Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-11T17:32:07.296Z Has data issue: false hasContentIssue false

78 - Transcranial Electric and Magnetic Stimulation for Dystonia

from Section X - Emerging Therapies for Dystonia

Published online by Cambridge University Press:  31 May 2018

Dirk Dressler
Affiliation:
Hannover Medical School
Eckart Altenmüller
Affiliation:
Hochschule für Musik, Theater und Medien, Hannover
Joachim K. Krauss
Affiliation:
Hannover Medical School
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Treatment of Dystonia , pp. 414 - 419
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbruzzese, G, Marchese, R, Buccolieri, A, Gasparetto, B, Trompetto, C. 2001. Abnormalities of sensorimotor integration in focal dystonia: a transcranial magnetic stimulation study. Brain 124:537545.CrossRefGoogle ScholarPubMed
Beck, S, Richardson, SP, Shamim, EA, Dang, N, Schubert, M, Hallett, M. 2008. Short intracortical and surround inhibition are selectively reduced during movement initiation in focal hand dystonia. J Neurosci 28:1036310369.CrossRefGoogle ScholarPubMed
Beck, S, Houdayer, E, Richardson, SP, Hallett, M. 2009. The role of inhibition from the left dorsal premotor cortex in right-sided focal hand dystonia. Brain Stimul 2:208214.CrossRefGoogle ScholarPubMed
Belvisi, D, Suppa, A, Marsili, L, et al. 2013. Abnormal experimentally- and behaviorally-induced LTP-like plasticity in focal hand dystonia. Exp Neurol 240:6474.CrossRefGoogle ScholarPubMed
Benninger, DH, Lomarev, M, Lopez, G, Pal, N, Luckenbaugh, DA, Hallett, M. 2011. Transcranial direct current stimulation for the treatment of focal hand dystonia. Mov Disord 26:16981702.CrossRefGoogle ScholarPubMed
Bharath, RD, Biswal, BB, Bhaskar, MV, et al. 2015. Repetitive transcranial magnetic stimulation induced modulations of resting state motor connectivity in writer’s cramp. Eur J Neurol. doi: 10.1111/ene.12653.CrossRefGoogle ScholarPubMed
Borich, M, Arora, S, Kimberley, TJ. 2009. Lasting effects of repeated rTMS application in focal hand dystonia. Restor Neurol Neurosci 27:5565.Google ScholarPubMed
Bradnam, LV, Graetz, LJ, McDonnell, MN, Ridding, MC. 2015. Anodal transcranial direct current stimulation to the cerebellum improves handwriting and cyclic drawing kinematics in focal hand dystonia. Front Hum Neurosci 9:286.CrossRefGoogle Scholar
Brighina, F, Romano, M, Giglia, G, et al. 2009. Effects of cerebellar TMS on motor cortex of patients with focal dystonia: a preliminary report. Exp Brain Res Experimentelle Hirnforschung 192:651656.CrossRefGoogle ScholarPubMed
Buttkus, F, Weidenmüller, M, Schneider, S, et al. 2010. Failure of cathodal direct current stimulation to improve fine motor control in musician’s dystonia. Mov Disord 25:389394.CrossRefGoogle ScholarPubMed
Buttkus, F, Baur, V, Jabusch, HC, et al. 2011. Single-session tDCS-supported retraining does not improve fine motor control in musician’s dystonia. Restor Neurol Neurosci 29:8590.Google Scholar
Chen, R, Classen, J, Gerloff, C, et al. 1997. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48:13981403.CrossRefGoogle ScholarPubMed
Delnooz, CC, Helmich, RC, Medendorp, WP, Van de Warrenburg, BP, Toni, I. 2013. Writer’s cramp: increased dorsal premotor activity during intended writing. Hum Brain Map 34:613625.CrossRefGoogle ScholarPubMed
Filipovic, SR, Ljubisavljevic, M, Svetel, M, Milanovic, S, Kacar, A, Kostic, VS. 1997. Impairment of cortical inhibition in writer’s cramp as revealed by changes in electromyographic silent period after transcranial magnetic stimulation. Neurosci Lett 222:167170.CrossRefGoogle ScholarPubMed
Furuya, S, Nitsche, MA, Paulus, W, Altenmuller, E. 2014. Surmounting retraining limits in musicians’ dystonia by transcranial stimulation. Ann Neurol 75:700707.CrossRefGoogle ScholarPubMed
Gilio, F, Suppa, A, Bologna, M, Lorenzano, C, Fabbrini, G, Berardelli, A. 2007. Short-term cortical plasticity in patients with dystonia: a study with repetitive transcranial magnetic stimulation. Mov Disord 22:14361443.CrossRefGoogle ScholarPubMed
