Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-01T17:22:38.408Z Has data issue: false hasContentIssue false

Section X - Emerging Therapies for Dystonia

Published online by Cambridge University Press:  31 May 2018

Dirk Dressler
Affiliation:
Hannover Medical School
Eckart Altenmüller
Affiliation:
Hochschule für Musik, Theater und Medien, Hannover
Joachim K. Krauss
Affiliation:
Hannover Medical School
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Treatment of Dystonia , pp. 407 - 424
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Baur, B, Furholzer, W, Jasper, I, Marquardt, C, Hermsdorfer, J. 2009a. Effects of modified pen grip and handwriting training on writer’s cramp. Arch Phys Med Rehabil 90(5):867875.CrossRefGoogle ScholarPubMed
Baur, B, Furholzer, W, Marquardt, C, Hermsdorfer, J. 2009b. Auditory grip force feedback in the treatment of writer’s cramp. J Hand Ther 22(2):163170.CrossRefGoogle ScholarPubMed
Berg, D, Naumann, M. 1999. Therapeutic strategies in writer’s cramp. Neurol Rehabil 4(5):199205.Google Scholar
Berger, HJ, van der Werf, SP, Horstink, CA, Cools, AR, Oyen, WJ, Horstink, MW. 2007. Writer’s cramp: restoration of striatal D2-binding after successful biofeedback-based sensorimotor training. Parkinsonism Relat Disord 13(3):170173.CrossRefGoogle ScholarPubMed
Bleton, JP, Vidailhet, M, Bourdain, F, Ducorps, A, Schwartz, D, Delmaire, C, Lehéricy, S, Renault, B, Garnero, L, Meunier, S. 2010. Somatosensory cortical remodelling after rehabilitation and clinical benefit of in writer’s cramp. J Neurol Neurosurg Psychiatry 82(5):574547.Google Scholar
Byl, NN, Archer, ES, McKenzie, A. 2009. Focal hand dystonia: effectiveness of a home program of fitness and learning-based sensorimotor and memory training. J Hand Ther 22(2):183197.Google Scholar
Cottraux, JA, Juenet, C, Collet, L. 1983. The treatment of writer’s cramp with multimodal behaviour therapy and biofeedback: a study of 15 cases. Br J Psychiatry 142:180183.Google Scholar
Deepak, KK, Behari, M. 1999. Specific muscle EMG biofeedback for hand dystonia. Appl Psychophysiol Biofeedback 24(4):267280.CrossRefGoogle ScholarPubMed
Hallett, M. 2006. Pathophysiology of writer’s cramp. Hum Mov Sci 25(4–5):454463.CrossRefGoogle ScholarPubMed
Hashimoto, Y, Ota, T, Mukaino, M, Ushiba, J. 2013. Treatment effectiveness of brain–computer interface training for patients with focal hand dystonia: a double-case study. Conf Proc IEEE Eng Med Biol Soc 2013:273276.Google ScholarPubMed
Mai, N, Marquardt, C. 1999. Schreibtraining in der neurologischen Rehabilitation. 2nd edition. Dortmund: Borgmann Publishing.Google Scholar
McKenzie, AL, Goldman, S, Barrango, C, Shrime, M, Wong, T, Byl, N. 2009. Differences in physical characteristics and response to rehabilitation for patients with hand dystonia: musicians’ cramp compared to writers’ cramp. J Hand Ther 22(2):172181.CrossRefGoogle ScholarPubMed
Meunier, S, Bleton, JP, Mazevet, D, Sangla, S, Grabli, D, Roze, E, Vidailhet, M. 2011. TENS is harmful in primary writing tremor. Clin Neurophysiol 122(1):171175.Google Scholar
Pelosin, E, Avanzino, L, Marchese, R, Stramesi, P, Bilanci, M, Trompetto, C, Abbruzzese, G. 2013. Kinesiotaping reduces pain and modulates sensory function in patients with focal dystonia: a randomized crossover pilot study. Neurorehabil Neural Repair 27(8):722731.CrossRefGoogle ScholarPubMed
