Skip to main content Accessibility help
×
  • Cited by 3
Publisher:
Cambridge University Press
Online publication date:
November 2012
Print publication year:
2012
Online ISBN:
9781139342469

Book description

This book introduces the reader to powerful methods of critical point theory and details successful contemporary approaches to many problems, some of which had proved resistant to attack by older methods. Topics covered include Morse theory, critical groups, the minimax principle, various notions of linking, jumping nonlinearities and the Fučík spectrum in an abstract setting, sandwich pairs and the cohomological index. Applications to semilinear elliptic boundary value problems, p-Laplacian problems and anisotropic systems are given. Written for graduate students and research scientists, the book includes numerous examples and presents more recent developments in the subject to bring the reader up to date with the latest research.

Reviews

'The authors have presented extremely powerful methods in critical point theory. It can be presumed that researchers in these subjects had been awaiting such an excellent source and here they have it. It is undoubtedly an excellent reference for research scientists in mathematics, physics and engineering.'

Dhruba Adhikari Source: MAA Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
Bibliography
[1] Agarwal, R. P., V., Otero-Espinar, K., Perera, and D. R., Vivero. Basic properties of Sobolev's spaces on time scales. Adv. Difference Equ., pages Art. ID 38121, 14, 2006 Google Scholar.
[2] Ahmad, S., A. C., Lazer, and J. L., Paul. Elementary critical point theory and perturbations of elliptic boundary value problems at resonance. Indiana Univ. Math. J., 25(10): 933–944, 1976 Google Scholar.
[3] Amann, H. and E., Zehnder. Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7(4): 539–603, 1980 Google Scholar.
[4] Ambrosetti, A.Differential equations with multiple solutions and nonlinear functional analysis. In Equadiff 82 (Würzburg, 1982), volume 1017 of Lecture Notes in Math., pages 10–37. Springer, Berlin, 1983 Google Scholar.
[5] Ambrosetti, A.Elliptic equations with jumping nonlinearities. J. Math. Phys. Sci., 18(1): 1–12, 1984 Google Scholar.
[6] Ambrosetti, A., H., Brezis, and G., Cerami. Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal., 122(2): 519–543, 1994 Google Scholar.
[7] Ambrosetti, A., J. G., Azorero, and I., Peral. Multiplicity results for some nonlinear elliptic equations. J. Funct. Anal., 137(1): 219–242, 1996 Google Scholar.
[8] Ambrosetti, A. and G., Prodi. A Primer of Nonlinear Analysis, volume 34 of Cambridge Studies in Advanced Mathematics, pages viii+171. Cambridge University Press, Cambridge, 1995. Corrected reprint of the 1993 Google Scholar original.
[9] Ambrosetti, A. and P. H., Rabinowitz. Dual variational methods in critical point theory and applications. J. Functional Analysis, 14: 349–381, 1973 Google Scholar.
[10] Anane, A.Simplicité et isolation de la première valeur propre du p-laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math., 305(16): 725–728, 1987 Google Scholar.
[11] Anane, A. and Tsouli, N.On the second eigenvalue of the p-Laplacian. In Nonlinear Partial Differential Equations (Fès, 1994), volume 343 of Pitman Res. Notes Math. Ser., pages 1–9. Longman, Harlow, 1996 Google Scholar.
[12] Arcoya, D. and L., Orsina. Landesman–Lazer conditions and quasilinear elliptic equations. Nonlinear Anal., 28(10): 1623–1632, 1997 Google Scholar.
[13] Bartolo, P., V., Benci, and D., Fortunato. Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity. Nonlinear Anal., 7(9): 981–1012, 1983 Google Scholar.
[14] Bartsch, T. and S., Li. Critical point theory for asymptotically quadratic functionals and applications to problems with resonance. Nonlinear Anal., 28(3): 419–441, 1997 Google Scholar.
[15] Benci, V.Some applications of the generalized Morse–Conley index. Confer. Sem. Mat. Univ. Bari, 218: 32, 1987 Google Scholar.
