (1971), ‘An interpretation of dual theories’, Nuovo Cim. 4A, 544.
372. Ramond, P. (1971), ‘Dual theory for free fermions’, Phys. Rev. D3, 2415.
373. Ramond, P. and Schwarz, J.H. (1976), ‘Classification of dual model gauge algebras’, Phys. Lett. 64B, 75.
374. Rayski, J. (1965), ‘Unified field theory and modern physics’, Acta Physica Polonica 27, 89.
375. Rebbi, C. (1974), ‘Dual models and relativistic quantum strings’, Phys. Reports C12, 1.
376. Rebbi, C. (1975), ‘On the commutation properties of normal-mode op erators and vertices in the theory of the relativistic quantum string’, Nuovo Cim. 26A, 105.
377. Redlich, A.N. and Schnitzer, H.J. (1986), ‘The Polyakov string in O(N) or SU(N) group space’, Phys. Lett. 167B, 315.
378. Redlich, A.N. (1986), ‘When is the central charge of the Virasoro algebra in string theories in curved space-time not a numerical constant?’, Phys. Rev. D33, 1094.
379. Rosenzweig, C. (1971), ‘Excited vertices in the model of Neveu and Schwarz’, Nuovo Cim. Lett. 2, 924.
380. Rosner, J.L. (1969), ‘Graphical form of duality’, Phys. Rev. Lett. 22, 689.
381. Roy, S.M. amd Singh, V. (1986), ‘Quantization of Nambu–Goto strings with new boundary conditions’, Phys. Rev. D33, 3792.
382. Sakita, B. and Virasoro, M.A. (1970), ‘Dynamical model of dual amplitudes’, Phys. Rev. Lett. 24, 1146.
383. Salam, A. and Strathdee, J. (1974), ‘Super-gauge transformations’, Nucl. Phys. B76, 477.
384. Salam, A. and Strathdee, J. (1982), ‘On Kaluza–Klein theory’, Ann. Phys. 141, 316.
385. Salomonson, P. and Skagerstam, B.S. (1986), ‘On superdense superstring gases: A heretic string model approach’, Nucl. Phys. B268, 349.
386. Sasaki, R. and Yamanaka, I. (1985), ‘Vertex operators for a bosonic string’, Phys. Lett. 165B, 283.
387. Sasaki, R. and Yamanaka, I. (1986), ‘Primary fields in a unitary representation of Virasoro algebras’, Prog. Theor. Phys. 75, 706.
388. Scherk, J. (1971), ‘Zero-slope limit of the dual resonance model’, Nucl. Phys. B31, 222.
389. Scherk, J. and Schwarz, J.H. (1974), ‘Dual models for non-hadrons’, Nucl. Phys. B81, 118.
390. Scherk, J. and Schwarz, J.H. (1974), ‘Dual models and the geometry of space-time’, Phys. Lett. 52B, 347.
391. Scherk, J. and Schwarz, J.H. (1975), ‘Dual model approach to a renormalizable theory of gravitation’, honorable mention in the 1975 essay competition of the Gravity Research Foundation.
392. Scherk, J. (1975), ‘An introduction to the theory of dual models and strings’, Rev. Mod. Phys. 47, 123.
393. Scherk, J. and Schwarz, J.H. (1975), ‘Dual field theory of quarks and gluons’, Phys. Lett. 57B, 463.
394. Scheunert, M.Nahm, W. and Rittenberg, V. (1976), ‘Classification of all simple graded Lie algebras whose Lie algebra is reductive. I.’, J. Math. Phys. 17, 1626.
