Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-17T23:41:19.782Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  19 June 2017

Robert G. Leisure
Affiliation:
Colorado State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Ultrasonic Spectroscopy
Applications in Condensed Matter Physics and Materials Science
, pp. 227 - 237
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] R., Truell, C., Elbaum, and B.B., Chick. Ultrasonic methods in solid state physics. Academic Press, 1969.
[2] R.T., Beyer and S.V., Letcher. Physical ultrasonics. Academic Press, 1969.
[3] B., Lüthi. Physical acoustics in the solid state. Springer, 2005.
[4] J.F., Nye. Physical properties of crystals. Oxford, 1979.
[5] L.D., Landau and E.M., Lifshitz. Theory of elasticity. 3rd ed. Butterworth Heinemann, 1986.
[6] F.I., Fedorov. Theory of elastic waves in crystals. Oxford, 1986.
[7] D.C., Wallace. Thermodynamics of crystals. Wiley, 1972.
[8] R.L., Melcher. “Physical acoustics.” In: ed. by W.P., Mason and R.N., Thurston Vol. XII. Academic Press, 1976. Chap. 1.
[9] G., Arfken. Mathematical methods for physicists. 3rd ed. Academic Press, 1985.
[10] K.D., Swartz and A.V., Granato. “Experimental test of the Laval Raman Viswanathan theory of elasticity.” In: J. Acoust. Soc. Amer 38 (1965), p. 824.Google Scholar
[11] B.A., Auld. Acoustic fields and waves in solids. Second. Vol. 1. Krieger, 1990.
[12] W.A., Wooster. A textbook on crystal physics. Cambridge University Press, 1938.
[13] W., Voigt. Lehrbuch der kristallphysik. Johnson Reprint Corporaton, 1966.
[14] M., Levy. “Handbook of Elastic Properties of Solids, Liquids, and Gases.” In: ed. by M., Levy, H.E., Bass, and R.R., Stern. Vol. II. Academic Press, 2001. Part 1, Chapter 1.
[15] D.B., Litvin. “The icosahedral point groups.” In: Acta Cryst. 47 (1991), p. 70.Google Scholar
[16] P.S., Spoor. “Elastic properties of novel materials using PVDF film and resonance ultrasound spectroscopy.” PhD thesis. Pennsylvania State University, 1997.
[17] M.A., Chernikov, H.R., Ott, A., Bianchi, A., Migliori, and T.W., Darling. “Elastic moduli of a single quasicrystal of decagonal Al-Ni-Co: Evidence for transverse elastic isotropy.” In: Phys. Rev. Lett 80 (1998), p. 321.Google Scholar
[18] D., Levine, T.C., Lubensky, S., Ostlund, S., Ramaswamy, P.J., Steinhardt, and J., Toner. “Elasticity and dislocations in pentagonal and icosahedral quasicrystals.” In: Phys. Rev. Lett. 54 (1985), p. 1520.Google Scholar
[19] Y., Ishii. “Phason softening and structural transitions in icosahedral quasicrystals.” In: Phys. Rev. B 45 (1992), p. 5228.Google Scholar
[20] M., Oxborrow and C.L., Henley. “Random square-triangle tilings.” In: J. Non-Cryst. Solids 153 (1993), p. 210.Google Scholar
[21] M., Oxborrow and C.L., Henley. “Random square-triangle tilings: A model for twelvefold-symmetric quasicrystals.” In: Phys. Rev. B 48 (1993), p. 6966.Google Scholar
[22] K., Foster, S.L., Fairburn, R.G., Leisure, S., Kim, D., Balzar, G., Alers, and H., Ledbetter. “Acoustic study of texture in polycrystalline brass.” In: Acoust. Soc. Amer 105 (1999), pp. 2663–2668.Google Scholar
[23] R., Lakes. “Foam structures with a negative poissons ratio.” In: Science 235 (1987), p. 1038.Google Scholar
[24] R.F.S., Hearmon. An introduction to applied anisotropic elasticity. Oxford University Press, 1961.
[25] S.P., Timoshenko and J.N., Goodier. Theory of elasticity. McGraw-Hill, 1970.
[26] S.G., Lekhnitskii. Theory of elasticity of an anisotropic elastic body. Holden-Day, 1963.
[27] G., Simmons and H., Wang. Single crystal elastic constants and calculated aggregate properties: a handbook. MIT Press, 1971.
[28] H., Ledbetter. “Handbook of elastic properties of solids, liquids, and gases.” In: ed. by M., Levy and L., Furr. Vol. III. Academic Press. Chap. 11, p. 313.
[29] W.C., Cady. Piezoelectricity. Vol. One. Dover, 1964.
[30] J.R., Neighbours and G.E., Schacher. “Determination of elastic constants from soundvelocity measurements in crystals of general symmetry.” In: J. Appl. Phys. 38 (1967), p. 5366.Google Scholar
[31] H., Ledbetter, R.G., Leisure, A., Migliori, J., Betts, and H., Ogi. “Low-temperature elastic and piezoelectric constants of paratellurite (α-TeO2).” In: J. Appl. Phys 96 (2004), p. 6201.
[32] E.B., Christoffel. “Uber die Fortpflanzung von Stossen durch elastische feste Korper.” In: Ann. Mat. Pura Appl. 8 (1877), p. 193.Google Scholar
[33] D., Royer and E., Dieulesaint. Elastic waves in solids I. Springer, 1996.
[34] E.S., Fisher and C.J., Renken. “Single-crystal elastic moduli and the hcp bcc transformation in Ti, Zr, and Hf.” In: Phys. Rev. 135 (1964), A482.Google Scholar
[35] M.H., Manghnani. “Elastic constants of single-crystal rutile under pressures to 7.5 kilobars.” In: J. Geophy. Res. 74 (1969), p. 4317.Google Scholar
[36] W.J., Alton and A.J., Barlow. “Acoustic-wave propagation in tetragonal crystals and measurement of elastic constants of calcium molybate.” In: J. Appl. Physics. 38 (1967), p. 3817.Google Scholar
[37] H.J., McSkimin. “Temperature dependence of the adiabatic elastic moduli of singlecrystal alpha uranium.” In: J. Appl. Phys. 31 (1960), p. 1627.Google Scholar
[38] J.D., Jackson. Classical electrodynamics. Wiley, 1999.