[16] Benci, V.A new approach to the Morse–Conley theory and some applications. Ann. Mat. Pura Appl. (4), 158: 231–305, 1991 Google Scholar.
[17] Benci, V.Introduction to Morse theory: a new approach. In Topological Nonlinear Analysis, volume 15 of Progr. Nonlinear Differential Equations Appl., pages 37–177. Birkhäuser Boston, Boston, MA, 1995 Google Scholar.
[18] Benci, V. and P. H., Rabinowitz. Critical point theorems for indefinite functionals. Invent. Math., 52(3): 241–273, 1979 Google Scholar.
[19] Berger, M. S.Nonlinearity and Functional Analysis, volume 74 of Pure and Applied Mathematics, pages xix+417. Academic Press, 1977 Google Scholar.
[20] Bouchala, J. and P., Drábek. Strong resonance for some quasilinear elliptic equations. J. Math. Anal. Appl., 245(1): 7–19, 2000 Google Scholar.
[21] Brezis, H. and L., Nirenberg. Remarks on finding critical points. Comm. Pure Appl. Math., 44(8–9): 939–963, 1991 Google Scholar.
[22] Các, N. P.On nontrivial solutions of a Dirichlet problem whose jumping nonlinearity crosses a multiple eigenvalue. J. Differential Equations, 80(2): 379–404, 1989 Google Scholar.
[23] Cambini, A.Sul lemma di M. Morse. Boll. Un. Mat. Ital. (4), 7: 87–93, 1973 Google Scholar.
[24] Castro, A. and A. C., Lazer. Applications of amaximin principle. Rev. Colombiana Mat., 10: 141–149, 1976 Google Scholar.
[25] Cerami, G.An existence criterion for the critical points on unbounded manifolds. Istit. Lombardo Accad. Sci. Lett. Rend.A, 112(2): 332–336, 1979 Google Scholar.
[26] Chabrowski, J.Variational Methods for Potential Operator Equations, pages x+290. Walter de Gruyter, 1997 Google Scholar.
[27] Chang, K. C. and N., Ghoussoub. The Conley index and the critical groups via an extension of Gromoll–Meyer theory. Topol. Methods Nonlinear Anal., 7(1): 77–93, 1996 Google Scholar.
[28] Chang, K. C.Solutions of asymptotically linear operator equations via Morse theory. Comm. Pure Appl. Math., 34(5): 693–712, 1981 Google Scholar.
[29] Chang, K.-C.Infinite-dimensional Morse Theory and Multiple Solution Problems, volume 6 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston Inc., Boston, MA, 1993 Google Scholar.
[30] Chang, K.-C.Methods in Nonlinear Analysis. Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005 Google Scholar.
[31] Cingolani, S. and M., Degiovanni. Nontrivial solutions for p-Laplace equations with right-hand side having p-linear growth at infinity. Comm. Partial Differential Equations, 30(7–9): 1191–1203, 2005 Google Scholar.
[32] Corvellec, J.-N. and A., Hantoute. Homotopical stability of isolated critical points of continuous functionals. Set-Valued Anal., 10(2–3): 143–164, 2002 Google Scholar.
[33] Costa, D. G. and E. A., Silva. On a class of resonant problems at higher eigenvalues. Differential Integral Equations, 8(3): 663–671, 1995 Google Scholar.
[34] Cuesta, M.On the Fučík spectrum of the Laplacian and the p-Laplacian. In Proceedings of Seminar in Differential Equations, Kvilda, Czech Republic, May 29 – June 2, 2000 Google Scholar, pages 67–96. Centre of Applied Mathematics, Faculty of Applied Sciences, University of West Bohemia in Pilsen.
[35] Cuesta, M. and J.-P., Gossez. A variational approach to nonresonancewith respect to the Fučik spectrum. Nonlinear Anal., 19(5): 487–500, 1992 Google Scholar.
[36] Dacorogna, B.Direct Methods in the Calculus of Variations, pages xii+619, Springer, 2008 Google Scholar.
[37] Dancer, E. N.On the Dirichlet problem for weakly non-linear elliptic partial differential equations. Proc. Roy. Soc. Edinburgh Sect.A, 76(4): 283–300, 1976/1977 Google Scholar.
