Skip to main content Accessibility help
×
  • Cited by 211
Publisher:
Cambridge University Press
Online publication date:
June 2013
Print publication year:
2013
Online ISBN:
9781139109291

Book description

Research into active galactic nuclei (AGN) – the compact, luminous hearts of many galaxies – is at the forefront of modern astrophysics. Understanding these objects requires extensive knowledge in many different areas: accretion disks, the physics of dust and ionized gas, astronomical spectroscopy, star formation, and the cosmological evolution of galaxies and black holes. This new text by Hagai Netzer, a renowned astronomer and leader in the field, provides a comprehensive introduction to the theory underpinning our study of AGN and the ways that we observe them. It emphasizes the basic physics underlying AGN, the different types of active galaxies and their various components, and the complex interplay between them and other astronomical objects. Recent developments regarding the evolutionary connections between active galaxies and star-forming galaxies are explained in detail. Both graduate students and researchers will benefit from Netzer's authoritative contributions to this exciting field of research.

Reviews

‘Professor Netzer has produced a truly impressive text on the theory and observations of active galactic nuclei. He has done a superb job of bringing both clarity and depth to what has become in recent years a very broad and complex subject. This will undoubtedly become one of the field’s defining texts and a primary resource for graduate students, their teachers, and researchers alike.’

Mark Whittle - University of Virginia

‘… the most complete single treatment of active galactic nuclei in the literature, with a remarkably broad view of the relevant physical processes and data. Netzer’s text spans the intellectual range from basic theory to observational connections, better than any other treatment of AGN that I know of. This is especially important since the things we know with most assurance are observational, and the things we want to know are theoretical conclusions at various degrees of separation from the data; here one sees the whole chains of reasoning in rich detail. The text also folds in a range of recent developments, from the connections between accretion disks and outflows, through the rich statistics from recent sky surveys, to the unfolding links between AGN and their host galaxies as a normal part of galaxy evolution … a working reference, with useful tables and literature citations.’

William C. Keel - University of Alabama

'… a rather splendid advanced textbook … It is authoritative and complete … if you want a single book that covers all the bases at graduate level, and gives you a jumping off point, this is the one.'

Source: The Observatory

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
Ackermann, M., Ajello, M., Allafort, A., et al. 2011, “The second catalog of active galactic nuclei detected by the Fermi large area telescope,” ApJ, 743 CrossRef | Google Scholar, 171.
Alonso-Herrero, A., Ramos Almeida, C., Mason, R., et al. 2011, “Torus and active galactic nucleus properties of nearby Seyfert galaxies: Results from fitting infrared spectral energy distributions and spectroscopy,” ApJ 736 CrossRef | Google Scholar, 82.
Antonucci, R. 1993, “Unified models for active galactic nuclei and quasars,” AnnRevAstAp, 31 Google Scholar, 473.
Arav, N., Moe, M., Costantini, E., et al. 2008, “Measuring column densities in quasar outflows: VLT observations of QSO 2359-1241,” ApJ, 681 CrossRef | Google Scholar, 954.
Assef, R. J., Denney, K. D., Kochanek, C. S., et al. 2011, “Black hole mass estimates based on C IV are consistent with those based on the Balmer lines,” ApJ, 742 CrossRef | Google Scholar, 93.
Baldwin, J. A. 1977, “Luminosity indicators in the spectra of quasi-stellar objects,” ApJ, 214 CrossRef | Google Scholar, 679.
Baldwin, J. A., Ferland, G. J., Korista, K. T., et al. 2004, “The origin of Fe II emission in active galactic nuclei,” ApJ, 615 CrossRef | Google Scholar, 610.
Barthel, P., & van Bemmel, I. 2003, “Radio galaxies: Unification and dust properties,” NAR, 47 CrossRef | Google Scholar, 199.
Becker, R. H., White, R. L., & Helfand, D. J., et al. 1995, “The FIRST survey: Faint images of the radio sky at twenty centimeters,” ApJ 450 CrossRef | Google Scholar, 559.
Bentz, M. C., Peterson, B. M., Netzer, H., et al. 2009, “The radius–luminosity relationship for active galactic nuclei: The effect of host-galaxy starlight on luminosity measurements. II. The full sample of reverberation-mapped AGNs,” ApJ, 697 CrossRef | Google Scholar, 160.
Bernuzzi, S., Nagar, A., & Zenginoğlu, A. 2011, “Binary black hole coalescence in the large-mass-ratio limit: The hyperboloidal layer method and waveforms at null infinity,” PRD, 84 CrossRef | Google Scholar, 084026.
Best, P. N., Kauffmann, G., Heckman, T. M., et al. 2005, “The host galaxies of radioloud active galactic nuclei: Mass dependences, gas cooling and active galactic nuclei feedback,” MNRAS, 362 CrossRef | Google Scholar, 25.
Blaes, O., Hubeny, I., Agol, E., et al. 2001, “Non-LTE, relativistic accretion disk fits to 3C 273 and the origin of the Lyman limit spectral break,” ApJ, 563 CrossRef | Google Scholar, 560.
Blaes, O. 2007, “The central engine of active galactic nuclei,” ASPC, 373 Google Scholar, 75.
Blandford, R. D. 1990, “Physical processes in active galactic nuclei,” SAAS-FEE Advanced Course 20 on Active Galactic Nuclei CrossRef | Google Scholar, Springer, 161.
Blanton, M. R., Hogg, D. W., Bahcall, N. A., et al. 2003, “The broadband optical properties of galaxies with redshifts 0.02 < z < 0.22,” ApJ, 594 CrossRef | Google Scholar, 186.
