Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-08T03:02:02.317Z Has data issue: false hasContentIssue false

8 - Factors that determine sperm precedence in ticks, spiders and insects: a comparative study

Published online by Cambridge University Press:  21 August 2009

W. R. Kaufman
Affiliation:
Z 606, Department of Biological Sciences University of Alberta Edmonton, Alberta T6G 2E9 Canada
Alan S. Bowman
Affiliation:
University of Aberdeen
Patricia A. Nuttall
Affiliation:
Centre for Ecology and Hydrology, Swindon
Get access

Summary

INTRODUCTION

There is a broad tendency among female insects for fecundity to increase with mating frequency (Ridley, 1988). A female's eggs carry forward to the next generation her genes and those of her mate(s). Hence, one might guess that promiscuity should be of selective advantage for both sexes. On closer inspection it is not as simple as that. The survival of a female's offspring is as much a function of her mate's fitness as it is of her own, so she has some interest in determining the paternity of her offspring (Birkhead, 1998; Eberhard, 1998; Wedell & Karlsson, 2003). On the other hand, how can the male's paternity be assured if his spermatozoa have to compete with those of other males in the same arena? In this chapter some of the mechanisms used by male insects that assure their paternity in this ‘promiscuous world’ are reviewed. These will be compared to what is known from the less extensive literature on ticks, with the object of determining whether there are lessons from insects that might point our way to future enquiries in ticks.

SPERM PRECEDENCE AND PATERNITY

Because of the proverbial battle of the sexes, as well as that among competing males, one encounters numerous mating strategies among terrestrial arthropods, and a fascinating literature on sperm competition to match. The degree to which sperm competition occurs in any instance is determined by a number of factors (reviewed extensively by Simmons & Siva-Jothy, 1998, and by Parker, 1998): (1) How readily will a previously mated female accept further males (sperm pre-emption)?

Type
Chapter
Information
Ticks
Biology, Disease and Control
, pp. 164 - 185
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adlakha, V. & Pillai, M. K. K. (1975). Involvement of male accessory gland substances in the fertility of mosquitoes. Journal of Insect Physiology 21, 1453–1455.CrossRefGoogle Scholar
Aeschlimann, A. A. & Grandjean, O. (1973). Observations on fecundity in Ornithodoros moubata Murray (Ixodoidea: Argasidae): relationships between mating and oviposition. Acarologia 15, 206–217.Google Scholar
Aljamali, M., Bowman, A. S., Dillwith, J. W., et al. (2002). Identity and synthesis of prostaglandins in the lone star tick, Amblyomma americanum (L.), as assayed by radio-immunoassay and gas chromatography/mass spectrometry. Insect Biochemistry and Molecular Biology 32, 331–341.CrossRefGoogle Scholar
Anderson, R. B., Scrimgeour, G. J. & Kaufman, W. R. (1998). Responses of the tick, Amblyomma hebraeum (Acari: Ixodidae), to carbon dioxide. Experimental and Applied Acarology 22, 667–681.CrossRefGoogle Scholar
Arrieta, M. C., Leskiw, B. K. & Kaufman, W. R. (2006). Antimicrobial activity in the egg wax of the African cattle tick Amblyomma hebraeum (Acari: Ixodidae). Experimental and Applied Acarology 39, 297–313.CrossRefGoogle Scholar
Austad, S. N. (1982). First male sperm priority in the bowl and doily spider, Frontinella pyramitela (Walckenaer). Evolution 36, 777–785.CrossRefGoogle Scholar