[39] C., Kittel. Introduction to solid state physics. 8th edn. Wiley, 2005.
[40] N.W., Ashcroft and N.D., Mermin. Solid state physics. Saunders, 1976.
[41] M.P., Marder. Condensed matter physics. Wiley, 2010.
[42] G., Burns. Solid state physics. Academic Press, 1985.
[43] M., Born and K., Huang. Dynamical theory of crystal lattices. Clarendon Press, 1954.
[44] H., Böttger. Principles of the theory of lattice dynamics. Physik-Verlag, 1983.
[45] M.T., Dove. Introduction to lattice dynamics. Cambridge University Press, 1993.
[46] B.T.M., Willis and A.W., Pryor. Thermal vibratons in crystallography. Cambridge University Press, 1975.
[47] W., Cochran. “Lattice vibrations.” In: Rep. Prog. Phys. 26 (1963), p. 1.Google Scholar
[48] F., Herman. “Lattice vibrational spectrum of germanium.” In: J. Phys. Chem. Solids. 8 (1959), p. 405.Google Scholar
[49] G.P., Srivastava. The physics of phonons. Taylor Francis Group, 1990.
[50] Y.-L, Chen and D.-P., Yang. Mössbauer effect in lattice dynamics. Wiley-VCH, 2007.
[51] M., Ortiz and R., Phillips. “Advances in applied mechanics.” In: ed. by E. van der, Giessen and T.Y., Wu. Vol. 36. Academic Press, 1999. Chap. Nanomechanics of defects in solids.
[52] S.K., Sinha. “Lattice dynamics of copper.” In: Phys. Rev. 143 (1966), p. 422.Google Scholar
[53] J.L., Warren, J.L., Yarnell, G., Dolling, and R.A., Cowley. “Lattice dynamics of diamond.” In: Phys. Rev. 158 (1967), p. 805.Google Scholar
[54] M.E., Straumanis and L.S., Yu. “Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and Cu-In alpha phase.” In: Acta Cryst. A25 (1969), p. 676.Google Scholar
[55] W.C., Overton Jr. and J., Gaffney. “Temperature variation of the elastic constants of cubic elements. I. Copper.” In: Phys. Rev. 98 (1955), p. 969.Google Scholar
[56] C., Kittel and H., Kroemer. Thermal physics. 2nd ed. Freeman, 1980.
[57] F., Reif. Fundamentals of statistical and thermal physics. McGraw Hill, 1965.
[58] J.P., Sethna. Entropy, order parameters, and complexity. Oxford University Press, 2006.
[59] A., Einstein. “The Planck theory of radiation and the theory of specific heat.” In: Ann. d. Physik 22 (1906), p. 180.Google Scholar
[60] P., Debye. “The theory of specific warmth.” In: Ann. d. Physik 39 (1912), p. 789.Google Scholar
[61] D.K., Hsu and R.G., Leisure. “Elastic constants of palladium and beta-phase palladium hydride between 4 and 300-K.” In: Phys. Rev. B 20 (1979), p. 1339.Google Scholar
[62] M., Moss, P.M., Richards, E.L., Venturini, J.H., Grieske, and E.J., Graeber. “Hydrogen contribution to the heat capacity of single phase, face centered cubic scandium deuteride.” In: J. Chem. Phys. 84 (1986), p. 956.Google Scholar
[63] L.A., Nygren and R.G., Leisure. “Elastic constants of β-phase PdHx over the temperature range 4–300 K.” In: Phys. Rev. B 37 (1988), p. 6482.Google Scholar
[64] M.A., Omar. Elementary solid state physics. Addison Wesley, 1975.
[65] O.L., Anderson. “A simplified method for calculating Debye temperatures from elastic constants.” In: J. Phys. Chem. Solids 24 (1963), p. 909.Google Scholar
[66] R.A., Robie and J.L., Edwards. “Some Debye temperatures from single-crystal elastic constant data.” In: J. Appl. Phys. 37 (1966), p. 2659.Google Scholar
[67] J.J., Adams. “Elastic constants of monocrystal iron form 3 to 500K.” MA thesis. Physics Dept., Colorado State Univ., Fort Collins, CO USA, 2006.
[68] J.D., Maynard. “The use of piezoelectric film and ultrasound resonance to determine the complete elastic tensor in one measurement.” In: J. Acoust. Soc. Am. 91 (1992), p. 1754.Google Scholar
[69] D.I., Bolef and J.C., Miller. “Physical acoustics.” In: ed. by W.P., Mason and R.N., Thurston. Vol. VIII. Academic Press, 1971. Chap. 3.
[70] N.F., Foster. “Cadium sulphide evaporated-layer transducers.” In: Proc. IEEE 53 (1965), p. 1400.Google Scholar
[71] J. de, Klerk. “Physical acoustics”. In: ed. by W.P., Mason. Vol. IVA. Academic Press, 1966. Chap. 5.
[72] R.G., Leisure and D.I., Bolef. “CW microwave spectrometer for ultrasonic paramagnetic resonance.” In: Rev. Sci. Instrum. 39 (1968), p. 199.Google Scholar
[73] H.A., Spetzler, G., Chen, S., Whitehead, and I.C., Getting. “A new ultrasonic interferometer for the determination of equation of state parameters of sub-millimeter single crystals.” In: PAGEOPH 141 (1993), p. 341.Google Scholar
[74] Q., Zhou, S., Lau, D., Wu, and K., Shung. “Piezoelectric films for high frequency ultrasonic transducers in biomedical applications.” In: Prog. Mater. Sci. 56 (2011), p. 139.Google Scholar
[75] E.P., Pakadakis and T.P., Lerch. “Handbook of elastic properties of solids, liquids and gases.” In: ed. by M., Levy, H.E., Bass, and R., Stern. Vol. I. Academic Press, 2001. Chap. 2, p. 39.
