Bibliography[1] Agarwal, R. P., V., Otero-Espinar, K., Perera, and D. R., Vivero. Basic properties of Sobolev's spaces on time scales. Adv. Difference Equ., pages Art. ID 38121, 14, 2006.
[2] Ahmad, S., A. C., Lazer, and J. L., Paul. Elementary critical point theory and perturbations of elliptic boundary value problems at resonance. Indiana Univ. Math. J., 25(10): 933–944, 1976.
[3] Amann, H. and E., Zehnder. Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7(4): 539–603, 1980.
[4] Ambrosetti, A.Differential equations with multiple solutions and nonlinear functional analysis. In Equadiff 82 (Würzburg, 1982), volume 1017 of Lecture Notes in Math., pages 10–37. Springer, Berlin, 1983.
[5] Ambrosetti, A.Elliptic equations with jumping nonlinearities. J. Math. Phys. Sci., 18(1): 1–12, 1984.
[6] Ambrosetti, A., H., Brezis, and G., Cerami. Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal., 122(2): 519–543, 1994.
[7] Ambrosetti, A., J. G., Azorero, and I., Peral. Multiplicity results for some nonlinear elliptic equations. J. Funct. Anal., 137(1): 219–242, 1996.
[8] Ambrosetti, A. and G., Prodi. A Primer of Nonlinear Analysis, volume 34 of Cambridge Studies in Advanced Mathematics, pages viii+171. Cambridge University Press, Cambridge, 1995. Corrected reprint of the 1993 original.
[9] Ambrosetti, A. and P. H., Rabinowitz. Dual variational methods in critical point theory and applications. J. Functional Analysis, 14: 349–381, 1973.
[10] Anane, A.Simplicité et isolation de la première valeur propre du p-laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math., 305(16): 725–728, 1987.
[11] Anane, A. and Tsouli, N.On the second eigenvalue of the p-Laplacian. In Nonlinear Partial Differential Equations (Fès, 1994), volume 343 of Pitman Res. Notes Math. Ser., pages 1–9. Longman, Harlow, 1996.
[12] Arcoya, D. and L., Orsina. Landesman–Lazer conditions and quasilinear elliptic equations. Nonlinear Anal., 28(10): 1623–1632, 1997.
[13] Bartolo, P., V., Benci, and D., Fortunato. Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity. Nonlinear Anal., 7(9): 981–1012, 1983.
[14] Bartsch, T. and S., Li. Critical point theory for asymptotically quadratic functionals and applications to problems with resonance. Nonlinear Anal., 28(3): 419–441, 1997.
[15] Benci, V.Some applications of the generalized Morse–Conley index. Confer. Sem. Mat. Univ. Bari, 218: 32, 1987.
[16] Benci, V.A new approach to the Morse–Conley theory and some applications. Ann. Mat. Pura Appl. (4), 158: 231–305, 1991.
[17] Benci, V.Introduction to Morse theory: a new approach. In Topological Nonlinear Analysis, volume 15 of Progr. Nonlinear Differential Equations Appl., pages 37–177. Birkhäuser Boston, Boston, MA, 1995.
[18] Benci, V. and P. H., Rabinowitz. Critical point theorems for indefinite functionals. Invent. Math., 52(3): 241–273, 1979.
[19] Berger, M. S.Nonlinearity and Functional Analysis, volume 74 of Pure and Applied Mathematics, pages xix+417. Academic Press, 1977.
[20] Bouchala, J. and P., Drábek. Strong resonance for some quasilinear elliptic equations. J. Math. Anal. Appl., 245(1): 7–19, 2000.
[21] Brezis, H. and L., Nirenberg. Remarks on finding critical points. Comm. Pure Appl. Math., 44(8–9): 939–963, 1991.
[22] Các, N. P.On nontrivial solutions of a Dirichlet problem whose jumping nonlinearity crosses a multiple eigenvalue. J. Differential Equations, 80(2): 379–404, 1989.
[23] Cambini, A.Sul lemma di M. Morse. Boll. Un. Mat. Ital. (4), 7: 87–93, 1973.