Austad, S. N. (1984). Evolution of sperm priority patterns in spiders. In Sperm Competition and the Evolution of Animal Mating Systems, ed. Smith, R. L., pp. 223–249. San Diego, CA: Academic Press.Google Scholar
Birkhead, T. R. (1998). Cryptic female choice: criteria for establishing female sperm choice. Evolution 52, 1212–1218.CrossRefGoogle ScholarPubMed
Booth, T. F., Beadle, D. J. & Hart, R. J. (1984) Ultrastructure of the accessory glands of Gené's organ in the cattle tick, Boophilus. Tissue and Cell 16, 589–599.CrossRefGoogle ScholarPubMed
Borovsky, D. (1985). The role of male accessory gland fluid in stimulating vitellogenesis in Aedes taeniorhynchus. Archives of Insect Biochemistry and Physiology 2, 405–413.CrossRefGoogle Scholar
Bowman, A. S., Dillwith, J. W. & Sauer, J. R. (1996). Tick salivary prostaglandins: presence, origin and significance. Parasitology Today 12, 388–396.CrossRefGoogle ScholarPubMed
Brenner, R. R. & Bernasconi, A. (1989). Prostaglandin biosynthesis in the gonads of the hematophagus insect Triatoma infestans. Comparative Biochemistry and Physiology B 93, 1–4.CrossRefGoogle Scholar
Carvalho, G. B., Kapahi, P., Anderson, D. J. & Benzer, S. (2006). Allocrine modulation of appetite by the sex peptide of Drosophila. Current Biology 16, 692–696.CrossRefGoogle Scholar
Chang, E. S. & Kaufman, W. R. (2005). Endocrinology of Crustacea and Chelicerata. In Comprehensive Molecular Insect Science, vol 3, Endocrinology, eds. Gilbert, L. I., Iatrou, K. & Gill, S. S., pp. 805–842. Amsterdam: Elsevier.Google Scholar
Chapman, T., Neubaum, D. M., Wolfner, M. F. & Partridge, L. (2000). The role of male accessory gland protein Acp36DE in sperm competition in Drosophila melanogaster. Proceedings of the Royal Society of London B 267, 1097–1105.CrossRefGoogle ScholarPubMed
Chen, P. S. & Bühler, R. (1970). Paragonial substance (sex peptide) and other free ninhydrin-positive components in male and female adults of Drosophila melanogaster. Journal of Insect Physiology 16, 615–627.CrossRefGoogle ScholarPubMed
Chen, P. S., Stumm-Zollinger, E., Aigaki, T.et al. (1988). A male accessory gland peptide that regulates reproductive behaviour of female D. melanogaster. Cell 54, 291–298.Google ScholarPubMed
Connat, J.-L., Ducommun, J., Diehl, P.-A. & Aeschlimann, A. A. (1986). Some aspects of the control of the gonotrophic cycle in the tick, Ornithodoros moubata (Ixodoidea, Argasidae). In Morphology, Physiology and Behavioural Biology of Ticks, eds. Sauer, J. R. & Hair, J. A., pp. 194–216. Chichester, UK: Ellis Horwood.Google Scholar
Craig, G. B. Jr (1967). Mosquitoes: female monogamy induced by male accessory gland substance. Science 156, 1499–1501.CrossRefGoogle ScholarPubMed
Davey, K. G. (1958). The migration of spermatozoa in the female of Rhodnius prolixus Stahl. Journal of Experimental Biology 35, 694–701.Google Scholar
Davey, K. G. (1965 a). Copulation and egg production in Rhodnius prolixus: the role of the spermathecae. Journal of Experimental Biology 42, 373–378.Google Scholar
Davey, K. G. (1965 b) Reproduction in the Insects. Edinburgh, UK: Oliver & Boyd.Google Scholar
Davey, K. G. (1967). Some consequences of copulation in Rhodnius prolixus. Journal of Insect Physiology 13, 1629–1636.CrossRefGoogle Scholar
Destephano, D. B. & Brady, U. E. (1977). Prostaglandin and prostaglandin synthetase in the cricket Acheta domesticus. Journal of Insect Physiology 23, 905–911.CrossRefGoogle Scholar
Destephano, D. B., Brady, U. E. & Farr, C. A. (1982). Factors influencing oviposition behaviour in the cricket Acheta domesticus. Annals of the Entomological Society of America 75, 111–114.CrossRefGoogle Scholar
