Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-08T08:17:38.555Z Has data issue: false hasContentIssue false

9 - Diffusion of large clusters

Published online by Cambridge University Press:  06 July 2010

Grazyna Antczak
Affiliation:
University of Wrocław, Poland; Leibniz Universität Hannover, Germany
Gert Ehrlich
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Starting in the 1970s, considerable work was done on dimers and trimers and their surface diffusion, but there were no experimental studies of larger clusters, containing twenty or more atoms, since they were assumed to be immobile at the surface. This changed in 1984, with the work of Fink using the FIM, in which he assembled a cluster of twenty or more palladium atoms on the (110) plane of tungsten. At 390 K, this large cluster moved over the surface as a unit, as shown in Fig. 9.1, demonstrating its diffusivity. Large clusters turn out to be mobile at relatively low temperatures and their movement needed to be investigated, since it influences the stability of nanostructures and thin film growth kinetics. With the invention of the scanning tunneling microscope, large clusters were rediscovered a few years later, and work began to unravel how diffusion occurred, many of the studies focusing on the dependence of diffusivity on cluster size. This effort will be surveyed, arranged according to the type of the surface. Study of large clusters began with the examination of movement on a bcc surface, on W(110), but this work was not continued later; instead fcc surfaces were investigated in detail.

Large clusters on fcc(100) surfaces

Theoretical investigations of large clusters on fcc(100) surfaces started in 1980 with the work of Binder and Kalos, which initiated a number of discussions of how the cluster diffusivity D was affected by the size and the specific mechanism of diffusion.