Hamada, M, Murase, N, Hasan, A, Balaratnam, M, Rothwell, JC. 2013. The role of interneuron networks in driving human motor cortical plasticity. Cereb Cortex 23:15931605.CrossRefGoogle ScholarPubMed
Havrankova, P, Jech, R, Walker, ND, et al. 2010. Repetitive TMS of the somatosensory cortex improves writer’s cramp and enhances cortical activity. Neuro Endocrinol Lett 31:7386.Google ScholarPubMed
Houdayer, E, Beck, S, Karabanov, A, Poston, B, Hallett, M. 2012. The differential modulation of the ventral premotor–motor interaction during movement initiation is deficient in patients with focal hand dystonia. Eur J Neurosci 35:478485.CrossRefGoogle ScholarPubMed
Huang, Y-Z, Edwards, MJ, Rounis, E, Bhatia, KP, Rothwell, JC. 2005. Theta burst stimulation of the human motor cortex. Neuron 45:201206.CrossRefGoogle ScholarPubMed
Huang, YZ, Rothwell, JC, Lu, CS, Wang, J, Chen, RS. 2010. Restoration of motor inhibition through an abnormal premotor–motor connection in dystonia. Mov Disord 25:696703.CrossRefGoogle ScholarPubMed
Huang, YZ, Lu, CS, Rothwell, JC, et al. 2012. Modulation of the disturbed motor network in dystonia by multisession suppression of premotor cortex. PLoS One 7:e47574.CrossRefGoogle ScholarPubMed
Hubsch, C, Roze, E, Popa, T, et al. 2013. Defective cerebellar control of cortical plasticity in writer’s cramp. Brain 136:20502062.CrossRefGoogle ScholarPubMed
Hulme, SR, Jones, OD, Abraham, WC. 2013. Emerging roles of metaplasticity in behaviour and disease. Trends Neurosci 36:353362.CrossRefGoogle ScholarPubMed
Ikoma, K, Samii, A, Mercuri, B, Wassermann, EM, Hallett, M. 1996. Abnormal cortical motor excitability in dystonia. Neurology 46:13711376.CrossRefGoogle ScholarPubMed
Kang, J-S, Terranova, C, Hilker, R, Quartarone, A, Ziemann, U. 2011. Deficient homeostatic regulation of practice-dependent plasticity in writer’s cramp. Cereb Cortex 21:12031212.CrossRefGoogle ScholarPubMed
Kessler, KR, Ruge, D, Ilic, TV, Ziemann, U. 2005. Short latency afferent inhibition and facilitation in patients with writer’s cramp. Mov Disord 20:238242.CrossRefGoogle ScholarPubMed
Kieslinger, K, Höller, Y, Bergmann, J, Golaszewski, S, Staffen, W. 2013. Successful treatment of musician’s dystonia using repetitive transcranial magnetic stimulation. Clin Neurol Neurosurg 115:18711872.CrossRefGoogle ScholarPubMed
Kimberley, TJ, Borich, MR, Arora, S, Siebner, HR. 2013. Multiple sessions of low-frequency repetitive transcranial magnetic stimulation in focal hand dystonia: clinical and physiological effects. Rest Neurol Neurosci 31:533542.Google Scholar
Kimberley, TJ, Borich, MR, Schmidt, RL, Carey, JR, Gillick, B. 2015. Focal hand dystonia: individualized intervention with repeated application of repetitive transcranial magnetic stimulation. Arch Phys Med Rehabil 96:S122S128.CrossRefGoogle ScholarPubMed
Lefaucheur, JP, Andre-Obadia, N, Antal, A, et al. 2014. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 125:21502206.CrossRefGoogle ScholarPubMed
Lopez-Alonso, V, Cheeran, B, Rio-Rodriguez, D, Fernandez-Del-Olmo, M. 2014. Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimul 7:372380.CrossRefGoogle ScholarPubMed
Mavroudakis, N, Caroyer, JM, Brunko, E, Zegers de Beyl, D. 1994. Effects of diphenylhydantoin on motor potentials evoked with magnetic stimulation. Electroencephal Clin Neurophysiol 93:428433.Google Scholar
Müller-Dahlhaus, JF, Orekhov, Y, Liu, Y, Ziemann, U. 2008. Interindividual variability and age-dependency of motor cortical plasticity induced by paired associative stimulation. Exp Brain Res Experimentelle Hirnforschung 187:467475.Google Scholar
Murase, N, Rothwell, JC, Kaji, R, et al. 2005. Subthreshold low-frequency repetitive transcranial magnetic stimulation over the premotor cortex modulates writer’s cramp. Brain 128:104115.CrossRefGoogle ScholarPubMed