Destephano, D. B., Brady, U. E. & Lovins, R. E. (1974). Synthesis of prostaglandins by reproductive tissue of the house cricket, Acheta domesticus. Prostaglandins 6, 71–79.CrossRefGoogle ScholarPubMed
Diehl, P. A., Aeschlimann, A. A. & Obenchain, F. D. (1982). Tick reproduction: oogenesis and oviposition. In Physiology of Ticks, eds. Obenchain, F. D. & Galun, R., pp. 277–350. Oxford, UK: Pergamon Press.Google Scholar
Ducommun, J. (1984). Contribution à la connaissance de la reproduction chez la tique Ornithodoros moubata, Murray, 1877; sensu Walton, 1962 (Ixodoidea: Argasidae). Unpublished Ph.D. thesis, University of Neuchatel, Switzerland.Google Scholar
Eberhard, W. G. (1998). Female roles in sperm competition. In Sperm Competition and Sexual Selection, eds. Birkhead, T. R. & Moller, A. P., pp. 91–116. San Diego, CA: Academic Press.Google Scholar
Elgar, M. A. (1998). Sperm competition and sexual selection in spiders and other arachnids. In Sperm Competition and Sexual Selection, eds. Birkhead, T. R. & Moller, A. P., pp. 307–339. San Diego, CA: Academic Press.Google Scholar
El Said, A., Swiderski, Z., Aeschlimann, A. & Diehl, P. A. (1981). Fine structure of spermiogenesis in the tick Amblyomma hebraeum (Acari: Ixodidae): late stages of differentiation and structure of the mature spermatozoon. Journal of Medical Entomology 18, 464–476.CrossRefGoogle Scholar
El Shoura, S. (1987). Fine structure of the vasa deferentia, seminal vesicle, ejaculatory duct and accessory gland of male Ornithodoros (Pavlovskyella) erraticus (Acari: Ixodoidea: Argasidae). Journal of Medical Entomology 24, 235–242.CrossRefGoogle Scholar
Feldman-Muhsam, B. (1986). Observations on the mating behaviour of ticks. In Morphology, Physiology and Behavioural Biology of Ticks, eds. Sauer, J. R. & Hair, J. A., pp. 217–232. Chichester, UK: Ellis Horwood.Google Scholar
Feldman-Muhsam, B. (1991). The role of Adlerocystis sp. in the reproduction of argasid ticks. In The Acari: Reproduction, Development and Life-History Strategies, eds. Schuster, R. & Murphy, P. W., pp. 179–190. London: Chapman & Hall.CrossRefGoogle Scholar
Feldman-Muhsam, B., Borut, S., Saliternik-Givant, S. & Eden, C. (1973). On the evacuation of sperm from the spermatophore of the tick Ornithodoros savignyi. Journal of Insect Physiology 19, 951–962.CrossRefGoogle ScholarPubMed
Finn, C. A. (ed.) (1983). Oxford Reviews of Reproductive Biology, vol. 5. Oxford UK: Clarendon Press.Google Scholar
Friedel, T. & Gillott, C. (1977). Contribution of male-produced proteins to vitellogenesis in Melanoplus sanguinipes. Journal of Insect Physiology 23, 145–151.CrossRefGoogle ScholarPubMed
Friesen, K. & Kaufman, W. R. (2002). Quantification of vitellogenesis and its control by 20-hydroxyecdysone in the ixodid tick, Amblyomma hebraeum. Journal of Insect Physiology 48, 773–782.CrossRefGoogle ScholarPubMed
Fuchs, M. S., Craig, G. B. Jr & Hiss, E. A. (1968). The biochemical basis of female monogamy in mosquitoes. I. Extraction of the active principle from Aedes aegypti. Life Sciences 7, 835–839.CrossRefGoogle ScholarPubMed
Gillott, C. (1988). Arthropoda–Insecta. In Reproductive Biology of Invertebrates, vol. 3, Accessory Sex Glands, eds. Adiyodi, K. G. & Adiyodi, R. G., pp. 319–471. New York: John Wiley.Google Scholar
Gillott, C. (1996). Male insect accessory glands: functions and control of secretory activity. Invertebrate Reproduction and Development 30, 199–205.CrossRefGoogle Scholar