Blecha, L., Cox, T. J., Loeb, A., & Hernquist, L. 2011, “Recoiling black holes in merging galaxies: Relationship to active galactic nucleus lifetimes, starbursts and the MBH-*relation,” MNRAS, 412 CrossRef | Google Scholar, 2154.
Bonfield, D. G., Jarvis, M. J., Hardcastle, M. J., et al. 2011, “Herschel-ATLAS: The link between accretion luminosity and star formation in quasar host galaxies,” MNRAS, 416 Google Scholar, 13.
Boroson, T. A., & Green, R. F. 1992, “The emission-line properties of low-redshift quasistellar objects,” ApJ, 80 CrossRef | Google Scholar, 109.
Böttcher, M., Basu, S., Joshi, M., et al. 2007, “The WEBT campaign on the blazar 3C 279 in 2006,” ApJ, 670 CrossRef | Google Scholar, 968.
Bottorff, M. C., & Ferland, G. J. 2000, “Magnetic confinement, magnetohydrodynamic waves and smooth line profiles in active galactic nuclei,” MNRAS, 316 CrossRef | Google Scholar, 103.
Brammer, G. B., Whitaker, K. E., van Dokkum, P. G., et al. 2009, “The dead sequence: A clear bimodality in galaxy colors from z = 0 to z = 2.5,” ApJL, 706 CrossRef | Google Scholar, L173.
Cano-Díaz, M., Maiolino, R., Marconi, A., et al. 2012, “Observational evidence of quasar feedback quenching star formation at high redshift,” A&A, 537 Google Scholar, L8.
Cao, X. 2007, “Growth of massive black holes during radiatively inefficient accretion phases,” ApJ, 659 CrossRef | Google Scholar, 950.
Cao, X. 2009, “An accretion disc-corona model for X-ray spectra of active galactic nuclei,” MNRAS, 394 CrossRef | Google Scholar, 207.
Cao, X. 2010, “On the disappearance of the broad-line region in low-luminosity active galactic nuclei: The role of the outflows from advection dominated accretion flows,” ApJ, 724 CrossRef | Google Scholar, 855.
Capellupo, D. M., Hamann, F., Shields, J. C., et al. 2011, “Variability in quasar broad absorption line outflows – I. Trends in the short-term versus long-term data,” MNRAS, 413 CrossRef | Google Scholar, 908.
Cardiel, N., Elbaz, D., Schiavon, R. P., et al. 2003, “A multiwavelength approach to the star formation rate estimation in galaxies at intermediate redshifts,” ApJ, 584 CrossRef | Google Scholar, 76.
Chelouche, D., & Netzer, H. 2005, “Dynamical and spectral modeling of the ionized gas and nuclear environment in NGC 3783,” ApJ, 625 CrossRef | Google Scholar, 95.
Cisternas, M., Jahnke, K., Inskip, K. J., et al. 2011, “The bulk of the black hole growth since z ~ 1 occurs in a secular universe: No major merger-AGN connection,” ApJ, 726 CrossRef | Google Scholar, 57.
Cid Fernandes, R., Heckman, T., Schmitt, H., et al. 2001, “Empirical diagnostics of the starburst-AGN connection,” ApJ, 558 CrossRef | Google Scholar, 81.
Cid Fernandes, R., Stasińska, G., Mateus, A., et al. 2011, “A comprehensive classification of galaxies in the Sloan Digital Sky Survey: How to tell true from fake AGN?,” MNRAS, 413 CrossRef | Google Scholar, 1687.
Cisternas, M., Jahnke, K., Bongiorno, A., et al. 2011, “Secular evolution and a non-evolving black-hole-to-galaxy mass ratio in the last 7 Gyr,” ApJL, 741 CrossRef | Google Scholar, L11.
Clavel, J., Reichert, G. A., Alloin, D., et al. 1991, “Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. I – an 8 month campaign of monitoring NGC 5548 with IUE,” ApJ, 366 CrossRef | Google Scholar, 64.
Collin, S., & Joly, M. 2000, “The Fe II problem in NLS1s,” NAR, 44 CrossRef | Google Scholar, 531.
Collin, S., & Kawaguchi, T. 2004, “Super-Eddington accretion rates in narrow line Seyfert 1 galaxies,” A&A, 426 Google Scholar, 797.
Croom, S. M., Smith, R. J., Boyle, B. J., et al. 2004, “The 2dF QSO redshift survey – XII. The spectroscopic catalogue and luminosity function,” MNRAS, 349 CrossRef | Google Scholar, 1397.
Croom, S. M., Smith, R. J., Boyle, B. J., et al. 2004, MNRAS, 349 CrossRef | Google Scholar, 1397.
Croom, S. M., et al. 2008, “The 2dF-SDSS LRG and QSO survey: The spectroscopic QSO catalogue,” MNRAS, 392 CrossRef | Google Scholar, 19.
Croom, S. M., Richards, G. T., Shanks, T., et al. 2009, “The 2dF-SDSS LRG and QSO survey: The QSO luminosity function at 0.4 < z < 2.6,” MNRAS, 399 CrossRef | Google Scholar, 1755.
Croom, S. M. 2011, “Do quasar broad-line velocity widths add any information to virial black hole mass estimates?ApJ 736 CrossRef | Google Scholar, 161.
Crenshaw, D. M., Kraemer, S. B., & George, I. M. 2003, “Mass loss from the nuclei of active galaxies,” ARAA, 41 CrossRef | Google Scholar, 117.
Daddi, E., Dickinson, M., Morrison, G., et al. 2007, “Multiwavelength study of massive galaxies at z 2. I. Star formation and galaxy growth,” ApJ, 670 CrossRef | Google Scholar, 156.
Dasyra, K. M., Ho, L. C., Netzer, H., et al. 2011, “A view of the narrow-line region in the infrared: Active galactic nuclei with resolved fine-structure lines in the Spitzer archive,” ApJ, 740 CrossRef | Google Scholar, 94.