Ranawaya, R, Lang, A. 1991. Usefulness of a writing device in writer’s cramp. Neurology 41(7):11361138.Google Scholar
Schenk, T, Bauer, B, Steidle, B, Marquardt, C. 2004. Does training improve writer’s cramp? An evaluation of a behavioral treatment approach using kinematic analysis. J Hand Ther 17(3):349363.Google Scholar
Singam, NV, Dwivedi, A, Espay, AJ. 2013. Writing orthotic device for the management of writer’s cramp. Front Neurol 4:2.CrossRefGoogle ScholarPubMed
Tinazzi, M, Farina, S, Bhatia, K, Fiaschi, A, Moretto, G, Bertolasi, L, Zarattini, S, Smania, N. 2005. TENS for the treatment of writer’s cramp dystonia: a randomized, placebo-controlled study. Neurology 64(11):19461948.Google Scholar
Waissman, FQ, Orsini, M, Nascimento, OJ, Leite, MA, Pereira, JS. 2013. Sensitive training through body awareness to improve the writing of patients with writer’s cramp. Neurol Int 5(4):e24.CrossRefGoogle Scholar
Zeuner, KE, Hallett, M. 2003. Sensory training as treatment for focal hand dystonia: a 1-year follow-up. Mov Disord 18(9):10441047.CrossRefGoogle ScholarPubMed
Zeuner, KE, Molloy, FM. 2008. Abnormal reorganization in focal hand dystonia: sensory and motor training programs to retrain cortical function. Neuro Rehabil 23(1):4353.Google Scholar
Zeuner, KE, Bara-Jimenez, W, Noguchi, PS, Goldstein, SR, Dambrosia, JM, Hallett, M. 2002. Sensory training for patients with focal hand dystonia. Ann Neurol 51(5):593598.Google Scholar
Zeuner, KE, Shill, HA, Sohn, YH, Molloy, FM, Thornton, BC, Dambrosia, JM, Hallett, M. 2005. Motor training as treatment in focal hand dystonia. Mov Disord 20(3):335341.CrossRefGoogle ScholarPubMed
Zeuner, KE, Peller, M, Knutzen, A, Hallett, M, Deuschl, G, Siebner, HR. 2008. Motor re-training does not need to be task specific to improve writer’s cramp. Mov Disord 23(16):23192327.CrossRefGoogle Scholar

References

Abbruzzese, G, Marchese, R, Buccolieri, A, Gasparetto, B, Trompetto, C. 2001. Abnormalities of sensorimotor integration in focal dystonia: a transcranial magnetic stimulation study. Brain 124:537545.Google Scholar
Beck, S, Richardson, SP, Shamim, EA, Dang, N, Schubert, M, Hallett, M. 2008. Short intracortical and surround inhibition are selectively reduced during movement initiation in focal hand dystonia. J Neurosci 28:1036310369.CrossRefGoogle ScholarPubMed
Beck, S, Houdayer, E, Richardson, SP, Hallett, M. 2009. The role of inhibition from the left dorsal premotor cortex in right-sided focal hand dystonia. Brain Stimul 2:208214.Google Scholar
Belvisi, D, Suppa, A, Marsili, L, et al. 2013. Abnormal experimentally- and behaviorally-induced LTP-like plasticity in focal hand dystonia. Exp Neurol 240:6474.CrossRefGoogle ScholarPubMed
Benninger, DH, Lomarev, M, Lopez, G, Pal, N, Luckenbaugh, DA, Hallett, M. 2011. Transcranial direct current stimulation for the treatment of focal hand dystonia. Mov Disord 26:16981702.CrossRefGoogle ScholarPubMed
Bharath, RD, Biswal, BB, Bhaskar, MV, et al. 2015. Repetitive transcranial magnetic stimulation induced modulations of resting state motor connectivity in writer’s cramp. Eur J Neurol. doi: 10.1111/ene.12653.Google Scholar
Borich, M, Arora, S, Kimberley, TJ. 2009. Lasting effects of repeated rTMS application in focal hand dystonia. Restor Neurol Neurosci 27:5565.Google Scholar