Gillott, C. (2003). Male accessory gland secretions: modulators of female reproductive physiology and behavior. Annual Reveiw of Entomology 48, 163–184.CrossRefGoogle ScholarPubMed
Gladney, W. J. & Drummond, R. O. (1971). Spermatophore transfer of lone star ticks off the host. Annals of the Entomological Society of America 64, 379–381.CrossRefGoogle Scholar
Gregson, J. D. (1944). The influence of fertility on the feeding rate of the female of the Wood Tick, Dermacentor andersoni Stiles. Proceedings of the Entomological Society of Ontario 74, 46–47.Google Scholar
Harris, R. A. & Kaufman, W. R. (1981). Hormonal control of salivary gland degeneration in the ixodod tick Amblyomma hebraeum. Journal of Insect Physiology 27, 241–248.CrossRefGoogle Scholar
Harris, R. A. & Kaufman, W. R. (1984). Neural involvement in the control of salivary gland degeneration in the ixodid tick Amblyomma hebraeum. Journal of Experimental Biology 109, 281–290.Google Scholar
Harris, R. A. & Kaufman, W. R. (1985). Ecdysteroids: possible candidates for the hormone which triggers salivary gland degeneration in the ixodid tick Amblyomma hebraeum. Experientia 41, 740–742.CrossRefGoogle Scholar
Hartmann, R. & Loher, W. (1996). Control mechanisms of the behavior ‘secondary defense’ in the grasshopper Gomphocerus rufus L. (Gomphocerinae: Orthoptera). Journal of Comparative Physiology A 178, 329–336.CrossRefGoogle Scholar
Hartmann, R. & Loher, W. (1999). Post-mating effects in the grasshopper, Gomphocerus rufus L. mediated by the spermatheca. Journal of Comparative Physiology A 184, 325–332.CrossRefGoogle Scholar
Hiss, E. A. & Fuchs, M. S. (1972). The effect of matrone on oviposition in the mosquito, Aedes aegypti. Journal of Insect Physiology 18, 2217–2225.CrossRefGoogle ScholarPubMed
Horrobin, D. F. (1978). Prostaglandins: Physiology, Pharmacology and Clinical Significance. Montreal, Canada: Eden Press.Google Scholar
Huber, B. A. (2005) Sexual selection research on spiders: progress and biases. Biological Reviews 80, 363–385.CrossRefGoogle Scholar
Johns, R., Sonenshine, D. E. & Hynes, W. L. (1998). Control of bacterial infections in the hard tick Dermacentor variabilis (Acari: Ixodidae): evidence for the existence of antimicrobial proteins in tick hemolymph. Journal of Medical Entomology 35, 458–464.CrossRefGoogle ScholarPubMed
Johns, R., Sonenshine, D. E. & Hynes, W. L. (2001). Identification of a defensin from the hemolymph of the American dog tick, Dermacentor variabilis. Insect Biochemistry and Molecular Biology 31, 857–865.CrossRefGoogle ScholarPubMed
Kalb, J. M., Delbenedetto, A. J. & Wolfner, M. F. (1993). Probing the function of Drosophila melanogaster accessory glands by directed cell ablation. Proceedings of the National Academy of Sciences of the USA 90, 8093–8097.CrossRefGoogle ScholarPubMed
Kaufman, W. R. (1976). The influence of various factors on fluid secretion by in vitro salivary glands of ixodid ticks. Journal of Experimental Biology 64, 727–742.Google ScholarPubMed
Kaufman, W. R. (1983). The function of tick salivary glands. Current Topics in Vector Research 1, 215–247.Google Scholar
Kaufman, W. R. (1991). Correlation between haemolymph ecdysteroid titre, salivary gland degeneration and ovarian development in the ixodid tick, Amblyomma hebraeum Koch. Journal of Insect Physiology 37, 95–99.CrossRefGoogle Scholar
Kaufman, W. R. (1997). Arthropoda–Chelicerata. In Reproductive Biology of Invertebrates, vol. 8, Part A, Progress in Reproductive Endocrinology, ed. Adams, T. S., pp. 211–245. New York: John Wiley.Google Scholar