[76] S., Eros and J.R., Reitz. “Elastic constants by the ultrasonic pulse echo method.” In: J. Appl. Phys. 29 (1958), p. 683.Google Scholar
[77] H.J., McSkimin. “Pulse superposition method for measuring ultrasonic wave velocities in solid.” In: J. Acoust. Soc. Am. 33 (1961), p. 12.Google Scholar
[78] H.J., McSkimin and P., Andreatch. “Analysis of the pulse superposition method for measuring ultrasonic wave velocities as a function of temperature and pressure.” In: J. Acoust. Soc. Am. 34 (1962), p. 609.Google Scholar
[79] E.P., Papadakis. “Ultrasonic phase velocity by pulse-echo-overlap method incorporating diffraction phase corrections.” In: J. Acoust. Soc. Amer. 42 (1967), p. 1045.Google Scholar
[80] C., Pantea, D.G., Rickel, A., Migliori, R.G., Leisure, J.Z., Zhang, Y.S., Zhao, S., El-Khatib, and B.S., Li. “Digital ultrasonic pulse-echo overlap system and algorithm for unambiguous determination of pulse transit time.” In: Rev. Sci Instrum. 76 (2005), p. 114902.Google Scholar
[81] A.E., Petrova and S.M., Stishov. “A digital technique for measuring the velocity and attenuation of sound.” In: Instrum. Exp. Tech. 52 (2009), p. 609.Google Scholar
[82] H., Niesler and I., Jackson. “Pressure derivatives of elastic wave velocities from ultrasonic interferometric measurements on jacketed polycrystals.” In: J. Acoust. Soc. Am. 86 (1989), p. 1573.
[83] D.I., Bolef and M., Menes. “Measurement of elastic constants of RbBr, RbI, CsBr, and CsI by an ultrasonic cw resonance technique.” In: J. Appl. Phys. 31 (1960), p. 1010.Google Scholar
[84] D.I., Bolef. “Elastic constants of single crystals of the bcc transition elements V, Nb, and Ta.” In: J. Appl. Phys. 32 (1961), p. 100.Google Scholar
[85] D.I., Bolef and J.D., Klerk. “Anomalies in the elastic constants and thermal expansion of chromium single crystals.” In: Phys. Rev. 129 (1963), p. 1063.Google Scholar
[86] D.I., Bolef and M., Menes. “Nuclear magnetic resonance acoustic absorption in KI and KBr.” In: Phys. Rev. 114 (1959), p. 1441.Google Scholar
[87] D.I., Bolef. “Physical acoustics.” In: ed. by W.P., Mason. Vol. IVA. Academic Press, 1966. Chap. 3.
[88] R.G., Leisure and D.I., Bolef. “Temperarure dependence of ultrasonic paramagnetic resonance in MgO.Fe2+.” In: Phys. Rev. Lett. 19 (1967), p. 957.Google Scholar
[89] W.C., Cady. Piezoelectricity. Vol. Two. Dover, 1964.
[90] A.S., Nowick and B.S., Berry. Anelastic relaxation in crystalline solids. Academic Press, 1972.
[91] W., Hermann and H.-G., Sockel. “Handbook of elastic properties of solids, liquids and gases.” In: ed. by M., Levy, H.E., Bass, and R.R., Stern. Vol. I. Academic Press, 2001. Chap. 13.
[92] I., Ohno.Free vibration of a rectangular parallelepiped crystal and its application to determination of elastic constants of orthorhombic crystals.” In: J. Phys. Earth 24 (1976), p. 355.Google Scholar
[93] A., Migliori, J.L., Sarrao, W.M., Visscher, T.M., Bell, M., Lei, Z., Fisk, and R.G., Leisure. “Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids.” In: Physica B: Conden. Matt. 183 (1993), p. 1.Google Scholar
[94] A., Migliori and J.L., Sarrao. Resonant ultrasound spectroscopy. Wiley, 1997.
[95] A., Migliori and J.D., Maynard. “Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens.” In: Rev. Sci. Instrum. 76 (2005), p. 121301.Google Scholar
[96] R.G., Leisure and F.A., Willis. “Resonant ultrasound spectroscopy.” In: J. Condens. Matter 9 (1997), p. 6001.Google Scholar
[97] H., Ekstein and T., Schiffman.Free Vibrations of Isotropic Cubes and Nearly Cubic Parallelepipeds.” In: J. Appl. Phys. 27 (1956), p. 405.Google Scholar
[98] R., Holland and E.P. Eer, Nisse. “Variational evaluation of admittances of multielectroded 3-dimensional piezoelectric structures.” In: IEEE Trans. Sonics Ultrasonics SU-15 (1968), p. 119.Google Scholar
[99] H.H., Demarest, Jr. “Cube resonance method to determine the elastic constants of solids.” In: J. Acoust. Soc. Am. 49 (1971), p. 768.Google Scholar
[100] P., Heyliger, A., Jilani, H., Ledbetter, R.G., Leisure, and C.-L., Wang. “Elastic constants of isotropic cylinders using resonant ultrasound.” In: J. Acoust. Soc. Am. 94 (1993), p. 1482.Google Scholar
[101] W.M., Visscher, A., Migliori, T.M., Bell, and R.A., Reinert. “On the normal modes of free vibrations of inhomogeneous and anisotropic elastic objects.” In: J. Acoust. Soc. Am. 90 (1991), p. 2154.Google Scholar
[102] H., Goldstein. Classical mechanics. Addison-Wesley, 1959.