[24] Castro, A. and A. C., Lazer. Applications of amaximin principle. Rev. Colombiana Mat., 10: 141–149, 1976.
[25] Cerami, G.An existence criterion for the critical points on unbounded manifolds. Istit. Lombardo Accad. Sci. Lett. Rend.A, 112(2): 332–336, 1979.
[26] Chabrowski, J.Variational Methods for Potential Operator Equations, pages x+290. Walter de Gruyter, 1997.
[27] Chang, K. C. and N., Ghoussoub. The Conley index and the critical groups via an extension of Gromoll–Meyer theory. Topol. Methods Nonlinear Anal., 7(1): 77–93, 1996.
[28] Chang, K. C.Solutions of asymptotically linear operator equations via Morse theory. Comm. Pure Appl. Math., 34(5): 693–712, 1981.
[29] Chang, K.-C.Infinite-dimensional Morse Theory and Multiple Solution Problems, volume 6 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston Inc., Boston, MA, 1993.
[30] Chang, K.-C.Methods in Nonlinear Analysis. Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005.
[31] Cingolani, S. and M., Degiovanni. Nontrivial solutions for p-Laplace equations with right-hand side having p-linear growth at infinity. Comm. Partial Differential Equations, 30(7–9): 1191–1203, 2005.
[32] Corvellec, J.-N. and A., Hantoute. Homotopical stability of isolated critical points of continuous functionals. Set-Valued Anal., 10(2–3): 143–164, 2002.
[33] Costa, D. G. and E. A., Silva. On a class of resonant problems at higher eigenvalues. Differential Integral Equations, 8(3): 663–671, 1995.
[34] Cuesta, M.On the Fučík spectrum of the Laplacian and the p-Laplacian. In Proceedings of Seminar in Differential Equations, Kvilda, Czech Republic, May 29 – June 2, 2000, pages 67–96. Centre of Applied Mathematics, Faculty of Applied Sciences, University of West Bohemia in Pilsen.
[35] Cuesta, M. and J.-P., Gossez. A variational approach to nonresonancewith respect to the Fučik spectrum. Nonlinear Anal., 19(5): 487–500, 1992.
[36] Dacorogna, B.Direct Methods in the Calculus of Variations, pages xii+619, Springer, 2008.
[37] Dancer, E. N.On the Dirichlet problem for weakly non-linear elliptic partial differential equations. Proc. Roy. Soc. Edinburgh Sect.A, 76(4): 283–300, 1976/1977.
[38] Dancer, E. N.Corrigendum: “On the Dirichlet problem for weakly nonlinear elliptic partial differential equations” [Proc. Roy. Soc. Edinburgh Sect. A 76 (1976/77), no. 4, 283–300; MR 58 #17506]. Proc. Roy. Soc. Edinburgh Sect.A, 89(1–2): 15, 1981.
[39] Dancer, E. N.Remarks on jumping nonlinearities. In Topics in Nonlinear Analysis, volume 35 of Progr. Nonlinear Differential Equations Appl., pages 101–116. BirkhäNauser, Basel, 1999.
[40] Dancer, E. N.Some results for jumping nonlinearities. Topol. Methods Nonlinear Anal., 19(2): 221–235, 2002.
[41] Dancer, N. and K., Perera. Some remarks on the Fučík spectrum of the p-Laplacian and critical groups. J. Math. Anal. Appl., 254(1): 164–177, 2001.
[42] de Figueiredo, D. G. and J.-P., Gossez. On the first curve of the Fučik spectrum of an elliptic operator. Differential Integral Equations, 7(5–6): 1285–1302, 1994.
[43] de Paiva, F. O. and E., Massa. Multiple solutions for some elliptic equations with a nonlinearity concave at the origin. Nonlinear Anal., 66(12): 2940–2946, 2007.
[44] Degiovanni, M. and S., Lancelotti. Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire, 24(6): 907–919, 2007.
[45] Degiovanni, M. and S., Lancelotti. Linking solutions for p-Laplace equations with nonlinearity at critical growth. J. Funct. Anal., 256(11): 3643–3659, 2009.
