Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-23T17:13:02.370Z Has data issue: false hasContentIssue false

18 - Stable isotope variants as tracers for studying biosphere-atmosphere exchange

Published online by Cambridge University Press:  05 June 2014

Russell Monson
Affiliation:
University of Arizona
Dennis Baldocchi
Affiliation:
University of California, Berkeley
Get access

Summary

Rural air samples were all collected from the layer of air close to the ground . . . under circumstances where the metabolic activity of plants might be expected to influence the carbon dioxide composition of the air. This is so because plants exchange carbon dioxide with the atmosphere by means of respiration and assimilation and also because carbon dioxide is evolved from the ground through decay of organic material in the soil and respiration of plant roots . . . Thus the relationship between carbon isotope ratio and molar concentration observed for the carbon dioxide of rural air is explained if carbon dioxide is added to or subtracted from the atmosphere by plants or their decay products.

Charles Keeling (1958), Scripp Institution of Oceanography

Of the 98 naturally occurring elements on earth, 18 are known to be radioactive, meaning that they exhibit time-dependent decay to lighter elements, and 80 are known to be stable. Of those 80 stable elements, 54 are known to exhibit isotopic variation, meaning that atoms within the same elemental category have different atomic masses due to variations in neutron number (Section 3.5). Given the dependency of diffusive flux on atomic mass, molecules of the same compound, but composed of different isotopes, will diffuse at different rates and thus segregate into isotopic fractions over time. Analysis of isotopic fractionation provides researchers with one of their most valuable tools for understanding rates of diffusive flux, enzyme-substrate interactions, interactions among metabolic pathways, and the sources and sinks of compounds used for various biogeochemical processes, even extending beyond those defined solely by diffusion. Of particular importance have been analyses of the isotopic composition of CO2 and H2O, given that C, H, and O are among those 54 elements that exhibit stable isotope variation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×