Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-23T17:11:03.999Z Has data issue: false hasContentIssue false

9 - Water transport within the soil-plant-atmosphere continuum

Published online by Cambridge University Press:  05 June 2014

Russell Monson
Affiliation:
University of Arizona
Dennis Baldocchi
Affiliation:
University of California, Berkeley
Get access

Summary

Because water is generally free to move across the plant-soil, soil-atmosphere, and plant-atmosphere interfaces it is necessary and desirable to view the water transfer system in the three domains of soil, plant, and atmosphere as a whole. . . it must be pointed out that, as well as serving as a vehicle for water transfer, the SPAC is also a region of energy transfer.

John R. Philip (1966)

Closure of the water budget for an ecosystem requires that precipitation and flows of water from neighboring ecosystems be returned to the atmosphere through evapotranspiration, transferred to storage pools, or allowed to flow out of the system. Transfer and storage of water creates capacitance in the liquid phase of the water cycle and delays the inevitable return of water vapor to the atmosphere, but a globally balanced water cycle requires that the molar equivalent of precipitated water be accounted for in the fractions stored in surface and subsurface reservoirs, plus that evaporated back to the atmosphere. Recognizing that in terrestrial ecosystems a large fraction of precipitation is returned to the atmosphere through leaf transpiration, plants occur at an important interface between the liquid and vapor phases of the water cycle. Water moves from soil into plants through viscous flow in the liquid phase, as it is “pulled” by thermodynamic forces through roots, vascular tissues, and leaf mesophyll cells, following negative pressure (tension) gradients. Tension develops in the conduction tissues as water is evaporated faster from leaves than can be replaced by flow from the soil. Physical continuity within capillary “threads” of the ascending water column is maintained by cohesive and adhesive forces that are facilitated by the electrostatic polarity of water molecules. In the vicinity of stomata, water is evaporated to the atmosphere. In the atmosphere, water is carried in the vapor phase to and from leaf and soil surfaces through diffusion near the surfaces and turbulent air motions in the well-mixed atmosphere. Given the continuous nature of these water transfer paths, and their serial relation to one another, it was recognized early in the study of plant-water relations that the “whole plant” must be considered at the center of an integrated and articulated soil-plant-atmosphere continuum, or SPAC.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×