[46] Degiovanni, M., S., Lancelotti, and K., Perera. Nontrivial solutions of p-superlinear p-laplacian problems via a cohomological local splitting. Commun. Contemp. Math., 12(3): 475–486, 2010.
[47] Dold, A.Partitions of unity in the theory of fibrations. Ann. of Math. (2), 78: 223–255, 1963.
[48] Drábek, P.Solvability and Bifurcations of Nonlinear Equations, volume 264 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow, 1992.
[49] Drábek, P. and S. B., Robinson. Resonance problems for the p-Laplacian. J. Funct. Anal., 169(1): 189–200, 1999.
[50] Esteban, J. R. and J. L., Vázquez. On the equation of turbulent filtration in one-dimensional porous media. Nonlinear Anal., 10(11): 1303–1325, 1986.
[51] Fadell, E. R. and P. H., Rabinowitz. Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. Invent. Math., 45(2): 139–174, 1978.
[52] Fang, F. and S., Liu. Nontrivial solutions of superlinear p-Laplacian equations. J. Math. Anal. Appl., 351(1): 138–146, 2009.
[53] Fučík, S.Boundary value problems with jumping nonlinearities. Časopis Pěst. Mat., 101(1): 69–87, 1976.
[54] Gallouët, T. and O., Kavian. Résultats d'existence et de non-existence pour certains problèmes demi-linéaires à l'infini. Ann. Fac. Sci. Toulouse Math. (5), 3(3–4): 201–246 (1982), 1981.
[55] Ghoussoub, N.Location, multiplicity and Morse indices of min-max critical points. J. Reine Angew. Math., 417: 27–76, 1991.
[56] Ghoussoub, N.Duality and Perturbation Methods in Critical Point Theory, volume 107 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1993. With appendices by David Robinson.
[57] Gromoll, D. and W., Meyer. On differentiable functions with isolated critical points. Topology, 8: 361–369, 1969.
[58] Guo, Y. and J., Liu. Solutions of p-sublinear p-Laplacian equation via Morse theory. J. London Math. Soc. (2), 72(3): 632–644, 2005.
[59] Hirano, N. and T., Nishimura. Multiplicity results for semilinear elliptic problems at resonance and with jumping nonlinearities. J. Math. Anal. Appl., 180(2): 566–586, 1993.
[60] Hofer, H.The topological degree at a critical point of mountain-pass type. AMS Proceedings of Symposia in Pure Math., 45: 501–509, 1986.
[61] Kelley, J. L.General Topology. Springer-Verlag, New York, 1975. Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.], Graduate Texts in Mathematics, No. 27.
[62] Krasnosel'skii, M. A.Topological Methods in the Theory of Nonlinear Integral Equations. Translated by A. H., Armstrong; translation edited by J., Burlak. A Pergamon Press Book. The Macmillan Co., New York, 1964.
[63] Kryszewski, W. and A., Szulkin. An infinite-dimensional Morse theory with applications. Trans. Amer. Math. Soc., 349(8): 3181–3234, 1997.
[64] Kuiper, N. H.C1-equivalence of functions near isolated critical points. Ann. of Math., 69: 199–218, 1972.
[65] Lancelotti, S.Existence of nontrivial solutions for semilinear problems with strictly differentiable nonlinearity. Abstr. Appl. Anal., pages Art. ID 62458, 14, 2006.
[66] Lazer, A. C. and P. J., McKenna. Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues. II. Comm. Partial Differential Equations, 11(15): 1653–1676, 1986.
[67] Lazer, A. C. and S., Solimini. Nontrivial solutions of operator equations and Morse indices of critical points of min-max type. Nonlinear Anal., 12(8): 761–775, 1988.
[68] Lazer, A.Introduction to multiplicity theory for boundary value problems with asymmetric nonlinearities. In Partial Differential Equations (Rio de Janeiro, 1986), volume 1324 of Lecture Notes in Math., pages 137–165. Springer, Berlin, 1988.
[69] Li, C., S., Li, and Z., Liu. Existence of type (II) regions and convexity and concavity of potential functionals corresponding to jumping nonlinear problems. Calc. Var. Partial Differential Equations, 32(2): 237–251, 2008.