Bradnam, LV, Graetz, LJ, McDonnell, MN, Ridding, MC. 2015. Anodal transcranial direct current stimulation to the cerebellum improves handwriting and cyclic drawing kinematics in focal hand dystonia. Front Hum Neurosci 9:286.CrossRefGoogle Scholar
Brighina, F, Romano, M, Giglia, G, et al. 2009. Effects of cerebellar TMS on motor cortex of patients with focal dystonia: a preliminary report. Exp Brain Res Experimentelle Hirnforschung 192:651656.CrossRefGoogle ScholarPubMed
Buttkus, F, Weidenmüller, M, Schneider, S, et al. 2010. Failure of cathodal direct current stimulation to improve fine motor control in musician’s dystonia. Mov Disord 25:389394.CrossRefGoogle ScholarPubMed
Buttkus, F, Baur, V, Jabusch, HC, et al. 2011. Single-session tDCS-supported retraining does not improve fine motor control in musician’s dystonia. Restor Neurol Neurosci 29:8590.Google Scholar
Chen, R, Classen, J, Gerloff, C, et al. 1997. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48:13981403.CrossRefGoogle ScholarPubMed
Delnooz, CC, Helmich, RC, Medendorp, WP, Van de Warrenburg, BP, Toni, I. 2013. Writer’s cramp: increased dorsal premotor activity during intended writing. Hum Brain Map 34:613625.CrossRefGoogle ScholarPubMed
Filipovic, SR, Ljubisavljevic, M, Svetel, M, Milanovic, S, Kacar, A, Kostic, VS. 1997. Impairment of cortical inhibition in writer’s cramp as revealed by changes in electromyographic silent period after transcranial magnetic stimulation. Neurosci Lett 222:167170.CrossRefGoogle ScholarPubMed
Furuya, S, Nitsche, MA, Paulus, W, Altenmuller, E. 2014. Surmounting retraining limits in musicians’ dystonia by transcranial stimulation. Ann Neurol 75:700707.CrossRefGoogle ScholarPubMed
Gilio, F, Suppa, A, Bologna, M, Lorenzano, C, Fabbrini, G, Berardelli, A. 2007. Short-term cortical plasticity in patients with dystonia: a study with repetitive transcranial magnetic stimulation. Mov Disord 22:14361443.Google Scholar
Hamada, M, Murase, N, Hasan, A, Balaratnam, M, Rothwell, JC. 2013. The role of interneuron networks in driving human motor cortical plasticity. Cereb Cortex 23:15931605.CrossRefGoogle ScholarPubMed
Havrankova, P, Jech, R, Walker, ND, et al. 2010. Repetitive TMS of the somatosensory cortex improves writer’s cramp and enhances cortical activity. Neuro Endocrinol Lett 31:7386.Google Scholar
Houdayer, E, Beck, S, Karabanov, A, Poston, B, Hallett, M. 2012. The differential modulation of the ventral premotor–motor interaction during movement initiation is deficient in patients with focal hand dystonia. Eur J Neurosci 35:478485.Google Scholar
Huang, Y-Z, Edwards, MJ, Rounis, E, Bhatia, KP, Rothwell, JC. 2005. Theta burst stimulation of the human motor cortex. Neuron 45:201206.CrossRefGoogle ScholarPubMed
Huang, YZ, Rothwell, JC, Lu, CS, Wang, J, Chen, RS. 2010. Restoration of motor inhibition through an abnormal premotor–motor connection in dystonia. Mov Disord 25:696703.CrossRefGoogle ScholarPubMed
Huang, YZ, Lu, CS, Rothwell, JC, et al. 2012. Modulation of the disturbed motor network in dystonia by multisession suppression of premotor cortex. PLoS One 7:e47574.Google Scholar
Hubsch, C, Roze, E, Popa, T, et al. 2013. Defective cerebellar control of cortical plasticity in writer’s cramp. Brain 136:20502062.Google Scholar
Hulme, SR, Jones, OD, Abraham, WC. 2013. Emerging roles of metaplasticity in behaviour and disease. Trends Neurosci 36:353362.Google Scholar