[103] E.P., Eer Nisse.Resonances of 1-dimensional composite piezoelectric and elastic structures.” In: IEEE Trans. Sonics Ultrasonics SU-14 (1967), p. 59.Google Scholar
[104] W.H., Press, B.P., Flannery, S.A., Teukolsky, and W.T., Vetterling. Numerical recipes. Cambridge University Press, 1986.
[105] https://nationalmaglab.org/user-resources/all-measurement-techniques.
[106] J.R., Taylor. Classical mechanics. University Science Books, 2005.
[107] J.B., Mehl. “Analysis of resonance standing-wave measurements.” In: J. Acoust. Soc. Am. 64 (1978), p. 1523.Google Scholar
[108] R.G., Leisure, K., Foster, J.E., Hightowoer, and D.S., Agosta. “Internal friction studies by resonant ultrasound spectroscopy.” In: Mater. Sci. Eng. A 370 (2004), p. 34.Google Scholar
[109] C., Thomsen, J., Strait, Z., Vardeny, H.J., Maris, J., Tauc, and J.J., Hauser. “Coherent phonon generation and detection by picosecond light pulses.” In: Phys. Rev. Lett. 53 (1984), p. 989.Google Scholar
[110] C., Thomsen, H.T., Grahn, H.J., Maris, and J., Tauc. “Surface generation and detection of phonons by picosecond light pulses.” In: Phys. Rev. B 34 (1986), p. 4129.Google Scholar
[111] H.T., Grahn, H.J., Maris, and J., Tauc. “Picosecond ultrasonics.” In: IEEE J. Quantum Electron. 25 (1989), p. 2562.Google Scholar
[112] G.L., Eesley, B.M., Clemens, and C.A., Paddock. “Generation and detection of picosecond acoustic pulses in thin metal films.” In: Appl. Phys. Lett. 50 (1987), p. 717.Google Scholar
[113] O.B., Wright and K., Kawashima. “Coherent phonon detection from ultrafast surface vibrations.” In: Phys. Rev. Lett. 1668 (1992), p. 2029.Google Scholar
[114] T.C., Zhu, H.J., Maris, and J., Tauc. “Attenuation of longitudinal-acoustic phonons in amorphous SiO2 at frequencies up to 440 GHz.” In: Phys. Rev. B 44 (1991), p. 4281.Google Scholar
[115] C., Thomsen, H.T., Grahn, H.J., Maris, and J., Tauc. “Picosecond interferometric technique for study of phonons in the Brillouin frequency range.” In: Optics Commun. 60 (1986), p. 55.Google Scholar
[116] A., Devos and R., Côte. “Strong oscillations detected by picosecond ultrasonics in silicon: Evidence for an electronic-structure effect.” In: Phys. Rev. B 70 (2004), p. 125208.Google Scholar
[117] P., Emery and A., Devos. “Strong oscillations detected by picosecond ultrasonics in silicon: Evidence for an electronic-structure effect.” In: Appl. Phys. Lett. 89 (2006), p. 191904.Google Scholar
[118] A., Devos, M., Foret, S., Ayrinhac, P., Emery, and B., Rufflé. “Hypersound damping in vitreous silica measured by picosecond acoustics.” In: Phys. Rev. B 77 (2008), 100201.Google Scholar
[119] R., Côte and A., Devos. “Refractive index, sound velocity and thickness of thin transparent films from multiple angles picosecond ultrasonics.” In: Rev. Sci. Instrum. 76 (2005), p. 053906.Google Scholar
[120] H., Ogi, T., Shagawa, N., Nakamura, M., Hirao, H., Okada, and N., Kihara. “Elastic constant and Brillouin oscillations in sputtered vitreous SiO2 thin films.” In: Phys. Rev. B 78 (2008), p. 134204.Google Scholar
[121] A., Nagakubo, H., Ogi, H., Ishida, M., Hirao, T., Yokoyama, and T., Nisihara. “Temperature behavior of sound velocity of fluorine-doped vitreous silica thin films studied by picosecond ultrasonics.” In: J. Appl. Phys. 118 (2015), p. 014307.Google Scholar
[122] T., Dehoux and B., Audoin. “Non-invasive optoacoustic probing of the density and stiffness of single biological cells.” In: J. Appl. Phys. 112 (2012), p. 124702.Google Scholar
[123] F., Pérez-Coda, R.J., Smith, E., Moradi, L., Marques, K.F., Webb, and M., Clark. “Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells.” In: Appl. Opt. 54 (2015), p. 8388.Google Scholar
[124] K., Shinokita, K., Reimann, M., Woerner, T., Elsaesser, R., Hey, and C., Flytzanis. “Strong amplification of coherent acoustic phonons by intraminiband currents in a semiconductor superlattice.” In: Phys. Rev. Lett. 116 (2016), p. 075504.Google Scholar
[125] H., Ledbetter. “Materials at low temperatures.” In: ed. by R.P., Reed and A.F., Clark. American Society for Metals, 1983. Chap. Elastic properties, pp. 1–45.
[126] A.B., Bhatia. Ultrasonic absorption. Clarendon Press, 1967.
[127] C.Y., Ho and R.E., Taylor. Thermal expansion of solids. ASM International, 1998.
[128] VASP, The Vienna ab initio simulation package, is available at www.vasp.at/.
[129] Quantum Espresso is available at www.quantum-espresso.org/.