[70] Li, S. J. and J. Q., Liu. Morse theory and asymptotic linear Hamiltonian system. J. Differential Equations, 78(1): 53–73, 1989.
[71] Li, S. J. and J. Q., Liu. Nontrivial critical points for asymptotically quadratic function. J. Math. Anal. Appl., 165(2): 333–345, 1992.
[72] Li, S. J. and M., Willem. Applications of local linking to critical point theory. J. Math. Anal. Appl., 189(1): 6–32, 1995.
[73] Li, S. and J. Q., Liu. Computations of critical groups at degenerate critical point and applications to nonlinear differential equations with resonance. Houston J. Math., 25(3): 563–582, 1999.
[74] Li, S., K., Perera, and J., Su. Computation of critical groups in elliptic boundaryvalue problems where the asymptotic limits may not exist. Proc. Roy. Soc. Edinburgh Sect.A, 131(3): 721–732, 2001.
[75] Li, S. and Z.-Q., Wang. Mountain pass theorem in order intervals and multiple solutions for semilinear elliptic Dirichlet problems. J. Anal. Math., 81: 373–396, 2000.
[76] Li, S. and M., Willem. Multiple solutions for asymptotically linear boundary value problems in which the nonlinearity crosses at least one eigenvalue. NoDEA Nonlinear Differential Equations Appl., 5(4): 479–490, 1998.
[77] Li, S., S., Wu, and H.-S., Zhou. Solutions to semilinear elliptic problems with combined nonlinearities. J. Differential Equations, 185(1): 200–224, 2002.
[78] Li, S. and Z., Zhang. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity. Discrete Contin. Dynam. Systems, 5(3): 489–493, 1999.
[79] Li, S. and W., Zou. The computations of the critical groups with an application to elliptic resonant problems at a higher eigenvalue. J. Math. Anal. Appl., 235(1): 237–259, 1999.
[80] Lindqvist, P.On the equation div (∣∇u∣p−2∇u)+λ∣u∣p−2u=0. Proc. Amer. Math. Soc., 109(1): 157–164, 1990.
[81] Lindqvist, P.Addendum: “On the equation div (∣∇u∣p−2∇u)+λ∣u∣p−2u=0” [Proc. Amer. Math. Soc. 109 (1990), no. 1, 157–164; MR 90h:35088]. Proc. Amer. Math. Soc., 116(2): 583–584, 1992.
[82] Liu, J. Q.The Morse index of a saddle point. Systems Sci. Math. Sci., 2(1): 32–39, 1989.
[83] Liu, J. Q. and S. J., Li. An existence theorem for multiple critical points and its application. Kexue Tongbao (Chinese), 29(17): 1025–1027, 1984.
[84] Liu, S. and S., Li. Existence of solutions for asymptotically ‘linear’ p-Laplacian equations. Bull. London Math. Soc., 36(1): 81–87, 2004.
[85] Ljusternik, L. and L., Schnirelmann. Methodes Topologique dans les Problémes Variationnels. Hermann and Cie, Paris, 1934.
[86] Magalhães, C. A.Semilinear elliptic problem with crossing of multiple eigenvalues. Comm. Partial Differential Equations, 15(9): 1265–1292, 1990.
[87] Margulies, C. A. and W., Margulies. An example of the Fučik spectrum. Nonlinear Anal., 29(12): 1373–1378, 1997.
[88] Marino, A. and G., Prodi. Metodi perturbativi nella teoria di Morse. Boll. Un. Mat. Ital. (4), 11(3, suppl.): 1–32, 1975. Collection of articles dedicated to Giovanni Sansone on the occasion of his eighty-fifth birthday.
[89] Marino, A. and G., Prodi. La teoria di Morse per gli spazi di Hilbert. Rend. Sem. Mat. Univ. Padova, 41: 43–68, 1968.
[90] Mawhin, J. and M., Willem. On the generalized Morse lemma. Bull. Soc. Math. Belg. Sér.B, 37(2): 23–29, 1985.