[38] Dancer, E. N.Corrigendum: “On the Dirichlet problem for weakly nonlinear elliptic partial differential equations” [Proc. Roy. Soc. Edinburgh Sect. A 76 (1976/77), no. 4, 283–300; MR 58 #17506]. Proc. Roy. Soc. Edinburgh Sect.A, 89(1–2): 15, 1981 Google Scholar.
[39] Dancer, E. N.Remarks on jumping nonlinearities. In Topics in Nonlinear Analysis, volume 35 of Progr. Nonlinear Differential Equations Appl., pages 101–116. BirkhäNauser, Basel, 1999 Google Scholar.
[40] Dancer, E. N.Some results for jumping nonlinearities. Topol. Methods Nonlinear Anal., 19(2): 221–235, 2002 Google Scholar.
[41] Dancer, N. and K., Perera. Some remarks on the Fučík spectrum of the p-Laplacian and critical groups. J. Math. Anal. Appl., 254(1): 164–177, 2001 Google Scholar.
[42] de Figueiredo, D. G. and J.-P., Gossez. On the first curve of the Fučik spectrum of an elliptic operator. Differential Integral Equations, 7(5–6): 1285–1302, 1994 Google Scholar.
[43] de Paiva, F. O. and E., Massa. Multiple solutions for some elliptic equations with a nonlinearity concave at the origin. Nonlinear Anal., 66(12): 2940–2946, 2007 Google Scholar.
[44] Degiovanni, M. and S., Lancelotti. Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire, 24(6): 907–919, 2007 Google Scholar.
[45] Degiovanni, M. and S., Lancelotti. Linking solutions for p-Laplace equations with nonlinearity at critical growth. J. Funct. Anal., 256(11): 3643–3659, 2009 Google Scholar.
[46] Degiovanni, M., S., Lancelotti, and K., Perera. Nontrivial solutions of p-superlinear p-laplacian problems via a cohomological local splitting. Commun. Contemp. Math., 12(3): 475–486, 2010 Google Scholar.
[47] Dold, A.Partitions of unity in the theory of fibrations. Ann. of Math. (2), 78: 223–255, 1963 Google Scholar.
[48] Drábek, P.Solvability and Bifurcations of Nonlinear Equations, volume 264 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow, 1992 Google Scholar.
[49] Drábek, P. and S. B., Robinson. Resonance problems for the p-Laplacian. J. Funct. Anal., 169(1): 189–200, 1999 Google Scholar.
[50] Esteban, J. R. and J. L., Vázquez. On the equation of turbulent filtration in one-dimensional porous media. Nonlinear Anal., 10(11): 1303–1325, 1986 Google Scholar.
[51] Fadell, E. R. and P. H., Rabinowitz. Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. Invent. Math., 45(2): 139–174, 1978 Google Scholar.
[52] Fang, F. and S., Liu. Nontrivial solutions of superlinear p-Laplacian equations. J. Math. Anal. Appl., 351(1): 138–146, 2009 Google Scholar.
[53] Fučík, S.Boundary value problems with jumping nonlinearities. Časopis Pěst. Mat., 101(1): 69–87, 1976 Google Scholar.
[54] Gallouët, T. and O., Kavian. Résultats d'existence et de non-existence pour certains problèmes demi-linéaires à l'infini. Ann. Fac. Sci. Toulouse Math. (5), 3(3–4): 201–246 (1982), 1981 Google Scholar.
[55] Ghoussoub, N.Location, multiplicity and Morse indices of min-max critical points. J. Reine Angew. Math., 417: 27–76, 1991 Google Scholar.
[56] Ghoussoub, N.Duality and Perturbation Methods in Critical Point Theory, volume 107 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1993 Google Scholar. With appendices by David Robinson.
[57] Gromoll, D. and W., Meyer. On differentiable functions with isolated critical points. Topology, 8: 361–369, 1969 Google Scholar.