[130] R., Arroyave, D., Shin, and Z.-K., Liu. “Ab initio thermodynamic properties of stoichiometric phases in the NiAl system.” In: Acta Mater. 53 (2005), p. 1809.Google Scholar
[131] J.A., Garber and A.V., Granato. “Theory of the temperature dependence of secondorder elastic constants in cubic materials.” In: Phys. Rev. B 11 (1975), p. 3990.Google Scholar
[132] G., Steinle-Neumann, L., Stixrude, and R.E., Cohen. “First-principles elastic constants for the hcp transition metals Fe, Co, and Re at high pressure.” In: Phys. Rev. B 60 (1999), p. 791.Google Scholar
[133] R., Golesorkhtabar, P., Pavone, J., Spitaler, P., Puschnig, and C., Drax. “ElaStic: a tool for calculating second-order elastic constants from first principles.” In: Comput. Phys. Commun. 184 (2013), p. 1861.Google Scholar
[134] H., Ledbetter. “Sound velocities, elastic constants: temperature dependence.” In: Mater. Sci. Eng., A 442 (2006), p. 31.Google Scholar
[135] E.I., Isaev, S.I., Simak, A.S., Mikhaylushkin, Yu. Kh., Vekilov, E. Yu., Zarechnaya, L., Dubrovinsky, N., Dubrovinskaia, M., Merlini, M., Hanfland, and I.A., Abrikosov.Impact of lattice vibrations on equation of state of the hardest boron phase.” In: Phys. Rev. B 83 (2011), p. 132106.Google Scholar
[136] G., Liebfried and W., Ludwig. “Solid state physics.” In: ed. by F., Sietz and D., Turnbull. Vol. 12. Academic Press, 1961, p. 276.
[137] S., Shang, Y., Wang, and Z.K., Liu. “First-principles calculations of phonon and thermodynamic properties in the boron-alkaline earth metal binary systems: B-Ca, B-Sr, and B-Ba.” In: Phys. Rev. B 75 (2007), p. 024302.Google Scholar
[138] Y., Wang, J.J., Wang, H. Zhang, V.R., Manga, S.L., Shang, L.-Q., Chen, and Z.-K., Liu. “A first-principles approach to finite temperature elastic constants.” In: J. Phys. Condens. Matter 22 (2010), p. 225404.Google Scholar
[139] K., Kadas, L., Vitos, R., Ahuja, B., Johansson, and J., Kollar. “Temperature dependent elastic properties of alpha beryllium from first principles.” In:Phys. Rev. B 76 (2007), p. 235109.Google Scholar
[140] W.J., Golumbfskie, R., Arroyave, D., Shin, and Z.-K., Liu. “Finite-temperature thermodynamic and vibrational properties of Al-Ni-Y compounds via first-principles calculations.” In: Acta Mater. 54 (2006), p. 2291.Google Scholar
[141] L.D., Landau and E.M., Lifshitz. Statistical physics. Pergamon Press, 1980.
[142] M., Sob, M., Friak, D., Legut, J., Fiala, and V., Vitek. “The role of ab initio electronic structure calculations in studies of the strength of materials.” In: Mater. Sci. Eng. A387 (2004), p. 148.Google Scholar
[143] A., Wang, S.-L., Shang, M., He, Y., Du, L., Chen, R., Zhang, D., Chen, B., Fan, F., Meng, and Z.-K., Liu. “Temperature-dependent elastic stiffness constants of fcc-based metal nitrides from first-principles calculations.” In: J. Mater. Sci. 49 (2014), p. 424.Google Scholar
[144] D.C., Wallace. “Thermoelasticity of stressed materials and comparison of various elastic constants.” In: Phys. Rev. 162 (1967), p. 776.Google Scholar
[145] A.F., Jankowski and T., Tsakalakos. “The effect of strain on the elastic constants of noble metals.” In: J.Phys, F: Met. Phys 15 (1985), p. 1279.Google Scholar
[146] F., Birch. “Finite elastic strain of cubic crystals.” In: Phys. Rev. 71 (1947), p. 809.Google Scholar
[147] Y., Hiki, J.F., Thomas Jr., and A.V., Granato. “Anharmonicity in noble metals: some thermal properties.” In: Phys. Rev. 153 (1967), p. 764.Google Scholar
[148] K., Brugger. “Generalized Gruneisen parameters in the anisotroyic Debye model.” In: Phys. Rev. 137 (1965), A1826.Google Scholar
[149] Z., Wu and R.M., Wentzcovitch. “Quasiharmonic thermal elasticity of crystals: an analytical approach.” In: Phys. Rev. B. 83 (2011), p. 184115.Google Scholar
[150] D.J., Safarik and R.B., Schwarz. “Evidence for highly anharmonic low-frequency vibrational modes in bulk amorphous Pd40Cu40P20.” In: Phys. Rev. B 80 (2009), p. 094109.Google Scholar
[151] A, Migliori, H., Ledbetter, R.G., Leisure, C., Pantea, and J.B., Betts. “Diamonds elastic stiffnesses from 322 K to 10 K.” In: J. Appl. Phys. 104 (2008), p. 053512.Google Scholar
[152] H.S., Robertson. Statistical thermophysics. Prentice Hall, 1993.
[153] B.T., Bernstein. “Electron contribution to the temperature dependence of the elastic constants of cubic metals. I. Normal metals.” In: Phys. Rev. 132 (1963), p. 50.Google Scholar
[154] G.A., Alers. “Physical acoustics.” In: ed. by W.P., Mason. Vol. IV Part A. Academic Press, 1966. Chap. 7.
[155] Y.P., Varshni. “Temperature dependence of the elastic constants.” In: Phys. Rev. B 2 (1970), p. 3952.Google Scholar
[156] H., Ledbetter. “Relationship between bulk-modulus temperature-dependence and thermal expansivity.” In: Phys. Stat. Solidi B 181 (1994), p. 81.Google Scholar
[157] P., Toledano and V., Dmitriev. Reconstructive phase transitions. World Scientific, 1996.
[158] J.-C., Toledano and P., Toledano. Landau theory of phase transitions. World Scientific, 1987.
