Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-07T19:39:08.522Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  17 May 2022

Robin Hesketh
Affiliation:
University of Cambridge
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Understanding Cancer , pp. 204 - 214
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Schwartz, R., and Schäffer, A.A. The evolution of tumour phylogenetics: principles and practice. Nat Rev Genet. 2017;18(4):213229. doi: 10.1038/nrg.2016.170Google Scholar
Manchanda, R., Sun, L., Patel, S., et al. Economic evaluation of population-based BRCA1/BRCA2 mutation testing across multiple countries and health systems. Cancers. 2020;12(7):1929.CrossRefGoogle ScholarPubMed
National Cancer Institute. BRCA gene mutations: cancer risk and genetic testing. www.cancer.gov/about-cancer/causes-prevention/genetics/brca-fact-sheet#r2.Google Scholar
Ford, D., Easton, D.F., Stratton, M., et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families Am J Hum Genet. 1998;62(3):676689. doi: 10.1086/301749CrossRefGoogle ScholarPubMed
Ford, D., Easton, D.F., Bishop, D.T., Narod, S.A. and Goldgar, D.E. Risks of cancer in BRCA1-mutation carriers. Lancet. 1994;343(8899):692–5. doi: 10.1016/s0140-6736(94)91578-4Google Scholar
Kuchenbaecker, K.B., Hopper, J.L., Barnes, D.R., et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):24022416. doi: 10.1001/jama.2017.7112Google Scholar
Atchley, D.P., Albarracin, C.T., Lopez, A., et al. Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol. 2008;26(26):42824288. doi: 10.1200/JCO.2008.16.6231Google Scholar

Secondary Sources

Haridy, Y., Witzmann, F., Asbach, P., et al. Triassic cancer-osteosarcoma in a 240-million-year-old stem-turtle. JAMA Oncol. 2019;5(3):425426. doi: 10.1001/jamaoncol.2018.6766Google Scholar
Global Cancer Observatory. Home page. https://gco.iarc.fr/Google Scholar
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, Campbell, P.J., Getz, G., et al. Pan-cancer analysis of whole genomes. Nature. 2020;578:8293. doi: 10.1038/s41586-020-1969-6.Google Scholar
Meselson, M., and Stahl, F.W. The replication of DNA in Escherichia coli. PNAS. 1958;44(7):671682. doi: 10.1073/pnas.44.7.671Google Scholar
Nair, A., Chauhan, P., Saha, B. and Kubatzky, K.F. Conceptual evolution of cell signaling. Int J Mol Sci. 2019;20(13):3292. doi:10.3390/ijms20133292Google Scholar
Caravagna, G., Giarratano, Y., Ramazzotti, D., et al. Detecting repeated cancer evolution from multi-region tumor sequencing data. Nat Methods. 2018;15(9):707714. doi: 10.1038/s41592-018-0108-xGoogle Scholar
zur Hausen, H. (2012). Red meat consumption and cancer: reasons to suspect involvement of bovine infectious factors in colorectal cancer. Int J Cancer. 130:24752483. doi: 10.1002/ijc.27413Google Scholar
Candelaria, P.V., Rampoldi, A., Harbuzariu, A. and Gonzalez-Perez, R.R. Leptin signaling and cancer chemoresistance: perspectives. World J Clin Oncol. 2017;8(2):106119. doi: 10.5306/wjco.v8.i2.106Google Scholar
Alexandrov, L.B., Ju, Y.S., Haase, K., et al. Mutational signatures associated with tobacco smoking in human cancer. Science. 2016;354(6312):618622. doi: 10.1126/science.aag0299.Google Scholar
Hijazi, K., Malyszko, B., Steiling, K. et al. Tobacco-related alterations in airway gene expression are rapidly reversed within weeks following smoking-cessation. Sci. Rep. 2019;9(6978). doi: 10.1038/s41598-019-43295-3Google Scholar
Yoshida, K., Gowers, K.H.C., Lee-Six, H., et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature. 2020;578(7794):266272. doi: 10.1038/s41586-020-1961-1.Google Scholar