[58] Guo, Y. and J., Liu. Solutions of p-sublinear p-Laplacian equation via Morse theory. J. London Math. Soc. (2), 72(3): 632–644, 2005 Google Scholar.
[59] Hirano, N. and T., Nishimura. Multiplicity results for semilinear elliptic problems at resonance and with jumping nonlinearities. J. Math. Anal. Appl., 180(2): 566–586, 1993 Google Scholar.
[60] Hofer, H.The topological degree at a critical point of mountain-pass type. AMS Proceedings of Symposia in Pure Math., 45: 501–509, 1986 Google Scholar.
[61] Kelley, J. L.General Topology. Springer-Verlag, New York, 1975 Google Scholar. Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.], Graduate Texts in Mathematics, No. 27.
[62] Krasnosel'skii, M. A.Topological Methods in the Theory of Nonlinear Integral Equations. Translated by A. H., Armstrong; translation edited by J., Burlak. A Pergamon Press Book. The Macmillan Co., New York, 1964 Google Scholar.
[63] Kryszewski, W. and A., Szulkin. An infinite-dimensional Morse theory with applications. Trans. Amer. Math. Soc., 349(8): 3181–3234, 1997 Google Scholar.
[64] Kuiper, N. H.C1-equivalence of functions near isolated critical points. Ann. of Math., 69: 199–218, 1972 Google Scholar.
[65] Lancelotti, S.Existence of nontrivial solutions for semilinear problems with strictly differentiable nonlinearity. Abstr. Appl. Anal., pages Art. ID 62458, 14, 2006 Google Scholar.
[66] Lazer, A. C. and P. J., McKenna. Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues. II. Comm. Partial Differential Equations, 11(15): 1653–1676, 1986 Google Scholar.
[67] Lazer, A. C. and S., Solimini. Nontrivial solutions of operator equations and Morse indices of critical points of min-max type. Nonlinear Anal., 12(8): 761–775, 1988 Google Scholar.
[68] Lazer, A.Introduction to multiplicity theory for boundary value problems with asymmetric nonlinearities. In Partial Differential Equations (Rio de Janeiro, 1986), volume 1324 of Lecture Notes in Math., pages 137–165. Springer, Berlin, 1988 Google Scholar.
[69] Li, C., S., Li, and Z., Liu. Existence of type (II) regions and convexity and concavity of potential functionals corresponding to jumping nonlinear problems. Calc. Var. Partial Differential Equations, 32(2): 237–251, 2008 Google Scholar.
[70] Li, S. J. and J. Q., Liu. Morse theory and asymptotic linear Hamiltonian system. J. Differential Equations, 78(1): 53–73, 1989 Google Scholar.
[71] Li, S. J. and J. Q., Liu. Nontrivial critical points for asymptotically quadratic function. J. Math. Anal. Appl., 165(2): 333–345, 1992 Google Scholar.
[72] Li, S. J. and M., Willem. Applications of local linking to critical point theory. J. Math. Anal. Appl., 189(1): 6–32, 1995 Google Scholar.
[73] Li, S. and J. Q., Liu. Computations of critical groups at degenerate critical point and applications to nonlinear differential equations with resonance. Houston J. Math., 25(3): 563–582, 1999 Google Scholar.
[74] Li, S., K., Perera, and J., Su. Computation of critical groups in elliptic boundaryvalue problems where the asymptotic limits may not exist. Proc. Roy. Soc. Edinburgh Sect.A, 131(3): 721–732, 2001 Google Scholar.
[75] Li, S. and Z.-Q., Wang. Mountain pass theorem in order intervals and multiple solutions for semilinear elliptic Dirichlet problems. J. Anal. Math., 81: 373–396, 2000 Google Scholar.
[76] Li, S. and M., Willem. Multiple solutions for asymptotically linear boundary value problems in which the nonlinearity crosses at least one eigenvalue. NoDEA Nonlinear Differential Equations Appl., 5(4): 479–490, 1998 Google Scholar.
[77] Li, S., S., Wu, and H.-S., Zhou. Solutions to semilinear elliptic problems with combined nonlinearities. J. Differential Equations, 185(1): 200–224, 2002 Google Scholar.