Dovčiak, M., Karas, V., & Yaqoob, T. 2004, “An extended scheme for fitting X-ray data with accretion disk spectra in the strong gravity regime,” ApJS, 153 CrossRef | Google Scholar, 205.
Davidson, K., & Netzer, H. 1979, “The emission lines of quasars and similar objects,” RMP, 51 CrossRef | Google Scholar, 715.
Davis, S. W., Woo, J.-H., & Blaes, O. M. 2007, “The UV continuum of quasars: Models and SDSS spectral slopes,” ApJ, 668 CrossRef | Google Scholar, 682.
Davis, S. W., & Laor, A. 2011, “The radiative efficiency of accretion flows in individual active galactic nuclei,” ApJ, 728 CrossRef | Google Scholar, 98.
Dopita, M. A., Groves, B. A., Sutherland, R. S., et al. 2002, “Are the narrow-line regions in active galaxies dusty and radiation pressure dominated?ApJ 572 CrossRef | Google Scholar, 753.
Dutton, A. A., van den Bosch, F. C., & Dekel, A. 2010, “On the origin of the galaxy star-formation-rate sequence: Evolution and scatter,” MNRAS, 405 Google Scholar, 1690.
Emerson, D. 1996, Interpreting Astronomical Spectra Google Scholar, John Wiley.
Elitzur, M. 2008, “The toroidal obscuration of active galactic nuclei,” NAR, 52 CrossRef | Google Scholar, 274.
Elitzur, M., & Ho, L. C. 2009. “On the disappearance of the broad line region in low luminosity active galactic nuclei,” ApJL, ApJL 701 CrossRef | Google Scholar, L91–L94.
Elvis, M., Wilkes, B. J., McDowell, J. C., et al., 1994, “Atlas of quasar energy distributions,” ApJS, 95 CrossRef | Google Scholar, 1.
Elvis, M. 2000, “A structure for quasars,” ApJ, 545 CrossRef | Google Scholar, 63.
Emmering, R. T., Blandford, R. D., & Shlosman, I. 1992, “Magnetic acceleration of broad emission-line clouds in active galactic nuclei,” ApJ, 385 CrossRef | Google Scholar, 460.
Eracleous, M., & Halpern, J. P. 2003, “Completion of a survey and detailed study of double-peaked emission lines in radio-loud active galactic nuclei,” ApJ, 599 CrossRef | Google Scholar, 886.
Fan, X. 2006, “Evolution of high-redshift quasars,” NAR, 50 Google Scholar, 665–671.
Fan, X., Carilli, C. L., & Keating, B. 2006, “Observational constraints on cosmic reionization,” ARAA, 44 CrossRef | Google Scholar, 415.
Fanidakis, N., Baugh, C. M., Benson, A. J., et al. 2011, “Grand unification of AGN activity in the CDM cosmology,” MNRAS, 410 CrossRef | Google Scholar, 53.
Fanidakis, N., Baugh, C. M., Benson, A. J., et al. 2012, “The evolution of active galactic nuclei across cosmic time: What is downsizing?,” MNRAS, 419 CrossRef | Google Scholar, 2797.
Fine, S., Croom, S. M., Bland-Hawthorn, J., et al. 2010. “The CIV linewidth distribution for quasars and its implications for broad-line region dynamics and virial mass estimation,” MNRAS, 409 CrossRef | Google Scholar, 591.
Ferrarese, L., & Merritt, D. A. 2000, “A fundamental relation between supermassive black holes and their host galaxies,” ApJ, 539 CrossRef | Google Scholar, L9L12.
Fosbury, R. 2006, “AGN beyond the 100pc scale,” Physics of Active Galactic Nuclei at all Scales, edited by Danielle, Alloin, Rachel, Johnson, and Paulina, Lira. LNP, 693 CrossRef | Google Scholar, 121.
Frank, J., King, A., & Raine, D. J. 2002, Accretion Power in Astrophysics: Cambridge University Press, Third Edition CrossRef | Google Scholar.
Fritz, J., Franceschini, A., & Hatziminaoglou, E. 2006, “Revisiting the infrared spectra of active galactic nuclei with a new torus emission model,” MNRAS, 366 CrossRef | Google Scholar, 767.
Gebhardt, K., Bender, R., Bower, G., et al. 2000, “A relationship between nuclear black hole mass and galaxy velocity dispersion,” ApJ, 539 CrossRef | Google Scholar, L13.
Gilli, R., Comastri, A., & Hasinger, G. 2007, “The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era,” A&A, 463 Google Scholar, 79.
Greene, J. E., & Ho, L. C. 2005, “A comparison of stellar and gaseous kinematics in the nuclei of active galaxies,” ApJ, 627 CrossRef | Google Scholar, 721.
Groves, B., Kewley, L., Kauffmann, G., et al. 2006, “An SDSS view of type-2 AGN classification,” NAR, 50 CrossRef | Google Scholar, 743.
Grupe, D., Komossa, S., Leighly, K. M., & Page, K. L. 2010, “The simultaneous optical-to-X-ray spectral energy distribution of soft X-ray selected active galactic nuclei observed by swift,” ApJS, 187 CrossRef | Google Scholar, 64.
Gúltekin, K., Richstone, D. O., Gebhardt, K., et al. 2009, “The M-σ and M-L relations in galactic bulges, and determinations of their intrinsic scatter,” ApJ, 698 CrossRef | Google Scholar, 198.
Haas, M., Siebenmorgen, R., Schulz, B., et al. 2005, “Spitzer IRS spectroscopy of 3CR radio galaxies and quasars: Testing the unified schemes,” A&A, 442 Google Scholar, L39.