[159] W., Rehwald. “Study of structural phase-transitions by means of ultrasonic experimets.” In: Advances in Physics 22 (1973), p. 721,Google Scholar
[160] M.A., Carpenter and E.K.H., Salje. “Elastic anomalies in minerals due to structural phase transitions.” In: Eur. J. Mineral. 10 (1998), p. 693.Google Scholar
[161] F., Cordero, F., Trequattrini, V.B., Barbeta, R.F., Jardim, and M.S., Torikachvili.Anelastic spectroscopy study of the metal-insulator transition of Nd1-xEuxNiO3.” In: Phys. Rev. B 84 (2011), p. 125127.Google Scholar
[162] A.V., Granato, K.L., Hultman, and K.-F., Huang. “Ultrasonic response to two and four level quantum systems.” In: J. Physique Colloque C10 (1985), pp. C10–C23.Google Scholar
[163] C., Zener. “Stress induced preferential orientation of pairs of solute atoms in metallic solid solution.” In: Phys. Rev. 71 (1947), p. 34.Google Scholar
[164] F.M., Mazzolai, P.G., Bordoni, and F.A., Lewis. “Elastic energy-dissipation effects in alpha+beta and beta-phase composition ranges of the palladium-hydrogen system.” In: J. Phys. F: Met. Phys. 11 (1981), p. 337.Google Scholar
[165] R.G., Leisure, T., Kanashiro, P.C., Riedi, and D.K., Hsu. “Hydrogen motion in singlecrystal palladium hydride as studied ultrasonically.” In: Phys. Rev. B 27 (1983), p. 4872.Google Scholar
[166] J.L., Snoek. “Mechanical after effect and chemical constitution.” In: Physica 6 (1939), p. 591.Google Scholar
[167] R.G., Leisure, S., Kern, F.R., Drymiotis, H., Ledbetter, A., Migliori, and J.A., Mydosh. “Complete elastic tensor through the first-order transformation in U2Rh3Si5.” In: Phys. Rev. Lett. 95 (2005), p. 075506.Google Scholar
[168] B., Lüthi, M.E., Mullen, and E., Bucher. “Elastic constants in singlet ground-state Systems: PrSb and Pr.” In: Phys. Rev. Lett. 31 (1973), p. 95.Google Scholar
[169] R.S., Lakes. Viscoelastic solids. CRC Press, 1998.
[170] M., O'Donnell, E.T., Jaynes, and J.G., Miller. “Kramers-Kronig relationship between ultrasonic-attenuation and phase-velocity.” In: J. Acoust. Soc. Am. 69 (1981), p. 696.Google Scholar
[171] V., Mangulis. “Kramers-Kronig or dispersion relations in acoustics.” In: J. Acoust. Soc. Am. 36 (1964), p. 211.Google Scholar
[172] V.L., Ginzberg. “Concerning the general relationship between absorption and dispersion of sound waves.” In: Akust.Zh. 1 (1955). English translation in Soviet Phys. Acoust. 1, 32 (1957), p. 32.Google Scholar
[173] J.P., Wittmer, H., Xu, O., Benzerara, and J., Baschnagel. “Fluctuation-dissipation relation between shear stress relaxation modulus and shear stress autocorrelation function revisited.” In: Molecular Physics 113 (2015), p. 2881.Google Scholar
[174] D., Chandler. Introduction to modern statistical mechanics. Oxford University Press, 1987.
[175] A.A., Gusev, M.M., Zeldner, and U.W., Suder. “Fluctuation formula for elastic constants.” In: Phys. Rev. B, Brief Reports 54 (1996), p. 1.Google Scholar
[176] C., Zener. Elasicity and anelasicity of metals. University of Chicago Press, 1948.
[177] M., Callens-Raadschelders, R. De, Batist, and R., Gevers. “Debye relaxation equations for a standard linear solid with high relaxation strength.” In: J. Materials Sci. 12 (1977), p. 251.Google Scholar
[178] K., Lücke. “Ultrasonic attenuation caused by thermoelastic heat flow.” In: J. Appl. Phys. 27 (1956), p. 1433.Google Scholar
[179] B.C., Daly, K., Kang, Y., Yang, and D.G., Cahill. “Picosecond ultrasonic measurements of attenuation of longitudinal acoustic phonons in silicon.” In: Phys. Rev. B 80 (2009), p. 174112.Google Scholar
[180] H.E., Bömmel and K., Dransfield. “Excitation and attenuation of hypersonic waves in quartz”. In: Phys. Rev. 117 (1960), p. 1245.Google Scholar
[181] J. de, Klerk. “Behavior of coherent microwave phonons at low temperatures in Al2O3 using vapor-deposited thin-film piezoelectric transducers”. In: Phys. Rev. 139 (1965), A 1635.Google Scholar
[182] S., Stoffels, E., Autizi, R. Van, Hoof, S., Severi, R., Puers, A., Witvrouw, and H.A.C., Tilmans. “Physical loss mechanisms for resonant acoustical waves in boron doped poly-SiGe deposited with hydrogen dilution.” In: J. Appl. Phys. 108 (2010), p. 084517.Google Scholar
[183] L., Landau and G., Rumer. “Uber schallabsorption in festen korpern.” In: Phys. Z. Sowjetunion 11 (1937), p. 18.Google Scholar
[184] P.G., Klemens. “Physical acoustics.” In: ed. by W.P., Mason. Vol. III Part B. Academic Press, 1965. Chap. 5.
[185] H.J., Maris. “Physical acoustics.” In: ed. by W.P., Mason and R.N., Thurston. Vol. VIII. Academic Press, 1971. Chap. 6.