[91] Mawhin, J. and M., Willem. Critical Point Theory and Hamiltonian Systems, volume 74 of Applied Mathematical Sciences. Springer-Verlag, New York, 1989.
[92] Medeiros, E. and K., Perera. Multiplicity of solutions for a quasilinear elliptic problem via the cohomological index. Nonlinear Anal., 71(9): 3654–3660, 2009.
[93] Milnor, J.Morse Theory, pages vi+153. Princeton University Press, 1963.
[94] Moroz, V.On theMorse critical groups for indefinite sublinear elliptic problems. Nonlinear Anal., 52(5): 1441–1453, 2003.
[95] Morse, M.Relations between the critical points of a real function of n independent variables. Trans. Amer. Math. Soc., 27(3): 345–396, 1925.
[96] Motreanu, D. and K., Perera. Multiple nontrivial solutions of Neumann p-Laplacian systems. Topol. Methods Nonlinear Anal., 34(1): 41–48, 2009.
[97] Ni, W. M.Some minimax principles and their applications in nonlinear elliptic equations. J. Analyse Math., 37: 248–275, 1980.
[98] Nirenberg, L.Topics in Nonlinear Functional Analysis, pages viii+259, American Mathematical Society, 1974. With a chapter by E. Zehnder, Notes by R. A. Artino.
[99] Nirenberg, L.Variational and topological methods in nonlinear problems. Bull. Amer. Math. Soc. (N.S.), 4(3): 267–302, 1981.
[100] Padial, J. F., P., Takáč, and L., Tello. An antimaximum principle for a degenerate parabolic problem. In Ninth International Conference Zaragoza-Pau on Applied Mathematics and Statistics, volume 33 of Monogr. Semin. Mat. García Galdeano, pages 433–440. Prensas Univ. Zaragoza, Zaragoza, 2006.
[101] Palais, R. S. and S., Smale. A generalized Morse theory. Bull. Amer. Math. Soc., 70: 165–172, 1964.
[102] Palais, R. S.Morse theory on Hilbert manifolds. Topology, 2: 299–340, 1963.
[103] Palais, R. S.Critical point theory and the minimax principle. In Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif, 1968), pages 185–212. Amer. Math. Soc., Providence, RI, 1970.
[104] Perera, K.Critical groups of pairs of critical points produced by linking subsets. J. Differential Equations, 140(1): 142–160, 1997.
[105] Perera, K.Multiplicity results for some elliptic problems with concave nonlinearities. J. Differential Equations, 140(1): 133–141, 1997.
[106] Perera, K.Critical groups of critical points produced by local linking with applications. Abstr. Appl. Anal., 3(3–4): 437–446, 1998.
[107] Perera, K.Homological local linking. Abstr. Appl. Anal., 3(1–2):181–189, 1998.
[108] Perera, K.Applications of local linking to asymptotically linear elliptic problems at resonance. NoDEA Nonlinear Differential Equations Appl., 6(1): 55–62, 1999.
[109] Perera, K.One-sided resonance for quasilinear problems with asymmetric nonlinearities. Abstr. Appl. Anal., 7(1): 53–60, 2002.
[110] Perera, K.Nontrivial critical groups in p-Laplacian problems via the Yang index. Topol. Methods Nonlinear Anal., 21(2): 301–309, 2003.
[111] Perera, K.Nontrivial solutions of p-superlinear p-Laplacian problems. Appl. Anal., 82(9): 883–888, 2003.
[112] Perera, K.p-superlinear problems with jumping nonlinearities. In Nonlinear Analysis and Applications: to V. Lakshmikantham on his 80th Birthday. Vol. 1, 2, pages 823–829. Kluwer Acad. Publ., Dordrecht, 2003.
[113] Perera, K., R. P., Agarwal, and D., O'Regan. Morse Theoretic Aspects of p-Laplacian Type Operators, volume 161 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2010.
[114] Perera, K. and M., Schechter. Morse index estimates in saddle point theorems without a finite-dimensional closed loop. Indiana Univ. Math. J., 47(3): 1083–1095, 1998.