Hamann, F., & Ferland, G. 1999, “Elemental abundances in quasistellar objects: Star formation and galactic nuclear evolution at high redshifts,” ARAA, 37 CrossRef | Google Scholar, 487.
Hasinger, G., Miyaji, T., & Schmidt, M. 2005, “Luminosity-dependent evolution of soft X-ray selected AGN. New Chandra and XMM-Newton surveys,” A&A, 441 Google Scholar, 417.
Heckman, T. M., & Kauffmann, G. 2006, “The host galaxies of AGN in the Sloan Digital Sky Survey,” NAR, 50 CrossRef | Google Scholar, 677.
Herrnstein, J. R., Moran, J. M., Greenhill, L. J., et al. 1999, “A geometric distance to the galaxy NGC4258 from orbital motions in a nuclear gas disk,” Nature, 400 CrossRef | Google Scholar, 539.
Hirashita, H., Buat, V., & Inoue, A. K. 2003, “Star formation rate in galaxies from UV, IR, and H estimators,” A&A, 410 Google Scholar, 83.
Ho, L. C. 2008, “Nuclear activity in nearby galaxies,” ARAA, 46 CrossRef | Google Scholar, 475.
Hopkins, P. F., Murray, N., & Thompson, T. A. 2009, “The small scatter in BH-host correlations and the case for self-regulated BH growth,” MNRAS, 398 CrossRef | Google Scholar, 303.
Hopkins, P. F., & Elvis, M. 2010, “Quasar feedback: More bang for your buck,” MNRAS, 401 CrossRef | Google Scholar, 7.
Hubeny, I., Blaes, O., Krolik, J. H., et al. 2001, “Non-LTE models and theoretical spectra of accretion disks in active galactic nuclei. IV. Effects of Compton scattering and metal opacities,” ApJ, 559 CrossRef | Google Scholar, 680.
Jogee, S. R. 2006, “The fueling and evolution of AGN: Internal and external triggers,” Physics of Active Galactic Nuclei at all Scales, edited by Danielle, Alloin, Rachel, Johnson, and Paulina, Lira, LNP, 693 CrossRef | Google Scholar, 143.
Kennicutt, R. C. Jr. 1998, “Star formation in galaxies along the Hubble sequence,” ARAA, 36 CrossRef | Google Scholar, 189.
Kennicutt, R. C. Jr., Hao, C.-N., Calzetti, D., et al. 2009, “Dust-corrected star formation rates of galaxies. I. Combinations of Hα and infrared tracers,” ApJ, 703 CrossRef | Google Scholar, 1672.
Kormendy, J., & Richstone, D. 1995, “Inward bound the search for supermassive black holes in galactic nuclei,” ARAA, 33 CrossRef | Google Scholar, 581.
Kormendy, J., & Kennicutt, R. C. Jr. 2004, “Secular evolution and the formation of pseudobulges in disk galaxies,” ARAA, 42 CrossRef | Google Scholar, 603.
Kormendy, J., Fisher, D. B., Cornell, M. E., et al. 2009, “Structure and formation of elliptical and spheroidal galaxies,” ApJS, 182 CrossRef | Google Scholar, 216.
Krolik, J. H., 1999, Active Galactic Nuclei Google Scholar, Princeton University Press.
Kuo, C. Y., Braatz, J. A., Condon, J. J., et al. 2011, “The megamaser cosmology project. III. Accurate masses of seven supermassive black holes in active galaxies with circumnuclear megamaser disks,” ApJ, 727 CrossRef | Google Scholar, 20.
Kaastra, J. S. 2008, “High spectral resolution X-ray observations of AGN,” AN, 329 Google Scholar, 162.
Kauffmann, G., Heckman, T. M., Tremonti, C., et al. 2003, “The host galaxies of active galactic nuclei,” MNRAS, 346 CrossRef | Google Scholar, 1055.
Kauffmann, G., Heckman, T. M., & Best, P. N. 2008, “Radio jets in galaxies with actively accreting black holes: New insights from the SDSS,” MNRAS, 384 CrossRef | Google Scholar, 953.
Kauffmann, G., & Heckman, T. M. 2009, “Feast and famine: Regulation of black hole growth in low-redshift galaxies,” MNRAS, 397 CrossRef | Google Scholar, 135.
Kaspi, S., & Netzer, H. 1999, “Modeling variable emission lines in active galactic nuclei: Method and application to NGC 5548,” ApJ, 524 CrossRef | Google Scholar, 71.
Kaspi, S., Smith, P. S., Netzer, H., et al. 2000, “Reverberation measurements for 17 quasars and the size-mass-luminosity relations in active galactic nuclei,” ApJ, 533 CrossRef | Google Scholar, 631.
Kaspi, S., Maoz, D., Netzer, H., et al. 2005, “The relationship between luminosity and broad-line region size in active galactic nuclei,” ApJ, 629 CrossRef | Google Scholar, 61.
Kaspi, S., Brandt, W. N., Maoz, D., et al. 2007, “Reverberation mapping of high-luminosity quasars: First results,” ApJ, 659 CrossRef | Google Scholar, 997.
Kawaguchi, T., Shimura, T., & Mineshige, S. 2001, “Broadband spectral energy distributions of active galactic nuclei from an accretion disk with advective coronal flow,” ApJ, 546 CrossRef | Google Scholar, 966.
Kewley, L. J., Groves, B., Kauffmann, G., et al. 2006, “The host galaxies and classification of active galactic nuclei,” MNRAS, 372 CrossRef | Google Scholar, 961.
King, A. R. 2010, “Black hole outflows,” MNRAS, 402 CrossRef | Google Scholar, 1516.
Kishimoto, M., Antonucci, R., Blaes, O., et al. 2008, “The characteristic blue spectra of accretion disks in quasars as uncovered in the infrared,” Nature, 454 CrossRef | Google Scholar | PubMed, 492.