Pleguezuelos-Manzano, C., Puschhof, J., Rosendahl Huber, A., et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature. 2020;580(7802):269273. doi: 10.1038/s41586-020-2080-8.CrossRefGoogle ScholarPubMed
Mortazavi, S.M.J., Ghiassi-Nejad, M. and Rezaiean, M. Cancer risk due to exposure to high levels of natural radon in the inhabitants of Ramsar, Iran. In International Congress Series, volume 1276, 2005, pp. 436437, doi: 10.1016/j.ics.2004.12.012CrossRefGoogle Scholar
Bryn Austin, S., Yu, K., Liu, S.H., Dong, F. and Tefft, N. Household expenditures on dietary supplements sold for weight loss, muscle building, and sexual function: Disproportionate burden by gender and income. Prevent. Med. Rep. 2017;6:236241. doi: 10.1016/j.pmedr.2017.03.016Google Scholar
Lustig, R., Schmidt, L. and Brindis, C. The toxic truth about sugar. Nature. 2012;482:2729. doi: 10.1038/482027aGoogle Scholar
Roy Kishony’s Laboratory at Harvard Medical School. www.youtube.com/watch?v=plVk4NVIUh8Google Scholar
Hanahan, D., and Weinberg, R.A. Hallmarks of cancer: the next generation. Cell.2011;144:646674. doi: 10.1016/j.cell.2011.02.013Google Scholar
Luengo, A., Gui, D.Y. and Vander Heiden, M.G. Targeting metabolism for cancer therapy. Cell Chem Biol. 2017;24(9):11611180. doi: 10.1016/j.chembiol.2017.08.028Google Scholar
Mullard, A. FDA approves first-in-class cancer metabolism drug. Nat Rev Drug Discov. 2017;16(593). doi: 10.1038/nrd.2017.174Google Scholar
Welti, J., Loges, S., Dimmeler, S. and Carmeliet, P. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest. 2013;123(8):31903200. doi: 10.1172/JCI70212Google Scholar
Tebbutt, N., Pedersen, M.W. and Johns, T.G. Targeting the ERBB family in cancer: couples therapy. Nat Rev Cancer. 2013;13(9):663673. doi: 10.1038/nrc3559Google Scholar
Kaplan, R.N., Riba, R.D., Zacharoulis, S., et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438(7069):820827. doi: 10.1038/nature04186CrossRefGoogle ScholarPubMed
Ghajar, C.M., Peinado, H., Mori, H., et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 2013;15(7):807817. doi: 10.1038/ncb2767Google Scholar
Brabletz, T., Lyden, D., Steeg, P. et al. Roadblocks to translational advances on metastasis research. Nat Med. 2013;19:11041109. doi: 10.1038/nm.3327Google Scholar
Rodrigues, G., Hoshino, A., Kenific, C.M., et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat Cell Biol. 2019;21(11):14031412. doi: 10.1038/s41556-019-0404-4Google Scholar
Hoshino, A., Costa-Silva, B., Shen, T.L., et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329335. doi: 10.1038/nature15756Google Scholar
Hoshino, A., Kim, H.S., Bojmar, L., et al. Extracellular vesicle and particle biomarkers define multiple human cancers. Cell. 2020;182:118. doi: 10.1016/j.cell.2020.07.009Google Scholar
Ruoslahti, E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996;12:697715. doi: 10.1146/annurev.cellbio.12.1.697CrossRefGoogle ScholarPubMed
Coley, W.B. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med. 1910;3:148.Google ScholarPubMed
Twyman-Saint Victor, C., Rech, A.J., Maity, A., et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520(7547):373377. doi: 10.1038/nature14292.Google Scholar
Wolchok, J.D., Kluger, H., Callahan, M.K., et al. Nivolumab plus ipilimumab in advanced melanoma. N Eng J Med. 2013;369:122133. doi: 10.1056/NEJMoa1302369Google Scholar
Biller-Andorno, N., and Jüni, P. Abolishing mammography screening programs? A view from the Swiss Medical Board. New Eng J Med. 2014;370:19651967.Google Scholar