[115] Perera, K. and M., Schechter. Type II regions between curves of the Fučik spectrum and critical groups. Topol. Methods Nonlinear Anal., 12(2): 227–243, 1998.
[116] Perera, K. and M., Schechter. A generalization of the Amann-Zehnder theorem to nonresonance problems with jumping nonlinearities. NoDEA Nonlinear Differential Equations Appl., 7(4): 361–367, 2000.
[117] Perera, K. and M., Schechter. The Fučík spectrum and critical groups. Proc. Amer. Math. Soc., 129(8): 2301–2308 (electronic), 2001.
[118] Perera, K. and M., Schechter. Critical groups in saddle point theorems without a finite dimensional closed loop. Math. Nachr., 243: 156–164, 2002.
[119] Perera, K. and M., Schechter. Double resonance problems with respect to the Fučík spectrum. Indiana Univ. Math. J., 52(1): 1–17, 2003.
[120] Perera, K. and M., Schechter. Sandwich pairs in p-Laplacian problems. Topol. Methods Nonlinear Anal., 29(1): 29–34, 2007.
[121] Perera, K. and M., Schechter. Flows and critical points. NoDEA Nonlinear Differential Equations Appl., 15(4–5): 495–509, 2008.
[122] Perera, K. and M., Schechter. Sandwich pairs for p-Laplacian systems. J. Math. Anal. Appl., 358(2): 485–490, 2009.
[123] Perera, K. and A., Szulkin. p-Laplacian problems where the nonlinearity crosses an eigenvalue. Discrete Contin. Dyn. Syst., 13(3): 743–753, 2005.
[124] Pitcher, E.Inequalities of critical point theory. Bull. Amer. Math. Soc., 64(1): 1–30, 1958.
[125] Qi, G. J.Extension of Mountain Pass Lemma. Kexue Tongbao (English Ed.), 32(12): 798–801, 1987.
[126] Rabinowitz, P. H.Variational methods for nonlinear eigenvalue problems. In Eigenvalues of Non-Linear Problems, pages 139–195. Springer-Verlag, Berlin, 1974.
[127] Rabinowitz, P. H.Some critical point theorems and applications to semilinear elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5(1): 215–223, 1978.
[128] Rabinowitz, P. H.Some minimax theorems and applications to nonlinear partial differential equations. In Nonlinear Analysis (Collection of Papers in Honor of Erich H. Rothe), pages 161–177. Academic Press, New York, 1978.
[129] Rabinowitz, P. H.Minimax Methods in Critical Point Theory with Applications to Differential Equations, volume 65 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986.
[130] Ramos, M. and L., Sanchez. Homotopical linking and Morse index estimates in min-max theorems. Manuscripta Math., 87(3): 269–284, 1995.
[131] Ribarska, N. K., Ts. Y., Tsachev, and M. I., Krastanov. A saddle point theorem without a finite-dimensional closed loop. C. R. Acad. Bulgare Sci., 51(11–12): 13–16, 1998.
[132] Rothe, E. H.Some remarks on critical point theory in Hilbert space. In Nonlinear Problems (Proc. Sympos., Madison, Wis., (1962), pages 233–256. University of Wisconsin Press, Madison, WI, 1963.
[133] Rothe, E. H.Some remarks on critical point theory in Hilbert space (continuation). J. Math. Anal. Appl., 20: 515–520, 1967.
[134] Rothe, E. H.On continuity and approximation questions concerning critical Morse groups in Hilbert space. In Symposium on Infinite-Dimensional Topology (Louisiana State Univ., Baton Rouge, La., 1967), pages 275–295. Ann. of Math. Studies, No. 69. Princeton University Press, Princeton, NJ, 1972.
[135] Rothe, E. H.Morse theory in Hilbert space. Rocky Mountain J. Math., 3: 251–274, 1973. Rocky Mountain Consortium Symposium on Nonlinear Eigenvalue Problems (Santa Fe, NM, 1971).
[136] Ruf, B.On nonlinear elliptic problems with jumping nonlinearities. Ann. Mat. Pura Appl. (4), 128: 133–151, 1981.