Ikoma, K, Samii, A, Mercuri, B, Wassermann, EM, Hallett, M. 1996. Abnormal cortical motor excitability in dystonia. Neurology 46:13711376.Google Scholar
Kang, J-S, Terranova, C, Hilker, R, Quartarone, A, Ziemann, U. 2011. Deficient homeostatic regulation of practice-dependent plasticity in writer’s cramp. Cereb Cortex 21:12031212.Google Scholar
Kessler, KR, Ruge, D, Ilic, TV, Ziemann, U. 2005. Short latency afferent inhibition and facilitation in patients with writer’s cramp. Mov Disord 20:238242.CrossRefGoogle ScholarPubMed
Kieslinger, K, Höller, Y, Bergmann, J, Golaszewski, S, Staffen, W. 2013. Successful treatment of musician’s dystonia using repetitive transcranial magnetic stimulation. Clin Neurol Neurosurg 115:18711872.CrossRefGoogle ScholarPubMed
Kimberley, TJ, Borich, MR, Arora, S, Siebner, HR. 2013. Multiple sessions of low-frequency repetitive transcranial magnetic stimulation in focal hand dystonia: clinical and physiological effects. Rest Neurol Neurosci 31:533542.Google ScholarPubMed
Kimberley, TJ, Borich, MR, Schmidt, RL, Carey, JR, Gillick, B. 2015. Focal hand dystonia: individualized intervention with repeated application of repetitive transcranial magnetic stimulation. Arch Phys Med Rehabil 96:S122S128.Google Scholar
Lefaucheur, JP, Andre-Obadia, N, Antal, A, et al. 2014. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 125:21502206.CrossRefGoogle ScholarPubMed
Lopez-Alonso, V, Cheeran, B, Rio-Rodriguez, D, Fernandez-Del-Olmo, M. 2014. Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimul 7:372380.CrossRefGoogle ScholarPubMed
Mavroudakis, N, Caroyer, JM, Brunko, E, Zegers de Beyl, D. 1994. Effects of diphenylhydantoin on motor potentials evoked with magnetic stimulation. Electroencephal Clin Neurophysiol 93:428433.Google Scholar
Müller-Dahlhaus, JF, Orekhov, Y, Liu, Y, Ziemann, U. 2008. Interindividual variability and age-dependency of motor cortical plasticity induced by paired associative stimulation. Exp Brain Res Experimentelle Hirnforschung 187:467475.CrossRefGoogle ScholarPubMed
Murase, N, Rothwell, JC, Kaji, R, et al. 2005. Subthreshold low-frequency repetitive transcranial magnetic stimulation over the premotor cortex modulates writer’s cramp. Brain 128:104115.CrossRefGoogle ScholarPubMed
Nelson, AJ, Hoque, T, Gunraj, C, Ni, Z, Chen, R. 2010. Impaired interhemispheric inhibition in writer’s cramp. Neurology 75:441447.CrossRefGoogle ScholarPubMed
Nitsche, MA, Paulus, W. 2001. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57:18991901.CrossRefGoogle ScholarPubMed
Nitsche, MA, Nitsche, MS, Klein, CC, Tergau, F, Rothwell, JC, Paulus, W. 2003. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol 114:600604.CrossRefGoogle ScholarPubMed
Pascual-Leone, A, Valls-Sole, J, Wassermann, EM, Hallett, M. 1994. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117:847858.CrossRefGoogle ScholarPubMed
Pirio Richardson, S, Beck, S, Bliem, B, Hallett, M. 2014. Abnormal dorsal premotor–motor inhibition in writer’s cramp. Mov Disord. doi: 10.1002/mds.25878.CrossRefGoogle ScholarPubMed
Pujol, J, Roset-Llobet, J, Rosines-Cubells, D, et al. 2000. Brain cortical activation during guitar-induced hand dystonia studied by functional MRI. NeuroImage 12:257267.Google Scholar
Quartarone, A, Bagnato, S, Rizzo, V, et al. 2003. Abnormal associative plasticity of the human motor cortex in writer’s cramp. Brain 126:25862596.Google Scholar