[78] Li, S. and Z., Zhang. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity. Discrete Contin. Dynam. Systems, 5(3): 489–493, 1999 Google Scholar.
[79] Li, S. and W., Zou. The computations of the critical groups with an application to elliptic resonant problems at a higher eigenvalue. J. Math. Anal. Appl., 235(1): 237–259, 1999 Google Scholar.
[80] Lindqvist, P.On the equation div (∣∇u∣p−2∇u)+λ∣u∣p−2u=0. Proc. Amer. Math. Soc., 109(1): 157–164, 1990 Google Scholar.
[81] Lindqvist, P.Addendum: “On the equation div (∣∇u∣p−2∇u)+λ∣u∣p−2u=0” [Proc. Amer. Math. Soc. 109 (1990), no. 1, 157–164; MR 90h:35088]. Proc. Amer. Math. Soc., 116(2): 583–584, 1992 Google Scholar.
[82] Liu, J. Q.The Morse index of a saddle point. Systems Sci. Math. Sci., 2(1): 32–39, 1989 Google Scholar.
[83] Liu, J. Q. and S. J., Li. An existence theorem for multiple critical points and its application. Kexue Tongbao (Chinese), 29(17): 1025–1027, 1984 Google Scholar.
[84] Liu, S. and S., Li. Existence of solutions for asymptotically ‘linear’ p-Laplacian equations. Bull. London Math. Soc., 36(1): 81–87, 2004 Google Scholar.
[85] Ljusternik, L. and L., Schnirelmann. Methodes Topologique dans les Problémes Variationnels. Hermann and Cie, Paris, 1934 Google Scholar.
[86] Magalhães, C. A.Semilinear elliptic problem with crossing of multiple eigenvalues. Comm. Partial Differential Equations, 15(9): 1265–1292, 1990 Google Scholar.
[87] Margulies, C. A. and W., Margulies. An example of the Fučik spectrum. Nonlinear Anal., 29(12): 1373–1378, 1997 Google Scholar.
[88] Marino, A. and G., Prodi. Metodi perturbativi nella teoria di Morse. Boll. Un. Mat. Ital. (4), 11(3, suppl.): 1–32, 1975 Google Scholar. Collection of articles dedicated to Giovanni Sansone on the occasion of his eighty-fifth birthday.
[89] Marino, A. and G., Prodi. La teoria di Morse per gli spazi di Hilbert. Rend. Sem. Mat. Univ. Padova, 41: 43–68, 1968 Google Scholar.
[90] Mawhin, J. and M., Willem. On the generalized Morse lemma. Bull. Soc. Math. Belg. Sér.B, 37(2): 23–29, 1985 Google Scholar.
[91] Mawhin, J. and M., Willem. Critical Point Theory and Hamiltonian Systems, volume 74 of Applied Mathematical Sciences. Springer-Verlag, New York, 1989 Google Scholar.
[92] Medeiros, E. and K., Perera. Multiplicity of solutions for a quasilinear elliptic problem via the cohomological index. Nonlinear Anal., 71(9): 3654–3660, 2009 Google Scholar.
[93] Milnor, J.Morse Theory, pages vi+153. Princeton University Press, 1963 Google Scholar.
[94] Moroz, V.On theMorse critical groups for indefinite sublinear elliptic problems. Nonlinear Anal., 52(5): 1441–1453, 2003 Google Scholar.
[95] Morse, M.Relations between the critical points of a real function of n independent variables. Trans. Amer. Math. Soc., 27(3): 345–396, 1925 Google Scholar.
[96] Motreanu, D. and K., Perera. Multiple nontrivial solutions of Neumann p-Laplacian systems. Topol. Methods Nonlinear Anal., 34(1): 41–48, 2009 Google Scholar.
[97] Ni, W. M.Some minimax principles and their applications in nonlinear elliptic equations. J. Analyse Math., 37: 248–275, 1980 Google Scholar.