Kaufman, W. R. & Lomas, L. O. (1996). ‘Male factors’ in ticks: their role in feeding and egg development. Invertebrate Reproduction and Development 30, 191–198.CrossRefGoogle Scholar
Kaufman, S. E., Kaufman, W. R. & Phillips, J. E. (1981). Fluid balance in the argasid tick, Ornithodorus moubata, fed on modified blood meals. Journal of Experimental Biology 93, 225–242.Google Scholar
Kaufman, S. E., Kaufman, W. R. & Phillips, J. E. (1982). Mechanism and characteristics of coxal fluid execretion in the argasid tick Ornithodorus moubata. Journal of Experimental Biology 98, 343–352.Google Scholar
Keirans, J. E., Clifford, C. M., Hoogstraal, H. & Easton, E. R. (1976). Discovery of Nuttalliella namaqua Bedford (Acarina: Ixodoidea: Nutalliellidae) in Tanzania and redescription of the female based on scanning electron microscopy. Annals of the Entomological Society of America 69, 926–932.CrossRefGoogle Scholar
Khalil, G. M. (1970). Biochemical and physiological studies of certain ticks (Ixodoidea): gonad development and gametogenesis in Hyalomma (H.) anatolicum excavatum Koch (Ixodidae). Journal of Parasitology 56, 596–610.CrossRefGoogle Scholar
Kiszewski, A. E., Matuschka, F.-R. & Spielman, A. (2002). Mating strategies and spermiogenesis in ixodid ticks. Annual Review of Entomology 46, 167–182.CrossRefGoogle Scholar
Kiszewski, A. E. & Spielman, A. (2002). Preprandial inhibition of re-mating in Ixodes ticks (Acari: Ixodidae). Journal of Medical Entomology 39, 847–853CrossRefGoogle Scholar
Klowden, M. J. (1999). The check is in the male: male mosquitoes affect female physiology and behavior. Journal of the American Mosquito Control Association 15, 213–220.Google ScholarPubMed
Klowden, M. J. (2001). Sexual receptivity in Anopheles gambiae mosquitoes: absence of control by male accessory gland substances. Journal of Insect Physiology 47, 661–666.CrossRefGoogle ScholarPubMed
Klowden, M. J. & Chambers, G. M. (1991). Male accessory gland substances activate egg development in nutritionally stressed Aedes aegypti mosquitoes. Journal of Insect Physiology 37, 721–726.CrossRefGoogle Scholar
Kriger, F. L. & Davey, K. G. (1982). Ovarian motility in mated Rhodnius prolixus requires an intact cerebral neurosecretory system. General and Comparative Endocrinology 48, 130–134.CrossRefGoogle ScholarPubMed
Kriger, F. L. & Davey, K. G. (1983). Ovulation in Rhodnius prolixus Stal is induced by an extract of neurosecretory cells. Canadian Journal of Zoology 61, 684–686.CrossRefGoogle Scholar
Kuster, J. E. & Davey, K. G. (1986). Mode of action of cerebral neurosecretory cells on the function of the spermatheca in Rhodnius prolixus. International Journal of Invertebrate Reproduction and Development 10, 59–69.CrossRefGoogle Scholar
Lange, A. B. (1984). The transfer of prostaglandin-synthesizing activity during mating in Locusta migratoria. Insect Biochemistry 14, 551–556.CrossRefGoogle Scholar
Leahy, M. G. & Lowe, M. L. (1967). Purification of the male factor increasing egg deposition in D. melanogaster. Life Sciences 6, 151–156.Google ScholarPubMed
Lees, A. D. & Beament, J. W. L. (1948). An egg-waxing organ in ticks. Quarterly Journal of Microscopical Science 89, 291–232.Google ScholarPubMed
Loher, W., Ganjian, I., Kubo, I., Stanley-Samuelson, D. & Tobe, S. S. (1981). Prostaglandins: their role in egg-laying of the cricket Teleogryllus commodus. Proceedings of the National Academy of Sciences of the USA 78, 7835–7838.CrossRefGoogle ScholarPubMed