Quartarone, A, Rizzo, V, Bagnato, S, et al. 2005. Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia. Brain 128:19431950.Google Scholar
Ridding, MC, Sheean, G, Rothwell, JC, Inzelberg, R, Kujirai, T. 1995. Changes in the balance between motor cortical excitation and inhibition in focal, task specific dystonia. J Neurol, Neurosurg, Psychiatr 59:493498.CrossRefGoogle ScholarPubMed
Schneider, SA, Pleger, B, Draganski, B, et al. 2010. Modulatory effects of 5Hz rTMS over the primary somatosensory cortex in focal dystonia: an fMRI–TMS study. Mov Disord 25:7683.Google Scholar
Siebner, HR, Auer, C, Ceballos-Baumann, A, Conrad, B. 1999a. Has repetitive transcranial magnetic stimulation of the primary motor hand area a therapeutic application in writer’s cramp? Electroencephalogr Clin Neurophysiol Suppl 51:265275.Google Scholar
Siebner, HR, Auer, C, Conrad, B. 1999b. Abnormal increase in the corticomotor output to the affected hand during repetitive transcranial magnetic stimulation of the primary motor cortex in patients with writer’s cramp. Neurosci Lett 262:133136.CrossRefGoogle Scholar
Siebner, HR, Tormos, JM, Ceballos-Baumann, AO, et al. 1999c. Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer’s cramp. Neurology 52:529537.Google Scholar
Sohn, YH, Hallett, M. 2004. Disturbed surround inhibition in focal hand dystonia. Ann Neurol 56:595599.CrossRefGoogle ScholarPubMed
Stefan, K, Kunesch, E, Cohen, LG, Benecke, R, Classen, J. 2000. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123:572584.Google Scholar
Stinear, CM, Byblow, WD. 2004a. Elevated threshold for intracortical inhibition in focal hand dystonia. Mov Disord 19:13121317.Google Scholar
Stinear, CM, Byblow, WD. 2004b. Impaired modulation of corticospinal excitability following subthreshold rTMS in focal hand dystonia. Hum Mov Sci 23:527538.CrossRefGoogle ScholarPubMed
Veugen, LC, Hoffland, BS, Stegeman, DF, van de Warrenburg, BP. 2013. Inhibition of the dorsal premotor cortex does not repair surround inhibition in writer’s cramp patients. Exp Brain Res Experimentelle Hirnforschung 225:8592.Google Scholar
Weise, D, Schramm, A, Stefan, K, et al. 2006. The two sides of associative plasticity in writer’s cramp. Brain 129:27092721.Google Scholar
Wiethoff, S, Hamada, M, Rothwell, JC. 2014. Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul 7:468475.CrossRefGoogle ScholarPubMed
Wolters, A, Sandbrink, F, Schlottmann, A, et al. 2003. A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J Neurophysiol 89:23392345.Google Scholar
Ziemann, U, Paulus, W, Nitsche, MA, et al. 2008. Consensus: motor cortex plasticity protocols. Brain Stimul 1:164182.CrossRefGoogle ScholarPubMed

References

Altenmüller, E, Jabusch, H-C (2010) Focal dystonia in musicians: phenomenology, pathophysiology, triggering factors, and treatment. Med Probl Perform Art 25:39.Google Scholar
Argyelan, M, Carbon, M, Niethammer, M, Ulug, AM, Voss, HU, Bressman, SB, Dhawan, V, Eidelberg, D (2009) Cerebellothalamocortical connectivity regulates penetrance in dystonia. J Neurosci 29:97409747.Google Scholar
Berardelli, A (1998) The pathophysiology of primary dystonia. Brain 121:11951212.Google Scholar
Borgelt, LM, Franson, KL, Nussbaum, AM, Wang, GS (2013). The pharmacologic and clinical effects of medical cannabis. Pharmacotherapy 33:195209.CrossRefGoogle ScholarPubMed