395. Schild, A. (1977), ‘Classical null strings’, Phys. Rev. D16, 1722.
396. Schwarz, J.H. (1971), ‘Dual quark-gluon model of hadrons’, Phys. Lett. 37B, 315.
397. Schwarz, J.H. (1972), ‘Dual-pion model satisfying current-algebra constraints’, Phys. Rev. D5, 886.
398. Schwarz, J.H. (1972), ‘Physical states and Pomeron poles in the dual pion model’, Nucl. Phys. B46, 61.
399. Schwarz, J.H. and Wu, C.C. (1973), ‘Evaluation of dual fermion amplitudes’, Phys. Lett. 47B, 453.
400. Schwarz, J.H. (1973), ‘Dual resonance theory’, Phys. Reports C8, 269.
401. Schwarz, J.H. (1973), ‘Off-mass-shell dual amplitudes without ghosts’, Nucl. Phys. B65, 131.
402. Schwarz, J.H. (1974), ‘Dual quark-gluon theory with dynamical color’, Nucl. Phys. B68, 221.
403. Schwarz, J.H. and Wu, C.C. (1974), ‘Off-mass-shell dual amplitudes (II)’, Nucl. Phys. B72, 397.
404. Schwarz, J.H. and Wu, C.C. (1974), ‘Functions occurring in dual fermion amplitudes’, Nucl. Phys. B73, 77.
405. Schwarz, J.H. (1974), ‘Off-mass-shell dual amplitudes (III)’, Nucl. Phys. B76, 93.
406. Schwarz, J.H. (1978), ‘Spinning string theory from a modern perspective’, in Proc. Orbis Scientiae 1978, New Frontiers in High-Energy Physics, eds. A., Perlmutter and L.F., Scott (Plenum Press), p. 431.
407. Schwarz, J.H. (1982), ‘Superstring theory’, Phys. Reports 89, 223.
408. Schwarz, J.H. (1982), ‘Gauge groups for type I superstrings’, in Proc. of the Johns Hopkins Workshop on Current Problems in Particle Theory 6, Florence, 1982, p. 233.
409. Schwarz, J.H., ed. (1985), Superstrings: The First Fifteen Years of Superstring Theory, in 2 volumes (World Scientific, Singapore).
410. Schwarz, J.H. (1985), ‘Introduction to superstrings’, in Superstrings and Supergravity, A.T., Davis and D.G., Sutherland, eds. (Edinburgh), p. 301.
411. Schwarz, J.H. (1986), ‘Faddeev–Popov ghosts and BRS symmetry in string theories’, Suppl. Prog. Theor. Phys. 86, 70.
412. Sciuto, S. (1969), ‘The general vertex function in dual resonance models’, Nuovo Cim. Lett. 2, 411.
413. Segal, G. (1981), ‘Unitary representations of some infinite dimensional groups’, Commun. Math. Phys. 80, 301.
414. Sen, A. (1985), ‘Heterotic string in an arbitrary background field’, Phys. Rev. D32, 2102.
415. Sen, A. (1985), ‘Equations of motion for the heterotic string theory from the conformal invariance of the sigma model’, Phys. Rev. Lett. 55, 1846.
416. Sen, A. (1986), ‘Local gauge and Lorentz invariance of heterotic string theory’, Phys. Lett. 166B, 300.
417. Shapiro, J.A. (1969), ‘Narrow-resonance model with Regge behavior for ππ scattering’, Phys. Rev. 179, 1345.
418. Shapiro, J.A. (1970), ‘Electrostatic analogue for the Virasoro model’, Phys. Lett. 33B, 361.
419. Shapiro, J.A. (1972), ‘Loop graph in the dual-tube model’, Phys. Rev. D5, 1945.
420. Siegel, W. (1983), ‘Hidden local supersymmetry in the supersymmetric particle action’, Phys. Lett. 128B, 397.
421. Siegel, W. (1984), ‘Covariantly second-quantized string II’, Phys. Lett. 149B, 157; (1985), ‘Covariantly second-quantized string II’, Phys. Lett. 151B, 391.
422. Siegel, W. (1984), ‘Covariantly second-quantized string III’, Phys. Lett. 149B, 162;
(1985), ‘Covariantly second-quantized string III’, Phys. Lett. 151B, 396.
423. Siegel, W. (1985), ‘Spacetime-supersymmetric quantum mechanics’, Class. Quant. Grav. 2, L95.
424. Siegel, W. (1985), ‘Classical superstring mechanics’, Nucl. Phys. B263, 93.
425. Sierra, G. (1986), ‘New local bosonic symmetries of the particle, superparticle and string actions’, Class. Quant. Grav. 3, L67.