[98] Nirenberg, L.Topics in Nonlinear Functional Analysis, pages viii+259, American Mathematical Society, 1974 Google Scholar. With a chapter by E. Zehnder, Notes by R. A. Artino.
[99] Nirenberg, L.Variational and topological methods in nonlinear problems. Bull. Amer. Math. Soc. (N.S.), 4(3): 267–302, 1981 Google Scholar.
[100] Padial, J. F., P., Takáč, and L., Tello. An antimaximum principle for a degenerate parabolic problem. In Ninth International Conference Zaragoza-Pau on Applied Mathematics and Statistics, volume 33 of Monogr. Semin. Mat. García Galdeano, pages 433–440. Prensas Univ. Zaragoza, Zaragoza, 2006 Google Scholar.
[101] Palais, R. S. and S., Smale. A generalized Morse theory. Bull. Amer. Math. Soc., 70: 165–172, 1964 Google Scholar.
[102] Palais, R. S.Morse theory on Hilbert manifolds. Topology, 2: 299–340, 1963 Google Scholar.
[103] Palais, R. S.Critical point theory and the minimax principle. In Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif, 1968), pages 185–212. Amer. Math. Soc., Providence, RI, 1970 Google Scholar.
[104] Perera, K.Critical groups of pairs of critical points produced by linking subsets. J. Differential Equations, 140(1): 142–160, 1997 Google Scholar.
[105] Perera, K.Multiplicity results for some elliptic problems with concave nonlinearities. J. Differential Equations, 140(1): 133–141, 1997 Google Scholar.
[106] Perera, K.Critical groups of critical points produced by local linking with applications. Abstr. Appl. Anal., 3(3–4): 437–446, 1998 Google Scholar.
[107] Perera, K.Homological local linking. Abstr. Appl. Anal., 3(1–2):181–189, 1998 Google Scholar.
[108] Perera, K.Applications of local linking to asymptotically linear elliptic problems at resonance. NoDEA Nonlinear Differential Equations Appl., 6(1): 55–62, 1999 Google Scholar.
[109] Perera, K.One-sided resonance for quasilinear problems with asymmetric nonlinearities. Abstr. Appl. Anal., 7(1): 53–60, 2002 Google Scholar.
[110] Perera, K.Nontrivial critical groups in p-Laplacian problems via the Yang index. Topol. Methods Nonlinear Anal., 21(2): 301–309, 2003 Google Scholar.
[111] Perera, K.Nontrivial solutions of p-superlinear p-Laplacian problems. Appl. Anal., 82(9): 883–888, 2003 Google Scholar.
[112] Perera, K.p-superlinear problems with jumping nonlinearities. In Nonlinear Analysis and Applications: to V. Lakshmikantham on his 80th Birthday. Vol. 1, 2, pages 823–829. Kluwer Acad. Publ., Dordrecht, 2003 Google Scholar.
[113] Perera, K., R. P., Agarwal, and D., O'Regan. Morse Theoretic Aspects of p-Laplacian Type Operators, volume 161 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2010 Google Scholar.
[114] Perera, K. and M., Schechter. Morse index estimates in saddle point theorems without a finite-dimensional closed loop. Indiana Univ. Math. J., 47(3): 1083–1095, 1998 Google Scholar.
[115] Perera, K. and M., Schechter. Type II regions between curves of the Fučik spectrum and critical groups. Topol. Methods Nonlinear Anal., 12(2): 227–243, 1998 Google Scholar.
[116] Perera, K. and M., Schechter. A generalization of the Amann-Zehnder theorem to nonresonance problems with jumping nonlinearities. NoDEA Nonlinear Differential Equations Appl., 7(4): 361–367, 2000 Google Scholar.
[117] Perera, K. and M., Schechter. The Fučík spectrum and critical groups. Proc. Amer. Math. Soc., 129(8): 2301–2308 (electronic), 2001 Google Scholar.
[118] Perera, K. and M., Schechter. Critical groups in saddle point theorems without a finite dimensional closed loop. Math. Nachr., 243: 156–164, 2002 Google Scholar.