Lomas, L. O. & Kaufman, W. R. (1992 a). The influence of a factor from the male genital tract on salivary gland degeneration in the female ixodid tick Amblyomma hebraeum. Journal of Insect Physiology 38, 595–601.CrossRefGoogle Scholar
Lomas, L. O. & Kaufman, W. R. (1992 b). An indirect mechanism by which a protein from the male gonad hastens salivary gland degeneration in the female ixodid tick Amblyomma hebraeum. Archives of Insect Biochemistry and Physiology 21, 169–178.CrossRefGoogle ScholarPubMed
Lomas, L. O. & Kaufman, W. R. (1999). What is the meaning of ‘critical weight’ to female ixodid ticks?: a ‘grand unification theory’! In Acarology IX, vol. 2, Symposia, eds. Needham, G. R., Mitchell, R., Horn, D. J. & Welbourn, W. C., pp. 481–485. Columbus, OH: Ohio Biological Survey.Google Scholar
Lomas, L. O., Turner, P. C. & Rees, H. H. (1997). A novel neuropeptide–endocrine interaction controlling ecdysteroid production in ixodid ticks. Proceedings of the Royal Society of London B 264, 589–596.CrossRefGoogle ScholarPubMed
Lung, O., Kuo, M. F. & Wolfner, M. F. (2001 a). Identification and characterization of the major Drosophila melanogaster mating plug protein. Insect Biochemistry and Molecular Biology 31, 543–551.CrossRefGoogle ScholarPubMed
Lung, O., Kuo, M. F. & Wolfner, M. F. (2001 b). Drosophila males transfer antibacterial proteins from their accessory gland and ejaculatory duct to their mates. Journal of Insect Physiology 47, 617–622.CrossRefGoogle ScholarPubMed
Lung, O., Tram, U., Finnerty, C. M., et al. (2002). The Drosophila melanogaster seminal fluid protein Acp62F is a protease inhibitor that is toxic upon ectopic expression. Genetics 160, 211–224.Google ScholarPubMed
Mao, H. & Kaufman, W. R. (1999). Profile of the ecdysteroid hormone and its receptor in the salivary gland of the adult female tick, Amblyomma hebraeum. Insect Biochemistry and Molecular Biology 29, 33–42.CrossRefGoogle ScholarPubMed
Medeiros, M. N., Oliveira, D. N. P., Paiva-Silva, G. O., et al. (2002). The role of eicosanoids on Rhodnius heme-binding protein (RHBP) endoscytosis by Rhodnius prolixus ovaries. Insect Biochemistry and Molecular Biology 32, 537–545.CrossRefGoogle ScholarPubMed
Mortimer, D. (1983). Sperm transfer in the human female reproductive tract. In Oxford Reviews of Reproductive Biology, vol. 5, ed. Finn, C. A., pp. 30–61. Oxford, UK: Clarendon Press.Google Scholar
Oliver, J. H. Jr, Pound, J. M. & Andrews, R. H. (1984). Induction of egg maturation and oviposition in the tick, Ornithodoros parkeri (Acari: Argasidae). Journal of Parasitology 70, 337–342.CrossRefGoogle Scholar
Pappas, P. J. & Oliver, J. H. Jr (1971). Mating necessary for complete feeding of female Dermacentor variabilis (Acari: Ixodidae). Journal of the Georgia Entomological Society 6, 122–124.Google Scholar
Pappas, P. J. & Oliver, J. H. Jr (1972). Reproduction in ticks (Acari: Ixodoidea). II. Analysis of the stimulus for rapid and complete feeding of female Dermacentor variabilis (Say). Journal of Medical Entomology 9, 47–50.CrossRefGoogle Scholar
Parker, G. A. (1998). Sperm competition and the evolution of ejaculates: towards a theory base. In Sperm Competition and Sexual Selection, eds. Birkhead, T. R. & Moller, A. P., pp. 3–54. San Diego, CA: Academic Press.Google Scholar
Potterat, O., Hostettmann, K., Höltzel, A., et al. (1997). Boophiline, an antimicrobial sterol amide from the cattle tick Boophilus microplus. Helvetica Chimica Acta 80, 2066–2072.CrossRefGoogle Scholar
Poyser, N. L. (1987) Prostaglandins and ovarian function. In Eicosanoids and Reproduction, ed. Hillier, K., pp. 1–29. Lancaster, UK: MTP Press.CrossRefGoogle Scholar