Nelson, AJ, Hoque, T, Gunraj, C, Ni, Z, Chen, R. 2010. Impaired interhemispheric inhibition in writer’s cramp. Neurology 75:441447.CrossRefGoogle ScholarPubMed
Nitsche, MA, Paulus, W. 2001. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57:18991901.CrossRefGoogle ScholarPubMed
Nitsche, MA, Nitsche, MS, Klein, CC, Tergau, F, Rothwell, JC, Paulus, W. 2003. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol 114:600604.CrossRefGoogle ScholarPubMed
Pascual-Leone, A, Valls-Sole, J, Wassermann, EM, Hallett, M. 1994. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117:847858.CrossRefGoogle ScholarPubMed
Pirio Richardson, S, Beck, S, Bliem, B, Hallett, M. 2014. Abnormal dorsal premotor–motor inhibition in writer’s cramp. Mov Disord. doi: 10.1002/mds.25878.Google Scholar
Pujol, J, Roset-Llobet, J, Rosines-Cubells, D, et al. 2000. Brain cortical activation during guitar-induced hand dystonia studied by functional MRI. NeuroImage 12:257267.CrossRefGoogle ScholarPubMed
Quartarone, A, Bagnato, S, Rizzo, V, et al. 2003. Abnormal associative plasticity of the human motor cortex in writer’s cramp. Brain 126:25862596.CrossRefGoogle ScholarPubMed
Quartarone, A, Rizzo, V, Bagnato, S, et al. 2005. Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia. Brain 128:19431950.CrossRefGoogle ScholarPubMed
Ridding, MC, Sheean, G, Rothwell, JC, Inzelberg, R, Kujirai, T. 1995. Changes in the balance between motor cortical excitation and inhibition in focal, task specific dystonia. J Neurol, Neurosurg, Psychiatr 59:493498.CrossRefGoogle ScholarPubMed
Schneider, SA, Pleger, B, Draganski, B, et al. 2010. Modulatory effects of 5Hz rTMS over the primary somatosensory cortex in focal dystonia: an fMRI–TMS study. Mov Disord 25:7683.CrossRefGoogle ScholarPubMed
Siebner, HR, Auer, C, Ceballos-Baumann, A, Conrad, B. 1999a. Has repetitive transcranial magnetic stimulation of the primary motor hand area a therapeutic application in writer’s cramp? Electroencephalogr Clin Neurophysiol Suppl 51:265275.Google ScholarPubMed
Siebner, HR, Auer, C, Conrad, B. 1999b. Abnormal increase in the corticomotor output to the affected hand during repetitive transcranial magnetic stimulation of the primary motor cortex in patients with writer’s cramp. Neurosci Lett 262:133136.CrossRefGoogle Scholar
Siebner, HR, Tormos, JM, Ceballos-Baumann, AO, et al. 1999c. Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer’s cramp. Neurology 52:529537.CrossRefGoogle ScholarPubMed
Sohn, YH, Hallett, M. 2004. Disturbed surround inhibition in focal hand dystonia. Ann Neurol 56:595599.Google Scholar
Stefan, K, Kunesch, E, Cohen, LG, Benecke, R, Classen, J. 2000. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123:572584.Google Scholar
Stinear, CM, Byblow, WD. 2004a. Elevated threshold for intracortical inhibition in focal hand dystonia. Mov Disord 19:13121317.CrossRefGoogle ScholarPubMed
Stinear, CM, Byblow, WD. 2004b. Impaired modulation of corticospinal excitability following subthreshold rTMS in focal hand dystonia. Hum Mov Sci 23:527538.CrossRefGoogle ScholarPubMed
Veugen, LC, Hoffland, BS, Stegeman, DF, van de Warrenburg, BP. 2013. Inhibition of the dorsal premotor cortex does not repair surround inhibition in writer’s cramp patients. Exp Brain Res Experimentelle Hirnforschung 225:8592.CrossRefGoogle Scholar
Weise, D, Schramm, A, Stefan, K, et al. 2006. The two sides of associative plasticity in writer’s cramp. Brain 129:27092721.CrossRefGoogle ScholarPubMed
Wiethoff, S, Hamada, M, Rothwell, JC. 2014. Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul 7:468475.CrossRefGoogle ScholarPubMed
Wolters, A, Sandbrink, F, Schlottmann, A, et al. 2003. A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J Neurophysiol 89:23392345.CrossRefGoogle ScholarPubMed
Ziemann, U, Paulus, W, Nitsche, MA, et al. 2008. Consensus: motor cortex plasticity protocols. Brain Stimul 1:164182.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×