Independent UK Panel on Breast Cancer Screening. The benefits and harms of breast cancer screening: an independent review. Lancet. 2012;380:17781786.Google Scholar
Gøtzsche, P.C., and Jørgensen, K.J. Screening for breast cancer with mammography. Cochrane Database Syst Rev. 2013;6: CD001877. doi: 10.1002/14651858.CD001877Google Scholar
Rosenberg, S.A., and Restifo, N.P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348(6230):6268. doi: 10.1126/science.aaa4967Google Scholar
Choi, B.D., Yu, X., Castano, A.P. et al. CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J Immunother Cancer. 2019;7(304). doi: 10.1186/s40425-019-0806-7Google Scholar
Zviran, A., Schulman, R.C., Shah, M., et al. Genome-wide cell-free DNA mutational integration enables ultra-sensitive cancer monitoring. Nat Med. 2020;26(7):11141124. doi: 10.1038/s41591-020-0915-3CrossRefGoogle ScholarPubMed
Aktas, B., Muller, V., Tewes, M., et al. Comparison of estrogen and progesterone receptor status of circulating tumor cells and the primary tumor in metastatic breast cancer patients. Gynecol Oncol. 2011;122(2):356360. doi: 10.1016/j.ygyno.2011.04.039Google Scholar
Owlstone Medical. Breath Biopsy: The Complete Guide. Cambridge: Owlstone Medical.Google Scholar
Cambridge University. ‘Pill on a string’ could help spot early signs of cancer of the gullet. www.cam.ac.uk/research/news/pill-on-a-string-could-help-spot-early-signs-of-cancer-of-the-gullet#sthash.Ue0mqOdP.dpufGoogle Scholar
Cambridge University. Cytosponge: Early detection for oesophageal cancer [video]. www.youtube.com/watch?v=iGqBu4C2ASg&feature=youtu.be.Google Scholar
Ross-Innes, C.S., Becq, J., Warren, A., et al. Whole-genome sequencing provides new insights into the clonal architecture of Barrett’s esophagus and esophageal adenocarcinoma. Nat Genet. 2015;47:10381046. doi: 10.1038/ng.3357Google Scholar
Kang, S., Li, Q., Chen, Q., et al. CancerLocator: non-invasive cancer diagnosis and tissue-of-origin prediction using methylation profiles of cell-free DNA. Genome Biol. 2017;18:53. doi: 10.1186/s13059-017-1191-5.Google Scholar
Sina, A.A., Carrascosa, L.G., Liang, Z., et al. Epigenetically reprogrammed methylation landscape drives the DNA self-assembly and serves as a universal cancer biomarker. Nat Commun. 2018;9(1):4915. doi: 10.1038/s41467-018-07214-wGoogle Scholar
Fu, J., and Yan, H. Controlled drug release by a nanorobot. Nat Biotechnol 2012;30:407408. doi: 10.1038/nbt.2206.Google Scholar
Li, S., Jiang, Q., Liu, S., et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat Biotechnol 2018;36:258264. doi: 10.1038/nbt.4071Google Scholar
Liu, Y., Feng, L., Liu, T., et al. Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer. Nanoscale. 2014;6(6):32313242. doi: 10.1039/c3nr05647cGoogle Scholar
Yi, H.G., Jeong, Y.H., Kim, Y., et al. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat Biomed Eng. 2019;3:509519. doi: 10.1038/s41551-019-0363-xGoogle Scholar
Gomez-Roman, N., and Chalmers, A.J. Patient-specific 3D-printed glioblastomas. Nat Biomed Eng. 2019;3:498499. doi: 10.1038/s41551-019-0379-2Google Scholar
Canon, J., Rex, K., Saiki, A.Y., et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217223. doi: 10.1038/s41586-019-1694-1Google Scholar
Lou, K., Steri, V., Ge, A.Y., et al. KRASG12C inhibition produces a driver-limited state revealing collateral dependencies. Sci Signal. 2019;12(583):eaaw9450. doi: 10.1126/scisignal.aaw9450Google Scholar
Soucek, L., Whitfield, J., Martins, C.P., et al. Modelling Myc inhibition as a cancer therapy. Nature. 2008;455(7213):679683. doi: 10.1038/nature07260Google Scholar