Ridley, M. (1988). Mating frequency and fecundity in insects. Biological Reviews 63, 509–549.CrossRefGoogle Scholar
Ruegg, R. P., Kriger, F. L., Davey, K. G. & Steel, C. G. H. (1981). Ovarian ecdysone elicits release of a myotropic ovulation hormone in Rhodnius (Insecta: Hemiptera). International Journal of Invertebrate Reproduction 3, 357–361.CrossRefGoogle Scholar
Sahli, R., Germond, J. E. & Diehl, P. A. (1985). Ornithodoros moubata: spermateleosis and secretory activity of the sperm. Experimental Parasitology 60, 383–395.CrossRefGoogle ScholarPubMed
Sauer, J. R., Essenberg, R. C. & Bowman, A. S. (2000). Salivary glands in ixodid ticks: control and mechanism of secretion. Journal of Insect Physiology 46, 1069–1078.CrossRefGoogle ScholarPubMed
Schöl, H., Sieberz, J., Göbel, E. & Gothe, R. (2001). Morphology and structural organization of Gené's organ in Dermacentor reticulatus (Acari: Ixodidae). Experimental and Applied Acarology 25, 327–352.CrossRefGoogle Scholar
Seidelmann, K. & Ferenz, H.-J. (2002). Courtship inhibition pheromone in desert locusts, Schistocerca gregaria. Journal of Insect Physiology 48, 991–996.CrossRefGoogle ScholarPubMed
Sevala, V. L., Sevala, V. M., Davey, K. G. & Loughton, B. G. (1992). A FMRFamide-like peptide is associated with the myotropic ovulation hormone in Rhodnius prolixus. Archives of Insect Biochemistry and Physiology 20, 193–203.CrossRefGoogle ScholarPubMed
Shanbaky, N. M., El-Said, A. & Helmy, N. (1990). Changes in neurosecretory cell activity in female Argas (Argas) hermanni (Acari: Argasidae). Journal of Medical Entomology 27, 975–981.CrossRefGoogle Scholar
Shemesh, M., Hadani, A., Shklar, A., Shore, L. S. & Meleguir, F. (1979). Prostaglandins in the salivary glands and reproductive organs of Hyalomma anatolicum excavatum Koch (Acari: Ixodidae). Bulletin of Entomological Research 69, 381–385.CrossRefGoogle Scholar
Shepherd, J., Oliver, J. H. Jr & Hall, J. D. (1982). A polypeptide from male accessory glands which triggers maturation of tick spermatozoa. International Journal of Invertebrate Reproduction 5, 129–137.CrossRefGoogle Scholar
Sieberz, J. & Gothe, R. (2000). Modus operandi of oviposition in Dermacentor reticulates (Acari: Ixodidae). Experimental and Applied Acarology 24, 63–76.CrossRefGoogle Scholar
Simmons, L. W. & Siva-Jothy, M. T. (1998). Sperm competition in insects: mechanisms and the potential for selection. In Sperm Competition and Sexual Selection, eds. Birkhead, T. R. & Moller, A. P., pp. 341–434. San Diego, CA: Academic Press.Google Scholar
Snow, K. R. (1969). Egg maturation in Hyalomma anatolicum anatolicumKoch, , 1844 (Ixodoidea, Ixodidae). In Proceedings of the 2nd International Congress of Acarology 1967, ed. Owen Evans, G., pp. 349–355.Google Scholar
Sonenshine, D. E. (1967). Feeding time and oviposition of Dermacentor variabilis (Acarina: Ixodidae) as affected by delayed mating. Annals of the Entomological Society of America 60, 489–490.CrossRefGoogle Scholar
Sonenshine, D. E. (1991). Biology of Ticks, vol. 1, Oxford, UK: Oxford University Press.Google Scholar
Sonenshine, D. E., Khalil, G. M., Homsher, P. J. & Mason, S. N. (1982). Dermacentor variabilis and Dermacentor andersoni: genital sex pheromones. Experimental Parasitology 54, 317–330.CrossRefGoogle ScholarPubMed
Sternberg, S., Peleg, B. A. & Galun, R. (1973). Effect of irradiation on mating competitiveness of the male tick, Argas persicus (Oken). Journal of Medical Entomology 10, 137–142.CrossRefGoogle Scholar