426. Skyrme, T.H.R. (1961), ‘Particle states of a quantized meson field’, Proc. Roy. Soc. A262, 237.
427. Slansky, R. (1981), ‘Group theory for unified model building’, Phys. Reports 79, 1.
428. Streater, R.F. and Wilde, I.F. (1970), ‘Fermion states of a boson field’, Nucl. Phys. B24, 561.
429. Sugawara, H. (1968), ‘A field theory of currents’, Phys. Rev. 170, 1659.
430. Sugawara, H. (1986), ‘String in curved space: Use of spinor representation of a noncompact group’, Phys. Rev. Lett. 56, 103.
431. Sundborg, B. (1985), ‘Thermodynamics of superstrings at high energy densities’, Nucl. Phys. B254, 583.
432. Susskind, L. (1970), ‘Dual-symmetric theory of hadrons. – I’, Nuovo Cim. 69A, 457.
433. Susskind, L. (1970), ‘Structure of hadrons implied by duality’, Phys. Rev. Dl, 1182.
434. Teitelboim, C. (1986), ‘Gauge invariance for extended objects’, Phys. Lett. 167B, 63.
435. 't Hooft, G. (1974), ‘A planar diagram theory for strong interactions’, Nucl. Phys. B72, 461.
436. Thorn, C.B. (1970), ‘Linear dependences in the operator formalism of Fubini, Veneziano, and Gordon’, Phys. Rev. Dl, 1693.
437. Thorn, C.B. (1971), ‘Embryonic dual model for pions and fermions’, Phys. Rev. D4, 1112.
438. Thorn, C.B. (1980), ‘Dual models and strings: The critical dimension’, Phys. Reports 67, 163.
439. Thorn, C.B. (1984), ‘Computing the Kac determinant using dual model techniques and more about the no-ghost theorem’, Nucl. Phys. B248, 551.
440. Thorn, C.B. (1985), ‘A proof of the no-ghost theorem using the Kac determinant’, in Vertex Operators in Mathematics and Physics, Proceedings of a Conference, November 10 – 17, 1983, eds. J., Lepowsky, S., Mandelstam, I.M., Singer (Springer-Verlag, New York), p. 411.
441. Thorn, C.B. (1986), ‘Introduction to the theory of relativistic strings’, in Workshop on Unified String Theories, 29 July – 16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore), p. 5.
442. Todorov, I.T. (1985), ‘Current algebra approach to conformal invariant two-dimensional models’, Phys. Lett. 153B, 77.
443. Trautman, A. (1970), ‘Fibre bundles associated with space-time’, Rep. Math. Phys. 1, 29.
444. Tseytlin, A.A. (1986), ‘Covariant string field theory and effective action’, Phys. Lett. 168B, 63.
445. Tseytlin, A.A. (1986), ‘Effective action for a vector field in the theory of open superstrings’, Pis'ma Zh. Eksp. Teor. Fiz. 43, 209.
446. Tye, S.-H.H. (1985), ‘The limiting temperature of the universe and superstrings’, Phys. Lett. 158B, 388.
447. Tye, S.-H.H. (1985), ‘New actions for superstrings’, Phys. Rev. Lett. 55, 1347.
448. Tyutin, I.V. (1975), ‘Gauge invariance in field theory and in statistical physics in the operator formulation’, Lebedev preprint FIAN No. 39 (in Russian), unpublished.
449. Vafa, C. and Witten, E. (1985), ‘Bosonic string algebras’, Phys. Lett. 159B, 265.
450. Van Nieuwenhuizen, P. (1981), ‘Supergravity’, Phys. Reports 68, 189.
451. Van Nieuwenhuizen, P. (1986), ‘The actions of the N = 1 and N = 2 spinning strings as conformal supergravities’, Int. J. Mod. Phys. Al, 155.