Martincorena, I., Roshan, A., Gerstung, M., et al. High burden and pervasive positive selection of somatic mutations in normal human skin. Science. 2015;348:880886. doi: 10.1126/science.aaa6806Google Scholar
Ali, H.R., Rueda, O.M., Chin, S.F. et al. Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome Biol. 2014;15(431). doi: 10.1186/s13059-014-0431-1Google Scholar
De Mattos-Arruda, L., Sammut, S.J., Ross, E.M., et al. The genomic and immune landscapes of lethal metastatic breast cancer. Cell Rep. 2019;27:26902708. doi: 10.1016/j.celrep.2019.04.098Google Scholar
Yates, L.R., Gerstung, M., Knappskog, S., et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat Med. 2015;21(7):751759. doi: 10.1038/nm.3886Google Scholar
Robinson, D., Van Allen, E.M., Wu, Y.M., et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161(5):12151228. doi: 10.1016/j.cell.2015.05.001Google Scholar
Keren, L., Bosse, M., Marquez, D., et al. Structured tumor-immune, microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell. 2018;174(6):1373–1387.e19. doi: 10.1016/j.cell.2018.08.039Google Scholar
Gerlinger, M., Rowan, A., Horswell, S., et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New Eng J Med 2012;366:883892. doi: 10.1056/NEJMoa1113205Google Scholar
Adams, S. DNA map offers hope on cancer treatments. Telegraph, 28 January 2013. www.telegraph.co.uk/health/healthnews/9832535/DNA-map-offers-hope-on-cancer-treatments.htmlGoogle Scholar
Crowther, M.D., Dolton, G., Legut, M., et al. Genome-wide CRISPR-Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1. Nat Immunol. 2020;21(2):178185. doi: 10.1038/s41590-019-0578-8Google Scholar
Wilhelm Conrad Röntgen. Generation and detection of X-rays or Röntgen rays. 1901 Nobel Prize in Physics.Google Scholar
Marie Curie, Pierre Curie and Henri Becquerel. Radioactivity. 1903 Nobel Prize in Physics.Google Scholar
Fritz Haber. Ammonia-based fertilizer. 1918 Nobel Prize in Chemistry.Google Scholar
Frederick Gowland Hopkins and Christiaan Eijkman. Discovery of vitamins. 1929 Nobel Prize in Physiology or Medicine.Google Scholar
Otto Warburg. Cellular respiration. 1931 Nobel Prize in Physiology or Medicine.Google Scholar
Frederick Joliot and Irene Joliot-Curie. Artificial creation of new radioactive elements. 1935 Nobel Prize in Chemistry.Google Scholar
Ernest Orlando Lawrence. Invention of the cyclotron. 1939 Nobel Prize in Physics.Google Scholar
George De Hevesy. Development of radioactive isotopes as tracers in animals. 1943 Nobel Prize in Chemistry.Google Scholar
Otto Stern. The development of the molecular ray method and discovery of the magnetic moment of the proton. 1943 Nobel Prize in Physics.Google Scholar
Isidor Isaac Rabi. Discovery of nuclear magnetic resonance. 1944 Nobel Prize in Physics.Google Scholar
Hermann Joseph Muller. Discovery that mutations can be induced by X-rays. 1946 Nobel Prize in Physics.Google Scholar
Edward Mills Purcell and Felix Bloch. Development of new methods for nuclear magnetic precision measurements. 1952 Nobel Prize in Physics.Google Scholar
John Franklin Enders, Thomas Huckle Weller and Frederick Chapman Robbins. Discovery of the ability of poliomyelitis viruses to grow in cultures of various types of tissue. 1954 Nobel Prize in Physiology or Medicine.Google Scholar
André Frédéric Cournand, Werner Forssmann, Dickinson W. Richards. Discoveries concerning heart catheterization and pathological changes in the circulatory system. 1956 Nobel Prize in Physiology or Medicine.Google Scholar