Korista, K. T., & Goad, M. R. 2000, “Locally optimally emitting clouds and the variable broad emission line spectrum of NGC 5548,” ApJ, 536 CrossRef | Google Scholar, 284.
Korista, K. T., & Goad, M. R. 2004, “What the optical recombination lines can tell us about the broad-line regions of active galactic nuclei,” ApJ, 606 CrossRef | Google Scholar, 749.
Lawrence, A., & Elvis, M. 2010, “Misaligned disks as obscurers in active galaxies,” ApJ, 714 CrossRef | Google Scholar, 561.
Li, C., & White, S. D. M. 2009, “The distribution of stellar mass in the low-redshift universe,” MNRAS, 398 CrossRef | Google Scholar, 2177.
Lister, M. L., Aller, M., Aller, H., et al. 2011, “γ-Ray and parsec-scale jet properties of a complete sample of blazars from the MOJAVE program,” ApJ, 742 CrossRef | Google Scholar, 27.
Madau, P. 1988, “Thick accretion disks around black holes and the UV/soft X-ray excess in quasars,” ApJ, 327 CrossRef | Google Scholar, 116.
Maiolino, R., Risaliti, G., Salvati, M., et al. 2010, “Comets orbiting a black hole,” A&A, 517 Google Scholar, A47.
Maoz, D. 2007, “Low-luminosity active galactic nuclei: Are they UV faint and radio loud?,” MNRAS, 377 CrossRef | Google Scholar, 1696.
Marconi, A., Risaliti, G., Gilli, R., et al. 2004, “Local supermassive black holes, relics of active galactic nuclei and the X-ray background,” MNRAS, 351 CrossRef | Google Scholar, 169.
Marconi, A., Axon, D. J., Maiolino, R., et al. 2008, “The effect of radiation pressure on virial black hole mass estimates and the case of narrow-line Seyfert 1 galaxies,” ApJ, 678 CrossRef | Google Scholar, 693.
Marziani, P., & Sulentic, J. W. 2012, “Quasar outflows in the 4D eigenvector 1 context,” AstRv, 7 Google Scholar, 33.
Matsuoka, K., Nagao, T., Marconi, A., et al. 2011, “The mass-metallicity relation of SDSS quasars,” A&A, 527 Google Scholar, A100.
McHardy, I. 2010, “X-ray variability of AGN and relationship to galactic black hole binary systems,” LNP, 794 Google Scholar, 203.
McLure, R. J., & Dunlop, J. S. 2004, “The cosmological evolution of quasar black hole masses,” MNRAS, 352 CrossRef | Google Scholar, 1390.
McConnell, N. J., Ma, C.-P., Gebhardt, K., et al. 2011, “Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies,” Nature, 480 CrossRef | Google Scholar | PubMed, 215.
Merloni, A., Körding, E., Heinz, S., et al. 2006, “Why the fundamental plane of black hole activity is not simply a distance driven artifact,” NAR, 11 CrossRef | Google Scholar, 567.
Merloni, A., & Heinz, S. 2007, “Measuring the kinetic power of active galactic nuclei in the radio mode,” MNRAS, 381 CrossRef | Google Scholar, 589.
Merloni, A., & Heinz, S. 2008, “A synthesis model for AGN evolution: Supermassive black holes growth and feedback modes,” MNRAS, 388 Google Scholar, 1011.
Miller, L., Turner, T. J., & Reeves, J. N. 2008. An absorption origin for the X-ray spectral variability of MCG-6-30-15. A&A 483 Google Scholar, 437–452.
Miller, L., Turner, T. J., & Reeves, J. N. 2009, “The absorption-dominated model for the X-ray spectra of typeI active galaxies: MCG-6-30-15,” MNRAS, 399 CrossRef | Google Scholar, L69.
Mo, H., van den Bosch, F., & White, S. 2010, Galaxy formation and evolution CrossRef | Google Scholar, Cambridge University Press.
Müller-Sánchez, F., Prieto, M. A., Hicks, E. K. S., et al. 2011, “Outflows from active galactic nuclei: Kinematics of the narrow-line and coronal-line regions in Seyfert galaxies,” ApJ, 739 CrossRef | Google Scholar, 69.
Mor, R., & Trakhtenbrot, B. 2011, “Hot-dust clouds with pure-graphite composition around type-I active galactic nuclei,” ApJL, 737 CrossRef | Google Scholar, L36.
Mor, R., & Netzer, H. 2012, “Hot graphite dust and the infrared spectral energy distribution of active galactic nuclei,” MNRAS, 420 CrossRef | Google Scholar, 526.
Narayan, R., & Quataert, E. 2005, “Black hole accretion,” Science, 307 CrossRef | Google Scholar | PubMed, 77.
Narayan, R., & McClintock, J. E. 2008, “Advection-dominated accretion and the black hole event horizon,” NAR, 51 CrossRef | Google Scholar, 733.
Negrete, C. A., Dultzin, D., Marziani, P., & Sulentic, J. W. 2012. “Broad-line region physical conditions in extreme population a quasars: A method to estimate central black hole mass at high redshift,” ApJ, 757 CrossRef | Google Scholar, 62.
Netzer, H. 1985, “Quasar discs. I – The Baldwin effect,” MNRAS, 216 CrossRef | Google Scholar, 63.
Netzer, H. 1990, “AGN emission lines,” SAAS-FEE advanced course 20 on active galactic nuclei Google Scholar, Springer, 57.
Netzer, H., Laor, A., & Gondhalekar, P. M. 1992, “Quasar discs. III – Line and continuum correlations,” MNRAS, 254 CrossRef | Google Scholar, 15.