452. Veblen, O. (1933), Projektive Relativitdts Theorie (Springer, Berlin).
453. Veneziano, G. (1968), ‘Construction of a crossing-symmetric, Reggebehaved amplitude for linearly rising trajectories’, Nuovo Cim. 57A, 190.
454. Veneziano, G. (1974), ‘An introduction to dual models of strong interactions and their physical motivations’, Phys. Reports C9, 199.
455. Veneziano, G. (1986), ‘Ward identities in dual string theories’, Phys. Lett. 167B, 388.
456. Virasoro, M.A. (1969), ‘Alternative constructions of crossing-symmetric amplitudes with Regge behavior’, Phys. Rev. 177, 2309.
457. Virasoro, M.A. (1969), ‘Generalization of Veneziano's formula for the five-point function’, Phys. Rev. Lett. 22, 37.
458. Virasoro, M.A. (1970), ‘Subsidiary conditions and ghosts in dual-resonance models’, Phys. Rev. Dl, 2933.
459. Volovich, I.V. and Katanaev, M.O. (1986), ‘Quantum strings with a dynamic geometry’, Pis'ma Zh. Eksp. Teor. Fiz. 43, 212.
460. Waterson, G. (1986), ‘Bosonic construction of an N = 2 extended superconformal theory in two dimensions’, Phys. Lett. 171B, 77.
461. Weinberg, S. (1964), ‘Derivation of gauge invariance and the equivalence principle from Lorentz invariance of the S-matrix’, Phys. Lett. 9, 357.
462. Weinberg, S. (1964), ‘Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass’, Phys. Rev. 135, B1049.
463. Weinberg, S. (1965), ‘Photons and gravitons in perturbation theory: derivation of Maxwell's and Einstein's equations’, Phys. Rev. 138, B988.
464. Weinberg, S. (1985), ‘Coupling constants and vertex functions in string theories’, Phys. Lett. 156B, 309.
465. Wess, J. and Zumino, B. (1974), ‘Supergauge transformations in four dimensions’, Nucl. Phys. B70, 39.
466. Wess, J. and Bagger, J. (1983), Supersymmetry and Supergravity, (Princeton Univ. Press).
467. Witten, E. (1983), ‘Global aspects of current algebra’, Nucl. Phys. B223, 422.
468. Witten, E. (1983), ‘D = 10 superstring theory’, in Fourth Workshop on Grand Unification, ed. P., Langacker et al. (Birkhauser), p. 395.
469. Witten, E. (1984), ‘Non-Abelian bosonization in two dimensions’, Commun. Math. Phys. 92, 455.
470. Witten, E. (1986), ‘Twistor-like transform in ten dimensions’, Nucl. Phys. B266, 245.
471. Witten, E. (1986), ‘Global anomalies in string theory’, in Symposium on Anomalies, Geometry, Topology, March 28–30, 1985, eds. W.A., Bardeen and A.R., White (World Scientific, Singapore), p. 61.
472. Yoneya, T. (1973), ‘Quantum gravity and the zero-slope limit of the generalized Virasoro model’, Nuovo Cim. Lett. 8, 951.
473. Yoneya, T. (1974), ‘Connection of dual models to electrodynamics and gravidynamics’, Prog. Theor. Phys. 51, 1907.
474. Yoneya, T. (1976), ‘Geometry, gravity and dual strings’, Prog. Theor. Phys. 56, 1310.
475. Yoshimura, M. (1971), ‘Operational factorization and symmetry of the Shapiro–Virasoro model’, Phys. Lett. 34B, 79.
476. Yu, L.P. (1970), ‘Multifactorizations and the four-Reggeon vertex function in the dual resonance models’, Phys. Rev. D2, 1010.
477. Yu, L.P. (1970), ‘General treatment of the multiple factorizations in the dual resonance models; the N-Reggeon amplitudes’, Phys. Rev. D2, 2256.
478. Zumino, B. (1974), ‘Relativistic strings and supergauges’ in Renormalization and Invariance in Quantum Field Theory, ed. E., Caianiello (Plenum Press), p. 367.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.