[137] Schechter, M.A generalization of the saddle point method with applications. Ann. Polon. Math., 57(3): 269–281, 1992.
[138] Schechter, M.New saddle point theorems. In Generalized Functions and Their Applications (Varanasi, 1991), pages 213–219. Plenum, New York, 1993.
[139] Schechter, M.Splitting subspaces and saddle points. Appl. Anal., 49(1–2): 33–48, 1993.
[140] Schechter, M.The Fučík spectrum. Indiana Univ. Math. J., 43(4): 1139–1157, 1994.
[141] Schechter, M.Bounded resonance problems for semilinear elliptic equations. Nonlinear Anal., 24(10): 1471–1482, 1995.
[142] Schechter, M.New linking theorems. Rend. Sem. Mat. Univ. Padova, 99: 255–269, 1998.
[143] Schechter, M.Linking Methods in Critical Point Theory. Birkhäuser Boston Inc., Boston, MA, 1999.
[144] Schechter, M.An Introduction to Nonlinear Analysis, volume 95 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2004.
[145] Schechter, M.Sandwich pairs. In Proc. Conf. Differential & Difference Equations and Applications, pages 999–1007. Hindawi Publ. Corp., New York, 2006.
[146] Schechter, M.Sandwich pairs in critical point theory. Trans. Amer. Math. Soc., 360(6): 2811–2823, 2008.
[147] Schechter, M.Minimax Systems and Critical Point Theory. Birkhäuser Boston Inc., Boston, MA, 2009.
[148] Schechter, M. and K., Tintarev. Pairs of critical points produced by linking subsets with applications to semilinear elliptic problems. Bull. Soc. Math. Belg. Sér.B, 44(3): 249–261, 1992.
[149] Schwartz, J. T.Nonlinear Functional Analysis, pages vii+236. Gordon and Breach, 1969. Notes byH., Fattorini, R., Nirenberg and H., Porta, with an additional chapter by Hermann Karcher.
[150] Silva, E. A. de B. e.Linking theorems and applications to semilinear elliptic problems at resonance. Nonlinear Anal., 16(5): 455–477, 1991.
[151] Smale, S.Morse theory and a non-linear generalization of the Dirichlet problem. Ann. of Math. (2), 80: 382–396, 1964.
[152] Solimini, S.Morse index estimates in min-max theorems. Manuscripta Math., 63(4): 421–453, 1989.
[153] Struwe, M.Variational Methods, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series ofModern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, fourth edition, 2008.
[154] Su, J. and C., Tang. Multiplicity results for semilinear elliptic equations with resonance at higher eigenvalues. Nonlinear Anal., 44(3, Ser. A: Theory Methods): 311–321, 2001.
[155] Szulkin, A.Cohomology and Morse theory for strongly indefinite functionals. Math. Z., 209(3): 375–418, 1992.
[156] Tanaka, M.On the existence of a non-trivial solution for the p-Laplacian equation with a jumping nonlinearity. Tokyo J. Math., 31(2): 333–341, 2008.
[157] Wang, Z. Q.A note on the second variation theorem. Acta Math. Sinica, 30(1): 106–110, 1987.
[158] Willem, M.Minimax Theorems, volume 24 in Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc., Boston, MA, 1996.
[159] Wu, S.-p. and H., Yang. A class of resonant elliptic problems with sublinear nonlinearity at origin and at infinity. Nonlinear Anal., 45(7, Ser. A: Theory Methods): 925–935, 2001.
[160] Yang, C.-T.On theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobô and Dyson. I. Ann. of Math. (2), 60: 262–282, 1954.
[161] Zeidler, E.Nonlinear Functional Analysis and its Applications. III, pages xxii+662, World Publishing Corporation, 1985. Translated from the German by Leo F. Boron.
[162] Zou, W. and J. Q., Liu. Multiple solutions for resonant elliptic equations via local linking theory andMorse theory. J. Differential Equations, 170(1): 68–95, 2001.
[163] Zou, W. and M., Schechter. Critical Point Theory and its Applications. Springer, New York, 2006.