[186] A., Akhieser. “On the absorption of sound in solids.” In: J. Phys. (Moscow) 1 (1939), p. 277.Google Scholar
[187] T.O, Woodruff and H., Ehrenreich. “Absorption of sound in insulators.” In: Phys. Rev. 123 (1961), p. 1553.Google Scholar
[188] H.E., Bömmel.Ultrasonic attenuation in superconducting lead.” In: Phys. Rev. 96 (1954), p. 220.Google Scholar
[189] W.P., Mason.Ultrasonic attenuation due to lattice-electron interaction in normal conducting metals.” In: Phys. Rev. 97 (1955), p. 557.Google Scholar
[190] R.W., Morse.Ultrasonic attenuation in metals by electron relaxation.” In: Phys. Rev. 97 (1955), p. 1716.Google Scholar
[191] A.B., Pippard.Ultrasonic attenuation in metals.” In: Phil. Mag. 46 (1955), p. 1104.Google Scholar
[192] A.B., Pippard.Theory of ultrasonic attenuation in metals and magnetoacoustic oscillations.” In: Proc. Roy. Soc. A 257 (1960), p. 165.Google Scholar
[193] J., Bardeen, L.N., Cooper, and J.R., Schrieffer.Theory of superconductivity.” In: Phys. Rev. 108 (1957), p. 1175.Google Scholar
[194] M., Gottlieb, M., Garbuny, and C.K., Jones.Physical acoustics.” In: ed. by W.P., Mason and R.N., Thurston. Vol. VII. Academic Press, 1970. Chap. 1.
[195] J.A., Rayne and C.K., Jones.Physical, acoustics.” In: ed. by W.P., Mason and R.N., Thurston. Vol. VII. Academic Press, 1970. Chap. 3.
[196] M., Levy. “Physical acoustics.” In: ed. by W.P., Mason and R.N., Thurston. Vol. XX. Academic Press, 1992. Chap. 1.
[197] B.W., Roberts.Physical acoustics.” In: ed. by W.P., Mason. Vol. IV Pt. B. Academic Press, 1968. Chap. 10.
[198] L.R., Testardi and J.H., Condon.Physical acoustics.” In: ed. by W.P., Mason and R.N., Thurston. Vol. VIII. Academic Press, 1971. Chap. 2.
[199] Y., Eckstein. “Ultrasonic attenuation in antimony. 1. Geometric resonance.” In: Phys. Rev. 129 (1963), p. 12.Google Scholar
[200] M.P., Greene, A.R., Hoffman, A. Houghton, and J.J., Quinn.Ultrasonic attenuation in oblique magnetic fields.” In: Phys. Rev. 156 (1967), p. 798.Google Scholar
[201] M.H., Cohen, M.J., Harrison, and W.A., Harrison.Magnetic-field dependence of the ultrasonic attentuation in metals.” In: Phys. Rev. 117 (1960), p. 937.Google Scholar
[202] J.R., Hook and H.E., Hall. Solid state physics. Wiley, 1991.
[203] H.P., Myers. Introductory solid state physics. Taylor and Francis, 1991.
[204] M., Mongy. “Quantum oscillations of ultrasonic attenuation in gold.” In: J. Phys. Chem. Solids 33 (1972), p. 1355.Google Scholar
[205] W.D., Wallace and H.V., Bohm.Quantum oscillations in attenuation of transverse ultrasonic waves in field-cooled chromium.” In: J. Phys. Chem. Solids 29 (1968), p. 721.Google Scholar
[206] A., Granato and K., Lücke. “Theory of mechanical damping due to dislocations.” In: J. Appl. Phys. 27 (1956), p. 583.Google Scholar
[207] T.A., Read.Internal friction of single crystals of copper and zinc.” In: Trans. Am. Inst. Mining Met. Engrs. 143 (1941), p. 30.Google Scholar
[208] J.S., Koehler. Imperfections in nearly perfect crystals. Wiley, 1952.
[209] A.S., Nowick.Internal friction and dynamic modulus of cold-worked metals.” In: J. Appl. Phys. 25 (1954), p. 1129.Google Scholar
[210] A.V., Granato and K., Lücke. “Physical acoustics.” In: ed. by W.P., Mason. Vol. IV Part A. Academic Press, 1966. Chap. 6.
[211] R.M., Stern and A.V., Granato.Overdamped resonance of dislocations in copper.” In: Acta Met. 10 (1962), p. 358.Google Scholar
[212] C., Wert and C., Zener. “Interstitial atomic difusion coefficients.” In: Phys. Rev. 76 (1949), p. 1169.Google Scholar
[213] C.R., Ko, K., Salama, and J.M., Roberts.Effect of hydrogen on the temperaturedependence of the elastic constants of vanadium single crystals.” In: J. Appl. Phys. 51 (1980), p. 1014.Google Scholar
[214] J., Buchholz, J., Völkl, and G., Alefeld. “Anomalously small elastic Curie constant of hydrogen in tantulam.” In: Phys. Rev. Lett. 30 (1973), p. 318.Google Scholar
[215] K., Foster, J.E., Hightower, R.G., Leisure, and A.V., Skripov.Ultrasonic attenuation and dispersion due to hydrogen motion in the C15 Laves-phase compound TaV2Hx.” In: J. Phys.:Condensed Matter 13 (2001), p. 7327.Google Scholar
[216] R.G., Leisure, T. Kanashiro, P.C., Riedi, and D.K., Hsu.An ultrasonic study of stressinduced ordering of hydrogen in single-crystal palladium hydride.” In: J. Phys. F: Met. Phys. 13 (1983), p. 2025.Google Scholar
[217] R.G., Leisure, L.A., Nygren, and D.K., Hsu.Ultrasonic relaxation rates in palladium hydride and palladium deuteride.” In: Phys. Rev. B 33 (1986), p. 8325.Google Scholar
[218] J.O., Fossum and K., Fossum. “Measurements of ultrasonic attenuation and velocity in Verneuil-grown and flux grown SrTiO3.” in: J. Phys. C: Solid State Phys. 18 (1985), p. 5549.Google Scholar
[219] L.D., Landau and I.M., Khalatnikov. In: Sov. Phys. Dokl. 96 (1954), p. 469.