Netzer, H., & Peterson, B. M. 1997, “Reverberation mapping and the physics of active galactic nuclei,” ATS, 218 Google Scholar, 85.
Netzer, H., Kaspi, S., Behar, E., et al. 2003, “The ionized gas and nuclear environment in NGC 3783. IV. Variability and modeling of the 900 kilosecond chandra spectrum,” ApJ, 599 CrossRef | Google Scholar, 933.
Netzer, H., & Trakhtenbrot, B. 2007, “Cosmic evolution of mass accretion rate and metallicity in active galactic nuclei,” ApJ, 654 CrossRef | Google Scholar, 754.
Netzer, H., Lutz, D., Schweitzer, M., et al. 2007a, “Spitzer quasar and ULIRG evolution study (QUEST). II. The spectral energy distributions of palomar-green quasars,” ApJ, 666 CrossRef | Google Scholar, 806.
Netzer, H., Lira, P., Trakhtenbrot, B., et al. 2007b, “Black hole mass and growth rate at high redshift,” ApJ, 671 CrossRef | Google Scholar, 1256.
Netzer, H. 2008, “Ionized gas in active galactic nuclei,” NAR, 52 CrossRef | Google Scholar, 257.
Netzer, H. 2009, “Accretion and star formation rates in low-redshift type II active galactic nuclei,” MNRAS, 399 CrossRef | Google Scholar, 1907.
Netzer, H., & Marziani, P. 2010, “The effect of radiation pressure on emission-line profiles and black hole mass determination in active galactic nuclei,” ApJ, 724 CrossRef | Google Scholar, 318.
Osterbrock, D. E., & Ferland, G. J. 2006, Astrophysics of gaseous nebulae and active galactic nuclei Google Scholar, University Science Books.
Pérez-González, P. G., Rieke, G. H., Villar, V., et al. 2008, “The stellar mass assembly of galaxies from z = 0 to z = 4: Analysis of a sample selected in the rest-frame near-infrared with spitzer,” ApJ, 675 CrossRef | Google Scholar, 234.
Peterson, B. M. 1997, An introduction to active galactic nuclei CrossRef | Google Scholar, Cambridge University Press.
Peterson, B. M., & Bentz, M. C. 2006, “Black hole masses from reverberation mapping,” NewAsRev, 50 Google Scholar, 796.
Peterson, B. M. 2008, “The central black hole and relationships with the host galaxy,” NewAsRev, 52 Google Scholar, 240.
Proga, D., & Kallman, T. R. 2004, “Dynamics of line-driven disk winds in active galactic nuclei. II. Effects of disk radiation,” ApJ, 616 CrossRef | Google Scholar, 688.
Quintilio, R., & Viegas, S. M. 1997, “Theoretical emission-line profiles of active galactic nuclei and the unified model. I. The face-on torus,” ApJ, 474 CrossRef | Google Scholar, 616.
Reynolds, C. S., & Nowak, M. A. 2003, “Fluorescent iron lines as a probe of astrophysical black hole systems,” Physics Reports, 377 CrossRef | Google Scholar, 389.
Richards, G. T., Lacy, M., Storrie-Lombardi, , et al. 2006. “Spectral energy distributions and multiwavelength selection of type 1 quasars,” ApJS Supp, 166 CrossRef | Google Scholar, 470–497.
Richards, G. T., Nichol, R. C., Gray, A. G., et al. 2008, “Efficient photometric selection of quasars from the sloan digital sky survey: 100,000 z < 3 quasars from data release one,” ApJS, 155 CrossRef | Google Scholar, 257.
Richards, G. T., Myers, A. D., Gray, A. G., et al. 2009. “Efficient photometric selection of quasars from the sloan digital sky survey. II. ~1,000,000 quasars from data release 6,” ApJS, 180 CrossRef | Google Scholar, 67.
Risaliti, G., Salvati, M., & Marconi, A. 2011, “[O III] equivalent width and orientation effects in quasars,” MNRAS, 411 CrossRef | Google Scholar, 2223.
Robinson, A. 1995, “The profiles and response functions of broad emission lines in active galactic nuclei,” MNRAS, 276 CrossRef | Google Scholar, 933.
Robson, I. 1996, Active Galactic Nuclei Google Scholar, John Wiley.
Ross, R. R., & Fabian, A. C. 2005, “A comprehensive range of X-ray ionized-reflection models,” MNRAS, 358 CrossRef | Google Scholar, 211.
Rosario, D. J., Santini, P., Lutz, D., et al. 2012, “The mean star formation rate of X-ray selected active galaxies and its evolution from z ~ 2.5: Results from PEP-Herschel,” A&A, 545 Google Scholar, A45.
Różańska, A., & Madej, J. 2008, “Models of the iron Kα fluorescent line and the Compton Shoulder in irradiated accretion disc spectra,” MNRAS, 386 CrossRef | Google Scholar, 1872.
Rybicky, G. B., & Lightman, A. P. 1979, Radiative processes in astrophysics Google Scholar, John Wiley.
Salim, S., Rich, R. M., Charlot, S., et al. 2007, “UV star formation rates in the local universe,” ApJS, 173 CrossRef | Google Scholar, 267.
Sani, E., Lutz, D., Risaliti, G., et al. 2010, “Enhanced star formation in narrow-line Seyfert 1 active galactic nuclei revealed by Spitzer,” MNRAS, 403 CrossRef | Google Scholar, 1246.
Sani, E., Marconi, A., Hunt, L. K., et al. 2011, “The Spitzer/IRAC view of black hole-bulge scaling relations,” MNRAS, 413 CrossRef | Google Scholar, 1479.
Santini, P., Rosario, D. J., Shao, L., et al. 2012, “Enhanced star formation rates in AGN hosts with respect to inactive galaxies from PEP–Herschel observations,” A&A, 540 Google Scholar, A109.