[119] Perera, K. and M., Schechter. Double resonance problems with respect to the Fučík spectrum. Indiana Univ. Math. J., 52(1): 1–17, 2003 Google Scholar.
[120] Perera, K. and M., Schechter. Sandwich pairs in p-Laplacian problems. Topol. Methods Nonlinear Anal., 29(1): 29–34, 2007 Google Scholar.
[121] Perera, K. and M., Schechter. Flows and critical points. NoDEA Nonlinear Differential Equations Appl., 15(4–5): 495–509, 2008 Google Scholar.
[122] Perera, K. and M., Schechter. Sandwich pairs for p-Laplacian systems. J. Math. Anal. Appl., 358(2): 485–490, 2009 Google Scholar.
[123] Perera, K. and A., Szulkin. p-Laplacian problems where the nonlinearity crosses an eigenvalue. Discrete Contin. Dyn. Syst., 13(3): 743–753, 2005 Google Scholar.
[124] Pitcher, E.Inequalities of critical point theory. Bull. Amer. Math. Soc., 64(1): 1–30, 1958 Google Scholar.
[125] Qi, G. J.Extension of Mountain Pass Lemma. Kexue Tongbao (English Ed.), 32(12): 798–801, 1987 Google Scholar.
[126] Rabinowitz, P. H.Variational methods for nonlinear eigenvalue problems. In Eigenvalues of Non-Linear Problems, pages 139–195. Springer-Verlag, Berlin, 1974 Google Scholar.
[127] Rabinowitz, P. H.Some critical point theorems and applications to semilinear elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5(1): 215–223, 1978 Google Scholar.
[128] Rabinowitz, P. H.Some minimax theorems and applications to nonlinear partial differential equations. In Nonlinear Analysis (Collection of Papers in Honor of Erich H. Rothe), pages 161–177. Academic Press, New York, 1978 Google Scholar.
[129] Rabinowitz, P. H.Minimax Methods in Critical Point Theory with Applications to Differential Equations, volume 65 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986 Google Scholar.
[130] Ramos, M. and L., Sanchez. Homotopical linking and Morse index estimates in min-max theorems. Manuscripta Math., 87(3): 269–284, 1995 Google Scholar.
[131] Ribarska, N. K., Ts. Y., Tsachev, and M. I., Krastanov. A saddle point theorem without a finite-dimensional closed loop. C. R. Acad. Bulgare Sci., 51(11–12): 13–16, 1998 Google Scholar.
[132] Rothe, E. H.Some remarks on critical point theory in Hilbert space. In Nonlinear Problems (Proc. Sympos., Madison, Wis., (1962), pages 233–256. University of Wisconsin Press, Madison, WI, 1963 Google Scholar.
[133] Rothe, E. H.Some remarks on critical point theory in Hilbert space (continuation). J. Math. Anal. Appl., 20: 515–520, 1967 Google Scholar.
[134] Rothe, E. H.On continuity and approximation questions concerning critical Morse groups in Hilbert space. In Symposium on Infinite-Dimensional Topology (Louisiana State Univ., Baton Rouge, La., 1967), pages 275–295. Ann. of Math. Studies, No. 69. Princeton University Press, Princeton, NJ, 1972 Google Scholar.
[135] Rothe, E. H.Morse theory in Hilbert space. Rocky Mountain J. Math., 3: 251–274, 1973. Rocky Mountain Consortium Symposium on Nonlinear Eigenvalue Problems (Santa Fe, NM, 1971 Google Scholar).
[136] Ruf, B.On nonlinear elliptic problems with jumping nonlinearities. Ann. Mat. Pura Appl. (4), 128: 133–151, 1981 Google Scholar.
[137] Schechter, M.A generalization of the saddle point method with applications. Ann. Polon. Math., 57(3): 269–281, 1992 Google Scholar.
[138] Schechter, M.New saddle point theorems. In Generalized Functions and Their Applications (Varanasi, 1991), pages 213–219. Plenum, New York, 1993 Google Scholar.
[139] Schechter, M.Splitting subspaces and saddle points. Appl. Anal., 49(1–2): 33–48, 1993 Google Scholar.