Type
Chapter
Information
Surface Diffusion
Metals, Metal Atoms, and Clusters
, pp. 664 - 695
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ehrlich, G., in: Proceedings of the 9th International Conference on Solid Surfaces, Segovia, J. L. (ed.), Layer growth – an atomic picture, (A.S.E.V., Madrid, 1983), p. 3–16.Google Scholar
Ehrlich, G., in: Chemistry and Physics of Solid Surfaces V, Vanselow, R., Howe, R. (eds.), An atomic view of crystal growth, (Springer-Verlag, Berlin, 1984), p. 282–296.Google Scholar
Fink, H.-W., in: Diffusion at Interfaces – Microscopic Concepts, Grunze, M., Kreuzer, H. J., Weimer, J. J. (eds.), Direct observation of atomic motion on surfaces, (Springer-Verlag, Berlin, 1988), p. 75–91.CrossRefGoogle Scholar
Binder, K., Kalos, M. H., “Critical clusters” in a supersaturated vapor: Theory and Monte Carlo simulation, J. Stat. Phys. 22 (1980) 363–396.CrossRefGoogle Scholar
Voter, A. F., Classically exact overlayer dynamics: Diffusion of rhodium clusters on Rh(100), Phys. Rev. B 34 (1986) 6819–6829.CrossRefGoogle Scholar
Voter, A. F., Simulation of the layer-growth dynamics in silver films: Dynamics of adatom and vacancy clusters on Ag(100), Proc. SPIE 821 (1987) 214–226.CrossRefGoogle Scholar
Wen, J.-M., Chang, S.-L., Burnett, J. W., Evans, J. W., Thiel, P. A., Diffusion of large two-dimensional Ag clusters on Ag(100), Phys. Rev. Lett. 73 (1994) 2591–2594.CrossRefGoogle Scholar
Pai, W. W., Swan, A. K., Zhang, Z., Wendelken, J. F., Island diffusion and coarsening on metal (100) surfaces, Phys. Rev. Lett. 79 (1997) 3210–3213.CrossRefGoogle Scholar
Wen, J. M., Evans, J. W., Bartelt, M. C., Burnett, J. W., Thiel, P. A., Coarsening mechanisms in a metal film: From cluster diffusion to vacancy ripening, Phys. Rev. Lett. 76 (1996) 652–655.CrossRefGoogle Scholar
Stoldt, C. R., Jenks, C. J., Thiel, P. A., Cadilhe, A. M., Evans, J. W., Smoluchowski ripening of Ag islands on Ag(100), J. Chem. Phys. 111 (1999) 5157–5166.CrossRefGoogle Scholar
Pal, S., Fichthorn, K. A., Size dependence of the diffusion coefficient for large adsorbed clusters, Phys. Rev. B 60 (1999) 7804–7807.CrossRefGoogle Scholar
Lo, A., Skodje, R. T., Diffusion and evaporation kinetics of large islands and vacancies on surfaces, J. Chem. Phys. 111 (1999) 2726–2734.CrossRefGoogle Scholar
Heinonen, J., Koponen, I., Merikoski, J., Ala-Nissila, T., Island diffusion on metal fcc (100) surfaces, Phys. Rev. Lett. 82 (1999) 2733–2736.CrossRefGoogle Scholar
Merikoski, J., Ala-Nissila, T., Diffusion processes and growth on stepped metal surfaces, Phys. Rev. B 52 (1995) R8715–8718.CrossRefGoogle ScholarPubMed
Mills, G., Mattsson, T. R., Mollnitz, L., Metiu, H., Simulations of mobility and evaporation rate of adsorbate islands on solid surfaces, J. Chem. Phys. 111 (1999) 8639–8650.CrossRefGoogle Scholar
Pai, W. W., Wendelken, J. F., Stoldt, C. R., Thiel, P. A., Evans, J. W., Liu, D.-J., Evolution of two-dimensional wormlike nanoclusters on metal surfaces, Phys. Rev. Lett. 86 (2001) 3088–3091.CrossRefGoogle ScholarPubMed
Resende, F. J., Costa, B. V., Molecular dynamics study of copper cluster deposition on a Cu(010) surface, Surf. Sci. 481 (2001) 54–66.CrossRefGoogle Scholar
Wang, X., Xie, F., Shi, Q., Zhao, T., Effect of atomic diagonal motion on cluster diffusion coefficient and its scaling behavior, Surf. Sci. 561 (2004) 25–32.CrossRefGoogle Scholar
Jahma, M. O., Rusanen, M., Karim, A., Koponen, I. T., Ala-Nissila, T., Rahman, T. S., Diffusion and submonolayer island growth during hyperthermal deposition on Cu(100) and Cu(111), Surf. Sci. 598 (2005) 246–252.CrossRefGoogle Scholar
Sánchez, J. R., Metal surface adsorbed clusters: Structure and dynamics, J. Molec. Catalysis A: Chemical 237 (2005) 206–209.CrossRefGoogle Scholar
Wang, S. C., Ehrlich, G., Diffusion of large surface clusters: Direct observations on Ir(111), Phys. Rev. Lett. 79 (1997) 4234–4237.CrossRefGoogle Scholar
Trevor, D. J., Chidsey, C. E. D., Room temperature surface diffusion mechanisms observed by scanning tunneling microscopy, J. Vac. Sci. Technol. B 9 (1991) 964–968.CrossRefGoogle Scholar
Figuera, J., Prieto, J. E., Ocal, C., Miranda, R., Creation and motion of vacancy islands on solid surfaces: A direct view, Solid State Comm. 89 (1994) 815–818.CrossRefGoogle Scholar
Morgenstern, K., Rosenfeld, G., Poelsema, B., Comsa, G., Brownian motion of vacancy islands on Ag(111), Phys. Rev. Lett. 74 (1995) 2058–2061.CrossRefGoogle Scholar
Rosenfeld, G., Morgenstern, K., Comsa, G., in: NATO-ASI Surface Diffusion: Atomistic and Collective Processes, Tringides, M. C. (ed.), Diffusion and stability of large clusters on crystal surfaces, (Plenum Press, New York, 1997), p. 361–375.CrossRefGoogle Scholar