Schawinski, K., Urry, C. M., Virani, S., et al. 2010, “Galaxy Zoo: The fundamentally different co-evolution of supermassive black holes and their early- and late-type host galaxies,” ApJ, 711 CrossRef | Google Scholar, 284.
Shakura, N. I., & Sunyaev, R. A. 1973, “Black holes in binary systems. Observational appearance,” A&A, 24 Google Scholar, 337.
Shang, Z., Brotherton, M. S., Wills, B. J., et al. 2011, “The next generation atlas of quasar spectral energy distributions from radio to X-rays,” ApJS, 196 CrossRef | Google Scholar, 2.
Shankar, F. 2009, “The demography of supermassive black holes: Growing monsters at the heart of galaxies,” NAR, 53 CrossRef | Google Scholar, 57.
Shankar, F., Crocce, M., Miralda-Escudé, J., et al. 2010, “On the radiative efficiencies, Eddington ratios, and duty cycles of luminous high-redshift quasars,” ApJ, 718 CrossRef | Google Scholar, 231.
Schmidt, M., et al. 2012, “The color variability of quasars,” ApJ, 744 CrossRef | Google Scholar, 147.
Schweitzer, M., Lutz, D., Sturm, E., et al. 2006, “Spitzer Quasar and ULIRG Evolution Study (QUEST). I. The origin of the far-infrared continuum of QSOs,” ApJ, 649 CrossRef | Google Scholar, 79.
Shemmer, O., Netzer, H., Maiolino, R., et al. 2004, “Near-infrared spectroscopy of highredshift active galactic nuclei. I. A metallicity-accretion rate relationship,” ApJ, 614 CrossRef | Google Scholar, 547.
Shen, Y., Greene, J. E., Strauss, M. A., et al. 2008, “Biases in virial black hole masses: An SDSS perspective,” ApJ, 680 CrossRef | Google Scholar, 169.
Shen, Y., Liu, X., Greene, J. E., et al. 2011, “Type 2 active galactic nuclei with doublepeaked [O III] lines. II. Single AGNs with complex narrow-line region kinematics are more common than binary AGNs,” ApJ, 735 CrossRef | Google Scholar, 48.
Sigut, T. A. A., & Pradhan, A. K. 2003, “Predicted Fe II emission-line strengths from active galactic nuclei,” ApJS, 145 CrossRef | Google Scholar, 15.
Sijacki, D., Springel, V., & Haehnelt, M. G. 2009, “Growing the first bright quasars in cosmological simulations of structure formation,” MNRAS, 400 CrossRef | Google Scholar, 100.
Sijacki, D., Springel, V., & Haehnelt, M. G. 2011, “Gravitational recoils of supermassive black holes in hydrodynamical simulations of gas-rich galaxies,” MNRAS, 414 CrossRef | Google Scholar, 3656.
Sikora, M., Stawarz, L., & Lasota, J.-P. 2007, “Radio loudness of active galactic nuclei: Observational facts and theoretical implications,” ApJ, 658 CrossRef | Google Scholar, 815.
Sikora, M., Stawarz, L., & Lasota, J.-P. 2008, “Radio-loudness of active galaxies and the black hole evolution,” NAR, 51 CrossRef | Google Scholar, 891.
Soltan, A. 1982, “Masses of quasars,” MNRAS, 200 CrossRef | Google Scholar, 115.
Stamerra, A., J., Becerra, G., Bonnoli, L., Maraschi, F., Tavecchio, D., Mazin, K., Saito, for the MAGIC Collaboration, Y., Tanaka, D., Wood, and for the Fermi/LAT Collaboration 2011. Challenging the high-energy emission zone in FSRQs. ArXiv e-prints Google Scholar.
Stern, J., & Laor, A. 2012, “Type 1 AGN at low z – II. The relative strength of narrow lines and the nature of intermediate type AGN,” MNRAS, 426 CrossRef | Google Scholar, 2703.
Sturm, E., González-Alfonso, E., Veilleux, S., et al. 2011, “Massive molecular outflows and negative feedback in ULIRGs observed by Herschel–PACS,” ApJL, 733 CrossRef | Google Scholar, L16.
Sulentic, J. W., Marziani, P., & Dultzin-Hacyan, D. 2000, “Phenomenology of broad emission lines in active galactic nuclei,” ARAA, 38 CrossRef | Google Scholar, 521.
Sulentic, J. W., Marziani, P., & Zamfir, S. 2009, “Comparing Hβ line profiles in the 4D Eigenvector 1 context,” NAR, 53 CrossRef | Google Scholar, 198.
Tadhunter, C. 2008, “An introduction to active galactic nuclei: Classification and unification,” NAR, 52 CrossRef | Google Scholar, 227.
Tavecchio, F., Maraschi, L., Wolter, A., et al. 2007, “Chandra and Hubble Space Telescope observations of gamma-ray blazars: Comparing jet emission at small and large scales,” ApJ, 662 CrossRef | Google Scholar, 900.
Tombesi, F., Cappi, M., Reeves, J. N., et al. 2010, “Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines,” A&A, 521 Google Scholar, A57.
Tommasin, S., Spinoglio, L., Malkan, M. A., et al. 2010, “Spitzer–IRS high-resolution spectroscopy of the 12 μm Seyfert galaxies. II. Results for the complete data set,” ApJ, 709 CrossRef | Google Scholar, 1257.
Tommasin, S., Netzer, H., Sternberg, A., et al. 2012 CrossRef | Google Scholar, “Star formation in LINER host galaxies at z ~ 0.3,” arXiv:1201.3792.