[140] Schechter, M.The Fučík spectrum. Indiana Univ. Math. J., 43(4): 1139–1157, 1994 Google Scholar.
[141] Schechter, M.Bounded resonance problems for semilinear elliptic equations. Nonlinear Anal., 24(10): 1471–1482, 1995 Google Scholar.
[142] Schechter, M.New linking theorems. Rend. Sem. Mat. Univ. Padova, 99: 255–269, 1998 Google Scholar.
[143] Schechter, M.Linking Methods in Critical Point Theory. Birkhäuser Boston Inc., Boston, MA, 1999 Google Scholar.
[144] Schechter, M.An Introduction to Nonlinear Analysis, volume 95 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2004 Google Scholar.
[145] Schechter, M.Sandwich pairs. In Proc. Conf. Differential & Difference Equations and Applications, pages 999–1007. Hindawi Publ. Corp., New York, 2006 Google Scholar.
[146] Schechter, M.Sandwich pairs in critical point theory. Trans. Amer. Math. Soc., 360(6): 2811–2823, 2008 Google Scholar.
[147] Schechter, M.Minimax Systems and Critical Point Theory. Birkhäuser Boston Inc., Boston, MA, 2009 Google Scholar.
[148] Schechter, M. and K., Tintarev. Pairs of critical points produced by linking subsets with applications to semilinear elliptic problems. Bull. Soc. Math. Belg. Sér.B, 44(3): 249–261, 1992 Google Scholar.
[149] Schwartz, J. T.Nonlinear Functional Analysis, pages vii+236. Gordon and Breach, 1969. Notes byH., Fattorini, R., Nirenberg and H., Porta Google Scholar, with an additional chapter by Hermann Karcher.
[150] Silva, E. A. de B. e.Linking theorems and applications to semilinear elliptic problems at resonance. Nonlinear Anal., 16(5): 455–477, 1991 Google Scholar.
[151] Smale, S.Morse theory and a non-linear generalization of the Dirichlet problem. Ann. of Math. (2), 80: 382–396, 1964 Google Scholar.
[152] Solimini, S.Morse index estimates in min-max theorems. Manuscripta Math., 63(4): 421–453, 1989 Google Scholar.
[153] Struwe, M.Variational Methods, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series ofModern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, fourth edition, 2008 Google Scholar.
[154] Su, J. and C., Tang. Multiplicity results for semilinear elliptic equations with resonance at higher eigenvalues. Nonlinear Anal., 44(3, Ser. A: Theory Methods): 311–321, 2001 Google Scholar.
[155] Szulkin, A.Cohomology and Morse theory for strongly indefinite functionals. Math. Z., 209(3): 375–418, 1992 Google Scholar.
[156] Tanaka, M.On the existence of a non-trivial solution for the p-Laplacian equation with a jumping nonlinearity. Tokyo J. Math., 31(2): 333–341, 2008 Google Scholar.
[157] Wang, Z. Q.A note on the second variation theorem. Acta Math. Sinica, 30(1): 106–110, 1987 Google Scholar.
[158] Willem, M.Minimax Theorems, volume 24 in Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc., Boston, MA, 1996 Google Scholar.
[159] Wu, S.-p. and H., Yang. A class of resonant elliptic problems with sublinear nonlinearity at origin and at infinity. Nonlinear Anal., 45(7, Ser. A: Theory Methods): 925–935, 2001 Google Scholar.
[160] Yang, C.-T.On theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobô and Dyson. I. Ann. of Math. (2), 60: 262–282, 1954 Google Scholar.
[161] Zeidler, E.Nonlinear Functional Analysis and its Applications. III, pages xxii+662, World Publishing Corporation, 1985 Google Scholar. Translated from the German by Leo F. Boron.
[162] Zou, W. and J. Q., Liu. Multiple solutions for resonant elliptic equations via local linking theory andMorse theory. J. Differential Equations, 170(1): 68–95, 2001 Google Scholar.
[163] Zou, W. and M., Schechter. Critical Point Theory and its Applications. Springer, New York, 2006 Google Scholar.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.