Thomas, R. W. & Zeh, D. W. (1984). Sperm transfer and utilization strategies in arachnids: ecological and morphological constraints. In Sperm Competition and the Evolution of Animal Mating Systems, ed. Smith, R. L., pp. 179–221. San Diego, CA: Academic Press.Google Scholar
Tram, U. & Wolfner, M. F. (1999). Male seminal fluid proteins are essential for sperm storage in Drosophila melanogaster. Genetics 153, 837–844.Google ScholarPubMed
Vahed, K. (1998). The function of nuptial feeding in insects: a review of empirical studies. Biological Reviews 73, 43–78.CrossRefGoogle Scholar
Goes, Naters-Yasui, A., Taylor, D., Shono, T. & Yamakawa, M. (2000). Purification and partial amino acid sequence of antibacterial peptides from the hemolymph of the soft tick, Ornithodoros moubata, (Acari: Argasidae). In Proceedings of the 3rd International Conference Ticks and Tick-Borne Pathogens: Into the 21st Century, eds. Kazimirova, M., Labuda, M. & Nuttall, P. A., pp. 189–194.Google Scholar
Wakayama, E. J., Dillwith, J. W. & Blomquist, G. J. (1986). Occurrence and metabolism of prostaglandins in the housefly, Musca domestica (L.). Insect Biochemistry 16, 895–902.CrossRefGoogle Scholar
Wang, H., Paesen, G. C., Nuttall, P. A. & Barbour, A. G. (1998). Male ticks help their mates to feed. Nature 391, 753–754.CrossRefGoogle Scholar
Wedell, N. & Karlsson, B. (2003) Paternal investment directly affects female reproductive effort in an insect. Proceedings of the Royal Society of London B 270, 2065–2071.CrossRefGoogle Scholar
Wedell, N., Wiklund, C. & Cook, P. A. (2001). Monandry and polyandry as alternative lifestyles in a butterfly. Behavioral Ecology 13, 450–455.CrossRefGoogle Scholar
Weiss, B. L. & Kaufman, W. R. (2001). The relationship between ‘critical weight’ and 20-hydroxyecdysone in the female ixodid tick, Amblyomma hebraeum. Journal of Insect Physiology 47, 1261–1267.CrossRefGoogle ScholarPubMed
Weiss, B. L. & Kaufman, W. R. (2004). Two feeding-induced proteins from the male gonad trigger engorgement of the female tick Amblyomma hebraeum. Proceedings of the National Academy of Science of the USA 101, 5874–5879.CrossRefGoogle ScholarPubMed
Weiss, B. L., Stepczynski, J. M., Wong, P. & Kaufman, W. R. (2002). Identification and characterization of genes differentially expressed in the testis/vas deferens of the fed male tick, Amblyomma hebraeum. Insect Biochemistry and Molecular Biology 32, 785–793.CrossRefGoogle ScholarPubMed
Wolfner, M. F. (1997). Tokens of love: functions and regulation of Drosophila male accessory gland products. Insect Biochemistry and Molecular Biology 27, 179–192.CrossRefGoogle ScholarPubMed
Wolfner, M. F. (2002). The gifts that keep on giving: physiological functions and evolutionary dynamics of male seminal proteins in Drosophila. Heredity 88, 85–93.CrossRefGoogle ScholarPubMed
Wolfner, M. F., Harada, H. A., Bertram, M. J., et al. (1997). New genes for male accessory gland proteins in Drosophila melanogaster. Insect Biochemistry and Molecular Biology 10, 825–834.CrossRefGoogle Scholar
Setty, Yamaja B. N. & Ramaiah, T. R. (1979). Isolation and identification of prostaglandins from the reproductive organs of male silkmoth, Bombyx mori L. Insect Biochemistry 9, 613–617.CrossRefGoogle Scholar
Setty, Yamaja B. N. & Ramaiah, T. R. (1980). Effect of prostaglandins and inhibitors of prostaglandin biosynthesis on oviposition in the siltmoth, Bombyx mori. Indian Journal of Experimental Biology 18, 539–541.Google Scholar
Yuval, B. & Spielman, A. (1990). Sperm precedence in the deer tick Ixodes dammini. Physiological Entomology 15, 123–128.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×