Trakhtenbrot, B., Netzer, H., Lira, P., et al. 2011, “Black hole mass and growth rate at z ~ 4.8: A short episode of fast growth followed by short duty cycle activity. ApJ, 730 CrossRef | Google Scholar, 7.
Trakhtenbrot, B., and H., Netzer 2012. Black Hole Growth to z = 2− I: Improved Virial Methods for Measuring M_BH and L/L Edd. ArXiv e-prints Google Scholar.
Tran, H. D. 2010, “Hidden double-peaked emitters in seyfert 2 galaxies,” ApJ, 711 CrossRef | Google Scholar, 1174.
Trichas, M., Georgakakis, A., Rowan-Robinson, M., et al. 2009, “Testing the starburst/AGN connection with SWIRE X-ray/70 μm sources,” MNRAS, 399 CrossRef | Google Scholar, 663.
Trump, J. R., Hall, P. B., Reichard, T. A., et al. 2006, “A catalog of broad absorption line quasars from the Sloan Digital Sky Survey Third Data Release,” ApJS, 165 CrossRef | Google Scholar, 1.
Trump, J. R., Impey, C. D., Taniguchi, Y., et al. 2009, “The nature of optically dull active galactic nuclei in COSMOS,” ApJ, 706 CrossRef | Google Scholar, 797.
Tsalmantza, P., Decarli, R., Dotti, M., et al. 2011, “A systematic search for massive black hole binaries in the Sloan Digital Sky Survey spectroscopic sample,” ApJ, 738 CrossRef | Google Scholar, 20.
Turner, T. J., & Miller, L. 2009. X-ray absorption and reflection in active galactic nuclei. AstApRv, 17 Google Scholar, 47–104.
Urry, C. M., Scarpa, R., O'Dowd, M., et al. 2002, “Host galaxies and the unification of radio-loud AGN,” NAR, 46 CrossRef | Google Scholar, 349.
Urry, M. 2011, “Gamma-ray and multiwavelength emission from blazars,” ApJ&A, 32 Google Scholar, 139.
Vanden Berk, D. E., Richards, G. T., Bauer, A., et al. 2001, “Composite quasar spectra from the sloan digital sky survey,” AsJ, 122 Google Scholar, 549.
Valiante, R., Schneider, R., Salvadori, S., et al. 2011, “The origin of the dust in high-redshift quasars: The case of SDSS J1148+5251,” MNRAS, 416 CrossRef | Google Scholar, 1916.
Vasudevan, R. V., & Fabian, A. C. 2007, “Piecing together the X-ray background: Bolometric corrections for active galactic nuclei,” MNRAS, 381 CrossRef | Google Scholar, 1235.
Veilleux, S., & Osterbrock, D. E. 1987, “Spectral classification of emission-line galaxies,” ApJS, 63 CrossRef | Google Scholar, 2951G.
Veilleux, S., Cecil, G., & Bland-Hawthorn, J. 2005, “Galactic winds,” AnnRevAstAp, 43 Google Scholar, 769.
Veilleux, S. 2008, “AGN host galaxies,” NAR, 52 CrossRef | Google Scholar, 289.
Vestergaard, M., & Peterson, B. M. 2006, “Determining central black hole masses in distant active galaxies and quasars. II. Improved optical and UV scaling relationships,” ApJ, 641 CrossRef | Google Scholar, 689.
Vestergaard, M., & Osmer, P. S. 2009, “Mass functions of the active black holes in distant quasars from the Large Bright Quasar Survey, the Bright Quasar Survey, and the color-selected sample of the SDSS Fall Equatorial Stripe,” ApJ, 699 CrossRef | Google Scholar, 800.
Villforth, C., et al. 2010, “A new extensive catalog of variable active galactic nuceli in the GOODS fields and a new statistical approach to variability selection,” ApJ, 723 CrossRef | Google Scholar, 737.
Volonteri, M. 2010, “Formation of supermassive black holes,” AApRev, 18 Google Scholar, 279.
Véron-Cetty, M. P., & Véron, P. 2000, “The emission line spectrum of active galactic nuclei and the unifying scheme,” 1GAApRev, 10 Google Scholar, 81.
Wang, J.-M., & Netzer, H. 2003, “Extreme slim accretion disks and narrow line Seyfert 1 galaxies: The nature of the soft X-ray hump,” A&A, 398 Google Scholar, 927.
Wild, V., Heckman, T., & Charlot, S. 2010, “Timing the starburst–AGN connection,” MNRAS, 405 Google Scholar, 933.
Wills, B. J., Netzer, H., & Wills, D. 1985, “Broad emission features in QSOs and active galactic nuclei. II – New observations and theory of Fe II and H I emission,” ApJ, 288 CrossRef | Google Scholar, 94.
Winter, L. M., Mushotzky, R. F., Terashima, Y., et al. 2009, “The suzaku view of the swift/bat active galactic nuclei. II. Time variability and spectra of five ‘hidden’ active galactic nuclei,” ApJ, 701 CrossRef | Google Scholar, 1644.
Worrall, D. M. 2009, “The X-ray jets of active galaxies,” AApRev 17 Google Scholar, 1.
Wuyts, S., Förster Schreiber, N. M., van der Wel, A., et al. 2011, “Galaxy structure and mode of star formation in the SFR-mass plane from z ~ 2.5 to z ~ 0.1,” ApJ, 742 CrossRef | Google Scholar, 96.
Xu, Y., Bian, W.-H., Yuan, Q.-R., et al. 2008, “The origin and evolution of CIV Baldwin effect in QSOs from the Sloan Digital Sky Survey,” MNRAS, 389 CrossRef | Google Scholar, 1703.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 5473 *
Loading metrics...

Book summary page views

Total views: 8785 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd April 2025. This data will be updated every 24 hours.

Usage data cannot currently be displayed.