Breakefield, XO, Blood, AJ, Li, Y, Hallett, M, Hanson, PI, Standaert, DG (2008) The pathophysiological basis of dystonias. Nat Rev Neurosci 9:222234.CrossRefGoogle ScholarPubMed
Chatterjee, A, Almahrezi, A, Ware, M, Fitzcharles, MA (2002) A dramatic response to inhaled cannabis in a woman with central thalamic pain and dystonia. J Pain Symptom Manage 24:46.Google Scholar
Compton, DR, Aceto, MD, Lowe, J, Martin, BR (1996) In vivo characterization of a specific cannabinoid receptor antagonist (SR141716A): inhibition of delta 9-tetrahydrocannabinol-induced responses and apparent agonist activity. J Pharmacol Exp Ther 277:586594.Google Scholar
Consroe, P, Sandyk, R, Snider, SR (1986). Open label evaluation of cannabidiol in dystonic movement disorders. Int J Neurosci 30:277282.Google Scholar
Fox, SH, Kellett, M, Moore, AP, Crossman, AR, Brotchie, JM (2002) Randomised, double-blind, placebo-controlled trial to assess the potential of cannabinoid receptor stimulation in the treatment of dystonia. Mov Disord 17:145149.Google Scholar
Gauter, B, Rukwied, R, Konrad, C (2004) Cannabinoid agonists in the treatment of blepharospasm: a case report study. Neuro Endocrinol Lett 25:4548.Google Scholar
Haberstick, BC, Young, SE, Zeiger, JS, Lessem, JM, Hewitt, JK, Hopfer, CJ (2014) Prevalence and correlates of alcohol and cannabis use disorders in the United States: results from the national longitudinal study of adolescent health. Drug Alcohol Depend 136:158161.Google Scholar
Hallett, M (2006) Pathophysiology of writer’s cramp. Hum Mov Sci 25:454463.Google Scholar
Hallett, M (2011) Neurophysiology of dystonia: the role of inhibition. Neurobiol Dis 42:177184.Google Scholar
Herkenham, M, Lynn, AB, Johnson, MR, Melvin, LS, de Costa, BR, Rice, KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563583.Google Scholar
Iversen, L (2003) Cannabis and the brain. Brain J Neurol 126:12521270.Google Scholar
Jabusch, H-C, Schneider, U, Altenmüller, E (2004) Delta9-tetrahydrocannabinol improves motor control in a patient with musician’s dystonia. Mov Disord 19:990991.Google Scholar
Kluger, B, Triolo, P, Jones, W, Jankovic, J (2015) The therapeutic potential of cannabinoids for movement disorders. Mov Disord 30:313327.Google Scholar
Koppel, BS, Brust, JC, Fife, T, Bronstein, J, Youssof, S, Gronseth, G, Gloss, D (2014) Systematic review: efficacy and safety of medical marijuana in selected neurologic disorders – report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 82:15561563.CrossRefGoogle Scholar
Kreitzer, AC, Regehr, WG (2001) Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29:717727.CrossRefGoogle ScholarPubMed
Lile, JA, Kelly, TH, Charnigo, RJ, Stinchcomb, AL, Hays, LR (2013) Pharmacokinetic and pharmacodynamic profile of supratherapeutic oral doses of Delta(9)-THC in cannabis users. J Clin Pharmacol 53:680690.Google Scholar
Llano, I, Leresche, N, Marty, A (1991) Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents. Neuron 6:565574.Google Scholar
Martinasek, MP, McGrogan, JB, Maysonet, A (2016) A systematic review of the respiratory effects of inhalational marijuana. Respir Care 61:15431551.Google Scholar
Matsuda, LA, Bonner, TI, Lolait, SJ (1993) Localization of cannabinoid receptor mRNA in rat brain. J Comp Neurol 327:535550.Google Scholar