Fred Sanger. First protein sequence.1958 Nobel Prize in Chemistry.Google Scholar
Arthur Kornberg and Severo Ochoa. DNA polymerases. 1959 Nobel Prize in Physiology or Medicine.Google Scholar
James Watson, Francis Crick and Maurice Wilkins. Structure of DNA. 1962 Nobel Prize in Physiology or Medicine.Google Scholar
Max Perutz and John Kendrew. Structures of haemoglobin and myoglobin. 1962 Nobel Prize in Chemistry.Google Scholar
Dorothy Hodgkin. Structure of vitamin B12. 1964 Nobel Prize in Chemistry.Google Scholar
François Jacob, André Lwoff and Jacques Monod. Genetic control of enzyme and virus synthesis. 1965 Nobel Prize in Physiology or Medicine.Google Scholar
Charles Huggins and Peyton Rous. Chemotherapy. 1966 Nobel Prize in Physiology or Medicine.Google Scholar
Marshall Nirenberg, Har Gobind Khorana and Robert Holley. Breaking the genetic code. 1968 Nobel Prize in Physiology or Medicine.Google Scholar
Salvador Luria, Max Delbrück and Alfred Hershey. Discovery of the replication mechanism and the genetic structure of viruses. 1969 Nobel Prize in Physiology or Medicine.Google Scholar
Howard Temin, Renato Dulbecco and David Baltimore. Discovery of reverse transcriptase. 1975 Nobel Prize in Physiology or Medicine.Google Scholar
Werner Arber, Hamilton Smith and Daniel Nathans. Discovery of restriction endonucleases. 1978 Nobel Prize in Physiology or Medicine.Google Scholar
Godfrey Hounsfield and Allan McLeod Cormack. Computed tomography. 1979 Nobel Prize in Physiology or Medicine.Google Scholar
Paul Berg, Walter Gilbert and Fred Sanger. DNA sequencing. 1980 Nobel Prize in Chemistry.Google Scholar
Nicolaas Bloembergen, Arthur Leonard Schawlow and Kai Manne Börje Siegbahn. Development of laser spectroscopy. 1981 Nobel Prize in Physics.Google Scholar
Norman Foster Ramsey. Invention of the separated oscillatory field method. 1981 Nobel Prize in Physics.Google Scholar
Michael Bishop and Harold Varmus. Cellular origin of retroviral oncogenes. 1989 Nobel Prize in Physiology or Medicine.Google Scholar
Richard Robert Ernst. Development of Fourier transform nuclear magnetic resonance spectroscopy. 1991 Nobel Prize in Chemistry.Google Scholar
Kary Mullis and Michael Smith. Inventing the polymerase chain reaction. 1993 Nobel Prize in Chemistry.Google Scholar
Tim Hunt, Lee Hartwell and Paul Nurse. Cell cycle. 2001 Nobel Prize in Physiology or Medicine.Google Scholar
John Sulston, Bob Horvitz and Sydney Brenner. Cell-lineage tree. 2002 Nobel Prize in Physiology or Medicine.Google Scholar
Paul Christian Lauterbur and Peter Mansfield. Development of magnetic resonance imaging (MRI). 2003 Nobel Prize in Physiology or Medicine.Google Scholar
Venkatraman Ramakrishnan, Thomas Steitz and Ada Yonath. Detailed structure and mechanism of the ribosome. 2009 Nobel Prize in Chemistry.Google Scholar
James Allison and Tasuku Honjo. Cancer therapy by immune regulation. 2018 Nobel Prize in Physiology or Medicine.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Robin Hesketh, University of Cambridge
  • Book: Understanding Cancer
  • Online publication: 17 May 2022
  • Chapter DOI: https://doi.org/10.1017/9781009043243.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Robin Hesketh, University of Cambridge
  • Book: Understanding Cancer
  • Online publication: 17 May 2022
  • Chapter DOI: https://doi.org/10.1017/9781009043243.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Robin Hesketh, University of Cambridge
  • Book: Understanding Cancer
  • Online publication: 17 May 2022
  • Chapter DOI: https://doi.org/10.1017/9781009043243.015
Available formats
×