Hamilton, J. C., Daw, M. S., Foiles, S. M., Dislocation mechanism for island diffusion on fcc(111) surfaces, Phys. Rev. Lett. 74 (1995) 2760–2763.CrossRefGoogle ScholarPubMed
Hamilton, J. C., Magic size effects for heteroepitaxial island diffusion, Phys. Rev. Lett. 77 (1996) 885–888.CrossRefGoogle ScholarPubMed
Sholl, D. S., Skodje, R. T., Diffusion of clusters of atoms and vacancies on surfaces and the dynamics of diffusion-driven coarsening, Phys. Rev. Lett. 75 (1995) 3158–3161.CrossRefGoogle ScholarPubMed
Bitar, L., Serena, P. A., García-Mochales, P., García, N., Binh, V. T., Mechanism for diffusion of nanostructures and mesoscopic objects on surfaces, Surf. Sci. 339 (1995) 221–232.CrossRefGoogle Scholar
Kuipers, L., Hoogeman, M. S., Frenken, J. W. M., Step dynamics on Au(110) studied with high temperature, high speed scanning tunneling microscope, Phys. Rev. Lett. 71 (1993) 3517.CrossRefGoogle ScholarPubMed
Bogicevic, A., Liu, S., Jacobsen, J., Lundqvist, B., Metiu, H., Island migration caused by the motion of the atoms at the border: Size and temperature dependence of the diffusion coefficient, Phys. Rev. B 57 (1998) R9459–9462.CrossRefGoogle Scholar
Bogicevic, A., Strömquist, J., Lundqvist, B. I., Low-symmetry diffusion barriers in homoepitaxial growth of Al(111), Phys. Rev. Lett. 81 (1998) 637–640.CrossRefGoogle Scholar
Wang, S. C., Ehrlich, G., Equilibrium shapes and energetics of iridium clusters on Ir(111), Surf. Sci. 391 (1997) 89–100.CrossRefGoogle Scholar
Wang, S. C., Kürpick, U., Ehrlich, G., Surface diffusion of compact and other clusters: Irx on Ir(111), Phys. Rev. Lett. 81 (1998) 4923–4926.CrossRefGoogle Scholar
Krylov, S. Y., Surface gliding of large low-dimensional clusters, Phys. Rev. Lett. 83 (1999) 4602–4605.CrossRefGoogle Scholar
Hamilton, J. C., Voter, A. F., Failure of 1D models for Ir island diffusion on Ir(111), Phys. Rev. Lett. 85 (2000) 1580.CrossRefGoogle Scholar
Vineyard, G. H., Frequency factors and isotope effects in solid state rate processes, J. Phys. Chem. Solids 3 (1957) 121–127.CrossRefGoogle Scholar
Krylov, S. Y., Krylov replies, Phys. Rev. B 85 (2000) 1581.Google ScholarPubMed
Kürpick, U., Fricke, B., Ehrlich, G., Diffusion mechanisms of compact surface clusters: Ir7 on Ir(111), Surf. Sci. 470 (2000) L45–51.CrossRefGoogle Scholar
Hamilton, J. C., Sorensen, M. R., Voter, A. F., Compact surface-cluster diffusion by concerted rotation and translation, Phys. Rev. B 61 (2000) R5125–5128.CrossRefGoogle Scholar
Sutton, A. P., Chen, J., Long-range Finnis-Sinclair potentials, Philos. Mag. Lett. 61 (1990) 139–46.CrossRefGoogle Scholar
Chen, S. P., Studies of iridium surfaces and grain boundaries, Philos. Mag. A 66 (1992) 1–10.CrossRefGoogle Scholar
Zhuang, G., Wang, W., The atomic moving process of cluster Ir18 diffusion on Ir(111), Internatl. J. Mod. Phys. B 14 (2000) 427–434.CrossRefGoogle Scholar
Chirita, V., Münger, E. P., Greene, J. E., Sundgren, J.-E., Cluster diffusion and surface morphological transitions on Pt(111) via reptation and concerted motion, Thin Solid Films 370 (2000) 179–185.CrossRefGoogle Scholar
Oh, D. J., Johnson, R. A., Simple embedded atom method model for fcc and hcp metals, J. Mater. Res. 3 (1988) 471–478.CrossRefGoogle Scholar
Johnson, R. A., Alloy models with the embedded atom method, Phys. Rev. B 39 (1989) 12554–12559.CrossRefGoogle ScholarPubMed
Kyuno, K., Ehrlich, G., Diffusion and dissociation of platinum clusters on Pt(111), Surf. Sci. 437 (1999) 29–37.CrossRefGoogle Scholar
Schlösser, D. C., Morgenstern, K., Verheij, L. K., Rosenfeld, G., Besenbacher, F., Comsa, G., Kinetics of island diffusion on Cu(111) and Ag(111) studied with variable-temperature STM, Surf. Sci. 465 (2000) 19–39.CrossRefGoogle Scholar
Stoltze, P., Simulation of surface defects, J. Phys.: Condens. Matter 6 (1994) 9495–9517.Google Scholar
Ghosh, C., Kara, A., Rahman, T. S., Usage of pattern recognition scheme in kinetic Monte Carlo simulations: Application to cluster diffusion on Cu(111), Surf. Sci. 601 (2007) 3159–3168.CrossRefGoogle Scholar
Fan, W., Gong, X. G., Simulation of Ni cluster diffusion on Au(110)-(1 × 2) surface, Appl. Surf. Sci. 219 (2003) 117–122.CrossRefGoogle Scholar
Johnson, R. A., Analytical nearest-neighbor model for fcc metals, Phys. Rev. B 37 (1988) 3924–3931.CrossRefGoogle Scholar
Schunack, M., Linderoth, T. R., Rosei, F., Laegsgaard, E., Stensgaard, I., Besenbacher, F., Long jumps in the surface diffusion of large molecules, Phys. Rev. Lett. 88 (2002) 156102 1–4.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×