Moreira, FA, Grieb, M, Lutz, B (2009) Central side-effects of therapies based on CB1 cannabinoid receptor agonists and antagonists: focus on anxiety and depression. Best Pract Res Clin Endocrinol Metab 23:133144.Google Scholar
Müller-Vahl, KR, Prevedel, H, Theloe, K, Kolbe, H, Emrich, HM, Schneider, U (2003) Treatment of Tourette syndrome with delta-9-tetrahydrocannabinol (delta 9-THC): no influence on neuropsychological performance. Neuropsychopharmacol 28:384388.Google Scholar
Neychev, VK, Fan, X, Mitev, VI, Hess, EJ, Jinnah, HA (2008) The basal ganglia and cerebellum interact in the expression of dystonic movement. Brain 131:24992509.Google Scholar
Pitler, TA, Alger, BE (1992) Postsynaptic spike firing reduces synaptic GABAA responses in hippocampal pyramidal cells. J Neurosci 12:41224132.Google Scholar
Richter, A, Löscher, W (1994) (+)-WIN 55,212-2, a novel cannabinoid receptor agonist, exerts antidystonic effects in mutant dystonic hamsters. Eur J Pharmacol 264:371377.Google Scholar
Richter, A, Löscher, W (2002) Effects of pharmacological manipulations of cannabinoid receptors on severity of dystonia in a genetic model of paroxysmal dyskinesia. Eur J Pharmacol 454:145151.Google Scholar
Richter, L, Pugh, BS, Ball, SA (2016) Assessing the risk of marijuana use disorder among adolescents and adults who use marijuana. Am J Drug Alcohol Abuse 13:114.Google Scholar
Riedel, G, Davies, SN (2005) Cannabinoid function in learning, memory and plasticity. Handb Exp Pharmacol 168:445477.Google Scholar
Russo, E, Guy, GW (2006) A tale of two cannabinoids: the therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Med Hypotheses 66:234246.Google Scholar
Sañudo-Peña, MC, Patrick, SL, Khen, S, Patrick, RL, Tsou, K, Walker, JM (1998) Cannabinoid effects in basal ganglia in a rat model of Parkinson’s disease. Neurosci Lett 248:171174.Google Scholar
Secades-Villa, R, Garcia-Rodriguez, O, Jin, CJ, Wang, S, Blanco, C (2014) Probability and predictors of the cannabis gateway effect: a national study. Int J Drug Policy 26:135142.Google Scholar
Trigo, JM, Lagzdins, D, Rehm, J, Selby, P, Gamaleddin, I, Fischer, B, Barnes, AJ, Huestis, MA, Le Foll, B (2016) Effects of fixed or self-titrated dosages of Sativex on cannabis withdrawal and cravings. Drug Alcohol Depend 161:298306.Google Scholar
Uribe Roca, MC, Micheli, F, Viotti, R (2005) Cannabis sativa and dystonia secondary to Wilson’s disease. Mov Disord 20:113115.Google Scholar
Volkow, ND, Baler, RD, Compton, WM, Weiss, SR (2014a) Adverse health effects of marijuana use. N Engl J Med 370:22192227.CrossRefGoogle ScholarPubMed
Volkow, ND, Wang, GJ, Telang, F, Fowler, JS, Alexoff, D, Logan, J, Jayne, M, Wong, C, Tomasi, D (2014b) Decreased dopamine brain reactivity in marijuana abusers is associated with negative emotionality and addiction severity. Proc Natl Acad Sci 111:31493156.Google Scholar
Warner, LA, Kessler, RC, Hughes, M, Anthony, JC, Nelson, CB (1995) Prevalence and correlates of drug use and dependence in the United States: results from the National Comorbidity Survey. Arch Gen Psychiatry 52:219229.CrossRefGoogle ScholarPubMed
Zadikoff, C, Wadia, PM, Miyasaki, JM, Chen, R, Lang, AE, So, J, Fox, SH (2011) Cannabinoid, CB1 agonists in cervical dystonia: failure in a phase IIa randomized controlled trial. Basal Ganglia 1:9195.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×