[220] J.O., Fossum.A phenomenological analysis of ultrasound near phase transitions.” In: J. Phys. C: Solid State Phys. 18 (1985), p. 5531.Google Scholar
[221] A., Abragam. The principles of nuclear magnetism. Oxford University Press, 1961.
[222] C.P., Slichter. The principles of magnetic resonancee. Harper and Row, 1963.
[223] R.A., Alpher and R.J., Rubin.Magnetic dispersion and attenuation of sound in conducting fluids and solids.” In: J. Acoust. Soc. Am. 26 (1954), p. 452.Google Scholar
[224] J., Buttet, E.H., Gregory, and P.K., Bailey.Nuclear acoustic resonance in aluminum via coupling to magnetic dipole moment.” In: Phys. Rev. Lett. 23 (1969), p. 1030.Google Scholar
[225] R.G., Leisure, D.K., Hsu, and B.A., Seiber.Nuclear-acoustic-resonance absorption and dispersion in aluminum.” In: Phys. Rev. Lett. 30 (1973), p. 1326.Google Scholar
[226] R., Guermeur, J., Joffrin, A., Levelut, and J., Penne. “Mesure de la variation de la vitesse de phase dune onde ultrasonore se propageant dans un cristal paramagnetique.” In: Phys. Lett. 13 (1964), p. 107.Google Scholar
[227] E.B., Tucker.Physical acoustics.” In: ed. by W.P., Mason. Vol. IV Pt. A. Academic Press, 1966. Chap. 2.
[228] R.C., Zeller and R.O., Pohl.Thermal conductivity and specific heat of noncrystalline solids.” In: Phys. Rev. B 4 (1971), p. 2029.Google Scholar
[229] P.W., Anderson, B.I., Halperin, and C.M., Varma.Anomalous low-temperature thermal properties of glasses and spin glasses.” In: Phil. Mag. 25 (1972), p. 1.Google Scholar
[230] W.A., Phillips.Tunneling states in amorphous solids.” In: J. Low Temp. Phys. 7 (1972), p. 351.Google Scholar
[231] J., Jäckle. “Ultrasonic attenuation in glasses at low temperatures.” In: Z. Physik 257 (1972), p. 212.Google Scholar
[232] P., Doussineau, C., Frénois, R.G., Leisure, A., Levelut, and J.-Y., Prieur. “Amorphouslike acoustical properties of Na doped beta Al2O3.” In: J. Phys (Paris) 41 (1980), p. 1193.Google Scholar
[233] S.N., Coppersmith and B., Golding. “Low-temperature acoustic properties of metallic glasses.” In: Phys. Rev. B 47 (1993), p. 4922.Google Scholar
[234] A.J., Leggett and D.C., Vural.Tunneling two-level systems model of lowtemperature properties of glasses: Are smoking-gun tests possible?” In: J. Phys. Chem. B 117 (2013), p. 12966.Google Scholar
[235] D.R., Queen, X., Liu, J., Karel, T.H., Metcalf, and F., Hellman. “Excess specific heat in evaporated amorphous silicon.” In: Phys. Rev. Lett. 110 (2013), p. 135901.Google Scholar
[236] G.S., Kino. Acoustic waves: devices, imaging and analog signal processing. Prentice- Hall, 1987.
[237] T.F., Hueter and R.H., Bolt. Sonics. Wiley, 1955.
[238] C.G., Montgomery, R.H., Dicke, and E.M., Purcell. Principles of microwave circuits. The Institute of Engineering and Technolog, 1987, p. 67.
[239] E.P., Papadakis.Ultrasonic diffraction loss and phase change in anisoptric materials.” In: J. Acoust. Soc. Am. 40 (1966), p. 863.Google Scholar
[240] E.P., Papadakis.Physical acoustics.” In: ed. by W.P., Mason and R.N., Thurston. Vol. XI. Academic Press, 1975. Chap. 3.
[241] P.R., Saulson.Thermal noise in mechanical experiments.” In: Phys. Rev. D 42 (1990), p. 2437.Google Scholar
[242] J.R., Neighbours and G.A., Alers.Elastic constants of silver and gold.” In: Phys. Rev. 111 (1958), p. 707.Google Scholar
[243] Y.S., Touloukian, R.K., Kirby, R.E., Taylor, and P.D., Desa. Thermophysical properies of matter. Vol. 12. Plenum, 1975.
[244] Y., Hiki and A.V., Granato.Anharmonicity in noble metals; higher order elastic constants.” In: Phys. Rev. 144 (1966), p. 411.Google Scholar
[245] J.M., Lang, Jr. and Y.M., Gupta.Experimental determination of third-order elastic constants of diamond.” In: Phys. Rev. Lett. 106 (2011), p. 125502.Google Scholar
[246] C., Giles, C., Adriano, A.F., Lubambo C., Cusatis I., Mazzaro and M.G., Honnicke.Diamond thermal expansion measurement using transmitted X-ray backdiffraction.” In: J. Synchrotron Radiation 12 (2005), p. 349.Google Scholar
[247] J., Philip and M.A., Breazeale.Third order elastic constants and Grüneisen parameters of silicon and germanium between 3 and 300K.” In: J. Appl. Phys. 54 (1983), p. 752.Google Scholar
[248] K., Salama and G.A., Alers.Third-order elastic constants of copper at low temperature.” In: Phys. Rev. 161 (1967), p. 673.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Robert G. Leisure, Colorado State University
  • Book: Ultrasonic Spectroscopy
  • Online publication: 19 June 2017
  • Chapter DOI: https://doi.org/10.1017/9781316658901.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Robert G. Leisure, Colorado State University
  • Book: Ultrasonic Spectroscopy
  • Online publication: 19 June 2017
  • Chapter DOI: https://doi.org/10.1017/9781316658901.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Robert G. Leisure, Colorado State University
  • Book: Ultrasonic Spectroscopy
  • Online publication: 19 June 2017
  • Chapter DOI: https://doi.org/10.1017/9781316658901.013
Available formats
×